
Using Top Trees For Easy Programming of Tree

Algorithms

Michal Vajbar

Department of Software Engineering, Faculty of Mathematics And Physics, Charles
University in Prague, Malostranské nám. 25, 118 00, Praha 1, Czech Republic

michal.vajbar@mff.cuni.cz

Abstract. Top trees are a dynamic self-adjusting data structure that
can be used by any tree algorithm. Actually, an arbitrary number of dif-
ferent tree algorithms can use a single structure. In our previous work, we
have implemented top trees, but the usage still requires a detail knowl-
edge of the structure which is quite complex. In this paper, we intro-
duce Top Tree Friendly Language (TFL) and Top Tree Query Language
(TQL). The TFL is a special programming language which combines
declarative and procedural approaches that results in simpler and faster
algorithm designing. The query language TQL provides an easy top trees
administration. The implementation of top trees, the programming lan-
guage TFL and the query language TQL together form a complex solu-
tion for using top trees.

Keywords: data structure, top trees, programming language, query language

1 Introduction

There exist many algorithms that work over tree graphs. Any of them can use
different data structures to represent the same tree. If we need to run several of
these algorithms over one forest together each one could use its own representa-
tion of the forest. Moreover, if the forest dynamically changes over the time by
edge insertions and deletions all these changes have to be reflected into the data
structures of all algorithms. This is not efficient. Thus several data structures
have been proposed to solve this problem. Any of them is good at some prop-
erties, but each has a weak point. It appears that top trees provide the most
acceptable trade-off. In this paper, we present a complex solution that allows easy
using of top trees. The solution is built on our implementation of the structure [7]
and it brings Top Tree Friendly Language (TFL) and Top Tree Query Language
(TQL). The TFL is a special programming language which combines declarative
and procedural approaches that results in simpler and faster algorithm designing.
The query language TQL provides easy top trees administration.

The paper is organized as follows. In Section 2 we introduce top trees. Used
implementation of top trees is shortly presented in Section 3. Section 4 introduces
the TFL programming language and shows how to use it. In Section 5 we present
the query language TQL. Final remarks are made in Section 6.

K. Richta, J. Pokorný, V. Snášel (Eds.): Dateso 2009, pp. 68–79, ISBN 978-80-01-04323-3.

Using Top Trees For Easy Programming of Tree Algorithms 69

2 Top Trees

Top trees are a dynamic self-adjusting data structure that was proposed by
Alstrup et al. [1]. A top tree R is an ordinary binary tree with a root. It is used to
represent a tree graph T with defined information that some tree algorithm works
with. The structure R consists of clusters. The edges of the T form basic clusters
and two clusters connected through a common vertex create other cluster. So the
R records a way of clusters connecting into one root cluster that represents whole
T . Each cluster holds information of appropriate part of the T . A manner how
the information is computed during joining and splitting of clusters characterizes
used algorithm. That is a simplified idea. In the rest of this section, the structure
is described more precisely.

2.1 Formal Definition and Properties

The structure is defined over a pair consisting of a tree T and a set ∂T of at most
two vertices from T that are called external boundary vertices. Let (T, ∂T) is the
pair, then any subtree C of T has a set ∂(T,∂T)C of at most two boundary vertices

from C. Each of them is either from ∂C or incident to an edge from T \C. The
subtree in undirected graph means any connected subgraph. The subtree C is
called a cluster of (T, ∂T) if it has at least one edge and at most two boundary
vertices. Then T is also cluster and ∂(T,∂T)T = ∂T . If A is a subtree of C then
∂(C,∂(T,∂T)C)A = ∂(T,∂T)A. This means that A is a cluster of (C, ∂(T,∂T)C) if and
only if A is a cluster of (T, ∂T). We will use ∂ as a shortcut for ∂(T,∂T) and also
for all subtrees of T .

Definition: A top tree R over (T, ∂T) is a binary tree such that:

1. The nodes of R are the clusters of (T, ∂T).
2. The leaves of R are the edges of T .
3. Two clusters are called neighbours if they intersect in a single vertex. Their

union is a parent cluster (Fig. 1).
4. The root of R is T itself.

Top tree R represents whole T . If T consists of a single vertex then it has an
empty top tree. The edges of T are basic building blocks of the clusters and the
vertices represent endpoints of the clusters. That is why the cluster is consisted of
at least one edge. The neighbouring clusters are edge-disjunct with one common
vertex (Fig. 1).

Let C is a cluster. A vertex v is an internal vertex of C when v ∈ C and
v /∈ ∂C. If C has two boundary vertices a and b then C is called a path cluster

and the path a . . . b is called the cluster path of C. If C has one boundary vertex
a then C is called a point cluster.

Top tree nodes contain pointