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Abstract. In this paper, we describe area of recommender systems, with focus

on user preference learning problem. We describe such system and identify some

interesting problems. We will compare how well different approaches cope with

some of the problems. This paper may serve as an introduction to the area of user

preference learning with a hint on some interesting problems that have not been

solved yet.
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1 Introduction

User preference learning is an important part of any recommender system. We will

work with a scenario of user searching for some object (we will refer to user as “she”

for not having to distinguish between he and she). Recommendation may help user to

find what she is looking for more quickly and efficiently, because she has not to crawl

through hundreds of products but sees the recommended products on only one or two

pages. Of course, these recommended products may not be an exhaustive list, but they

are a hint for user.

In Section 2 some important related work is studied, providing also an introduction

to the problematic of user modeling. Then, in Section 3, we describe how user pref-

erences are modeled in our approach. In Section 4 is described a typical scenario of

recommendation cycle for user. We also describe how our user model is constructed

and ways for estimating usefulness of a user model. In Section 5 are listed some in-

teresting problems associated with learning of user preferences. Finally, in Section 6

are conclusive remarks and more importantly areas for future work in this field are

proposed.

1.1 Example

In the whole paper, we will refer to a set of “objects”. These objects are supposed to be

of interest for user, probably she wants to buy one. In our traditional example, user is
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K. Richta, J. Pokorný, V. Snášel (Eds.): Dateso 2009, pp. 56–67, ISBN 978-80-01-04323-3.



Various aspects of user preference learning and recommender systems 57

buying a notebook. She has some preferences of notebooks, e.g. the maximal price she

is willing to pay, the preferred manufacturer or the size of the display.

This example is suitable for our approach because notebooks have well defined

attributes that describes the product completely. More about this is in Section 4.1.

1.2 Notation

We will work with a set of objects X . Set X can be also viewed as a set of identifiers of

objects (id), which will be often referred to as o. Every object has attributes A1, ..., AN

with domains DA1
, ..., DAN

. If we want to specify the value of an attribute Ai for

an object oj , we will use notation Ai(oj). We will use Xi(a) when denoting a set of

objects for which attribute Ai has the value a. When the attribute will be clear from

context (which will be most of the times), we will use only X(a).

2 Related work

User preference modeling was very nicely described in [4] and also in a more general

view in [10]. In Figure 1 (which was taken from [4]) are various components of prefer-

ence modeling. Model is how user preferences are understood – for our purposes Total

order of outcomes (or objects) will be most suitable. That means we can create a list of

all objects ordered according to user preferences. Language is a way for user to express

her preferences. It may be a rating of an object, as V (o) in Figure 1, or a query to the

system etc. Language is explored in Section 4.1.

The most interesting part for us is Interpretation, where the information from user is

somehow transformed into Model, e.g. the total order of outcomes. However, because of

intuition, we will slightly change the notation – we will refer to the method for creating

the total order as “user model” or “user preference model”. Interpretation may be also

viewed as learning phase, where a user preference model is constructed.

In the following two sections, two alternative ways of user modeling are described

along with their possible interpretations. First, qualitative models are based on compar-

ing two objects between them, and second, quantitative models are based on evaluation

of a single object with a scoring function.

2.1 Qualitative approaches

Preference relations are the most used and studied qualitative approach. There is a huge

amount of related work in the field of preference relations. Preference relations rep-

resent preferences as a relation between two objects, it is usually assumed that this

relation creates some pre-order on X . There are typically three relations, P are strict

preferences, I represents indistinguishability of objects or equality of preference and

R is union of P and I meaning that it represents non-strict preferences. For example

P (o1, o2) means that o1 is strictly preferred to o2, I(o1, o2) on the other hand means

that o1 and o2 have the same preference and finally R(o1, o2) means that o1 is preferred

or equal to o2.
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Fig. 1. Preference model components.

Preference relations in database systems and their integration into SQL by prefer-

ence queries was studied by Chomicki in [8], [9]. Also Kießling contributed to this field

with [25].

A different approach was suggested by Kießling in [19], [24]. This approach is

based on the idea of preference relations but it uses relations over attribute values rather

than relations over whole objects. This is more like our approach based on fuzzy logic.

However Kießling does not use scoring functions but uses special predicates POS, NEG

etc. to represent relation between two attribute values. An example from [24] is from

the area of cars: POS(transmission, automatic) and NEG(make, Ferrari) meaning that

automatic transmission is preferred to any other type and any maker is preferred to

Ferrari.

As for learning of preference relations, a great contribution is from Fürnkranz and

Hüllermeier [17], [20].

2.2 Quantitative approaches

The other approach, also adopted by us, is quantitative. It sorts objects by a score de-

fined by a scoring function. This approach is arguably less expressive than the qual-

itative one – it can not express e.g. a cycle in preferences. There are also some very

interesting works in this area.

Content based models Content based models uses attributes of object for construction

of scoring function. For example Fagin in [16] proposed a way of combining numerous

fuzzy inputs. Another classical work is from Agrawal [6].

Collaborative filtering Besides content based models, such as the one presented in

Section 3, there is another widely used user model that is based on the preferences of
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other users. Collaborative filtering was proposed in early 90’s in [18] and further devel-

oped. One of the well-known systems using collaborative filtering is GroupLens [27].

Collaborative filtering is based on the idea of similarity of users. When we want to

know how user u1 will like object o1, one way is to look how other people liked o1.

Amazon.com succeeds in describing this approach in one sentence “Customers Who

Bought This Item Also Bought...”.

The better way is to restrict only to those users that are similar to u1. The similarity

may be computed in various way, the most common is the similarity of ratings of objects

other than o1. Other possibility is to compute the similarity of user profiles – e.g. find

managers, from 25 to 30, divorced, with interest in psychology and computer science.

There is a hidden assumption that similarity in profile imply similarity in preferences,

which may not be always true.

3 User model based on fuzzy logic

In this section, we describe user model we are using. This model is based on a scoring

function that assigns every object a score that represents the rating of that object. User

rating of an object is a fuzzy subset of X , i.e. a function R(o) : X → [0, 1], where 0

means least preferred and 1 means most preferred. Our scoring function is divided into

two steps.

Local preferences In the first step, which we call local preferences, every attribute

value of object o is normalized using a fuzzy set fi : DAi
→ [0, 1]. The meaning is that

1 represents most preferred value and 0 stands for the least preferred value. These fuzzy

sets are also called objectives or preferences over attributes. With this transformation,

the original space of objects’ attributes

N∏

i=1

DAi
is transformed into [0, 1]N . Moreover,

we know that the object with transformed attribute values equal to [1, ..., 1] is the most

preferred object. It probably does not exist in the real world, though. On the other side,

the object with values [0, ..., 0] is the least preferred, which is more probable to be found

in reality.

Global preferences In the second step, called global preferences, the normalized at-

tributes are aggregated into the overall score of the object using an aggregation function

@ : [0, 1]N → [0, 1]. Aggregation function is also often called utility function.

Aggregation function may take different forms; one of the most common is weight-

ed average, as in the following formula:

@(o) = (2 ∗ fPrice(o) + 1 ∗ fDisplay(o) + 3 ∗ fHDD(o) + 1 ∗ fRAM (o))/7,

where fA are fuzzy sets for normalization of attribute A.

Another totally different approach was proposed in [15]. It uses the training dataset

as partitioning of normalized space [0, 1]N . For example, if we have an object with

normalized values [0.4, 0.2, 0.5] with rating 3, every other object with better attribute

values (e.g. [0.5, 0.4, 0.7]) is supposed to have rating at least 3. In this way, we can find

the highest lower bound on any object with unknown rating. In [15] was also proposed
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a method for interpolation of ratings between the objects with known ratings and even

using the ideal (non-existent) virtual object with normalized values [1, ..., 1] with rat-

ing 6.

In other words, we can say that the pareto front is constructed in the first step. Pareto

front is a set of objects that are not dominated by any other object. We say that object

o1 dominates object o2 iff ∀i = 1, ..., N : fi(o1) > fi(o2), i.e. o1 is better in every

attribute than o2. In the second step, we choose the best object from the pareto front.

4 A recommender system

A recommender system tries to help user to find the object she is looking for. It is

necessary for user to transfer some information about her preferences to the system. It is

convenient for user to describe her preferences in an intuitive and simple way. The more

complex user interface is, the more structured information the system gets but much less

users will use it (according to [26], as little as 9 out of 260 people provided a feedback

to their system). This fact also penalizes preference relations – user is supposed to

compare two objects, but the number of couples is quadratic to the number of objects.

There is an example how a recommender system may work in Figure 2. System

presents user with a set of objects S0. User rates some of these objects and this infor-

mation is sent back to the system as feedback U0. User model is constructed from user’s

ratings and a personalized set S1 is sent to user. Again, user rates some objects (U1) and

system updates its user model and sends S2 and this cycle may go on until user is sat-

isfied or bored. In Section 4.1 various possible types of feedback from user are studied.

In Section 4.3 and 4.2 the construction and update of user model is described.

S0

Recommender

system

User

U0

U1

Construction of 

user model

Update of 

user model

...

User decision 

making

User decision 

making
S1

S2

Fig. 2. A use of a recommender system in steps.



Various aspects of user preference learning and recommender systems 61

The process of recommendation is in Figure 3. User does some actions with the

system, which are processed by various components of the system. You can see that

some inputs may be processed by multiple components. There are three examples in the

figure – analysis of user behaviour, collaborative filtering, analysis of ratings and direct

query. Each of these components then creates user model which is used for prediction of

preference of all objects. Some models, like collaborative filtering, use the information

about other users or other additional information. All these models are then combined

together to provide most precise recommendation for user. Furthermore, when the sys-

tem identifies some of the situation discussed in 5, it can favour the model that behaves

best in this situation or the other way round. Collaborative filtering is not good when

there is a small number of users, so if that is the case, it can be disfavoured.

Recommended system
User

Ratings

Behaviour

Queries

Restrictions of 

attributes

Database with 

other users

preferences
Analysis of 
behaviour

Analysis of 
ratings

Combination of 
different methods

Recommendation of 

objects

Direct 
query

Collaborative 
filtering

Fig. 3. Structure of a recommender system.

4.1 Input from user

From the information user provides to the system, her user model is built. User model

should be capable to determine which objects user will like or to what degree an object

will be preferred. The construction of user model is of most interest for us. We are

working with user ratings. These ratings user associates to a small number of objects.

This is key aspect of user model construction – it can not be expected that user will rate

hundreds of objects. When doing experiments, we often limit the size of training set to

40 objects.

Other approaches may expect different forms of information from user other than

ratings. For example for preference relations, comparisons between two objects is the
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expected input. The full-text query issued by user may be also viewed as a source of

information about what user wants – document retrieval uses queries as its only infor-

mation from user.

Datasets There exists publicly available datasets of user ratings such as Netflix [3]. In

these datasets exist users with even thousands of ratings. Unfortunately, most of these

datasets have a very small number of attributes.

– Books [5] - have author, title, year of publication and publisher. It contains 433 670

ratings with non-zero rating from 77 805 users.

– Jokes [23] - have no attributes, except the text of the joke itself. It contains 4.1

million of ratings by 73 421 users.

– Films [2], [3] - have many attributes (from IMDB [1]) but they are complicated.

One film can have many actors, many producers, many directors etc. The normal

attributes such as length of a film are not determined easily, because they differ

across countries, editions or releases. Movielens contains 10 million ratings from

71 567 users. Netflix contains over 100 million ratings.

All this is data from users who were using a system for a long time, several years in

most cases.

Behaviour analysis User behaviour interpretation was studied in [21] and [22]. Be-

cause user tends not to give very much information about herself, the interpretation of

her behaviour may provide a useful information that supports the explicit actions she

had done (such as ratings of objects). There are many events that can be monitored, such

as the time spent on a web page with details of an object, clicking on a page, scrolling

down a document, filtering the content of the page, issuing a query etc. These actions

are then interpreted as if they were motivated by her preferences, e.g. the longer user

stays on a page, the more preferred is the object on that page. When user browses the

shop by categories or restricts values of some attribute, it is a clear statement what she

likes. For example when user narrows her search to notebooks with display size 14”,

we can deduce that 14” is the best size of display. This information helps when creat-

ing local preferences (in Section 4.2). The order in which such restrictions are applied

may represent importance of attributes. Typical counter-example against interpretation

of behaviour is when user is going for a coffee, leaving the browser open on that page,

or a user searching for an object for a friend (see also Section 5 for this issue).

In following sections, we outline some methods for creating local and global pref-

erences, which are contributions we made to this area in the past.

4.2 Learning local preferences

The acquisition of local preferences differs for different types of attributes. For nominal

attributes, we use a method based on representative value that is computed from user

ratings [11, 13].

For numerical attributes, the problem is more complicated – there is usually only

one object with value a. A typical example is price – there is often only one notebook
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with price e.g. 941$. We can stick with traditional methods such as linear regression,

where the input is formed from the ratings of objects and their prices. However linear

regression may be affected by the distribution of data, but we want a function that

corresponds to real values across the whole domain, not only there where are most

values. Because of this, we proposed a way of using representants for numerical domain

in [11].

Lately, we identified another problem with numerical domains. It may happen that

a value of another attribute, often nominal, affects the normalization of a numerical

attribute. For example, when flying with British Airways, you may prefer lower price,

because the comfort is fine in economy class, but with Aeroflot, you may prefer higher

price because the overall comfort is worse. This phenomenon is related to ceteris paribus

preferences [28] and CP-nets [7].

4.3 Learning global preferences

Method called “Statistical” was described in [11] and in [12]. It is based on the evalua-

tion of distribution of ratings across attribute domain DA and from this distribution it is

possible to derive weight that A plays in the decision process of user. Then the weighted

average with these weights is used as aggregation function.

When constructing scoring function called “Instances” that uses the objects from

training set as lower bounds (from [15]), there is little to do. It does not need any fur-

ther transformation or analysis. This is unfortunately balanced by a more complicated

computation during evaluation of new objects.

4.4 How to measure usefulness of a recommender system

In this section we identify several ways of measuring usefulness of a recommender

system. As in data-mining, we adopt the idea of training (Tr) and testing sets (Ts). User

model is constructed from objects in training set and then its performance is measured

on testing set. In the following, the real preference of an object o will be denoted as

R(o) and preference user model estimates as R̂(o).

RMSE RMSE stands for root mean squared error. It is widely used as error measure in

data-mining community. It is computed as

√∑
o∈Ts

(R̂(o)−R(o))2/|Ts|.

When considering user preferences, we introduced a modified RMSE, weighted

RMSE. It associates more weight to the preferred objects than to the non-preferred.

The formula is

√∑
o∈Ts

R(o) ∗ (R̂(o)−R(o))2/
∑

o∈Ts
R(o). The less is RMSE, the

better the system performs.

Tau coefficient Tau coefficient is known in economy. It is used to measure the simi-

larity of the ordered lists of objects. It is assumed that both lists contain the same set of

objects. For our purpose, we compare the ordering of objects by real user preferences

R(o) with the ordering user model would make R̂(o).
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Tau coefficient is based on concordant and discordant pairs. A pair (o1, o2), (p1, p2)

is concordant, if sgn(R(o1) − R(o2)) = sgn(R̂(p1) − R̂(p2)), where sgn is signum

function. Then the coefficient is computed as τ = nc−nd

1

2
n(n−1)

where nc is number of

concordant pairs, nd is the number of discordant pairs and n is the number of objects in

lists. The higher Tau coefficient is, the better for the system.

We can apply weighting scheme to Tau coefficient, too. Objects with higher real

preferences will matter more than objects with low preference, when comparing the

two orderings.

ROC curves ROC curve is a method for capturing the performance of a system under

different conditions. In terms of classification of positive and negative examples, it tells

how the recall (the ratio between the number of correctly classified positive objects and

the total number of positive objects) of the system increases if we relax the ratio of

correctly classified negative objects and the number of all negative objects.

The problem here is that we do not have a simple positive-negative scenario. Ratings

have typically the domain {1,2,3,4,5}. The possible solution is to consider several cuts

in this domain and measure at each of these cuts. We can take as positive objects with

rating 5 and the rest as negative. Then, objects with ratings 5 and 4 will be considered

positive and the rest as negative etc. In this way, we will get 5 different ROC curves.

Amount of information required from user Another important characteristic of a

recommender system is amount of information that is required from user. Possible ap-

proaches are described in Section 4.1. Often, the higher precision of a system is out-

weighed by a larger investment from user. But the intuition says that few users will

be willing to perform complicated tasks, no matter the increase of helpfulness of the

system. The less information the system needs from user, the better for user.

Improvement in user ease of work with the system The main task of recommender

systems is to help the user. All the above mentioned measures are good because they

can be computed analytically, but they cannot capture the real improvement for user.

This improvement can be only given by the real user working with the various recom-

mender systems and comparing them between them. There are some problems with this

comparison

– Every man perceives the ease of work differently. There should be a large number

of people testing the systems to be compared to evaluate overall suitability.

– The system has to be implemented including the user interface. Different methods

work with different inputs from the user and they have to be able to monitor these

inputs.

– People testing the system has to have a motivation to work with the system. If they

are not, they would not be critical or they would apply some criteria irrelevant in

the real usage of the system. This is most difficult to achieve.
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5 Interesting problems of recommender systems

In this section, some interesting problems are described. All these problems relate to

user preference learning and can be viewed as the main contribution of this paper, be-

sides the introductory part.

Cold start When a system is based on user ratings, it has serious troubles in the begin-

ning of its existence. This problem is most pronounced for collaborative filtering-based

system, because they need a lot of rating from a lot of users for making correct predic-

tions. For content based recommendation, this is not much of a problem because the

accuracy of recommendation does not depend on the number of users of the system.

The following issue however affect both approaches.

New user When a new user starts using the system, it is hard to recommend something

because the system has little information about her. This issue may be overcome with a

default user profile, but this solution is not personalized enough.

There is a possibility to learn something quickly about a new user – it is by choosing

a good set S0 in Figure 2. When there are very different objects in S0, we can learn

immediately what user certainly does not like and what area is of her interest. When S0

is constructed randomly, there is a higher possibility that there would not be any object

the area of user’s interest. Suitable S0 may be found for example using clustering.

Identifying context for user When a user works with the system, it is assumed that

she searches for some object she wants. But there are other possible motives such as

scanning the area or finding some object for a friend. This context of work deeply

influences user behaviour and may severely damage existing user model.

Small rating scale Typical rating is expressed on the scale {1,2,3,4,5}. When having

thousands of objects, this scale is far too small for capturing the ordering among the best

objects. We proposed a method Phases for overcoming this obstacle in [14], but it is not

a complete analyze and there are many more aspects of this problem. Phases are suited

for a single session, for long-term usage there should be another way of differentiating

among the objects with rating 5.

This problem could be of course solved by enlarging the scale of ratings to e.g.

{1,...,100} but its benefit is questionable. Will user really feel the difference between

ratings 64 and 65? Will user be able to apply it consistently?

Negative preferences In our model, 0 means the lowest preference. When a manufac-

turer ASUS has the preference 0, it penalizes the notebook, but in the overall score it

may be outweighed by other attributes which are more preferred by user. Negative pref-

erences are typically more stronger than this – a notebook made by ASUS is strongly

disregarded. The strength may be expressed by the weight of the attribute, but it is no

solution, because for other manufacturers, this attribute may not have such a big weight.

Our task is to model a better way of penalizing objects with a highly non preferred value

and the way of expressing such strong negative preference.
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Time dimension Main problem with acquisition of user preferences is the small size of

training data. When user is using the system for a longer period, the training data may

get bigger. But here comes a new problem – user preferences are typically unstable.

What user preferred a month ago may not be good today. But the high rating user

provided a month ago is the same high rating provided today.

There is a need to find a method for penalization of older ratings or promotion of

newer ones. The system needs to guess whether to apply the penalization at all – maybe

the preferences stay the same when buying a house, but they may change quickly for a

movie.

6 Conclusion

We have described a recommender system and identified several interesting issues and

problems that occur during user model construction. The main contribution is the sug-

gestion of several possible ways how to measure helpfulness of a recommender system.

The experimental evaluation is often lacking in more theoretical focused papers. Also

the list of some problems or typical situations in recommender systems may be inspiring

for searching of their solutions. We hope that this analysis would be helpful to anyone

new in recommender systems and user modeling field.

6.1 Issues for future work

All problems in Section 5 are worth studying, but we would like to address the two last

problems in near future – that of Negative preferences and Time dimension.
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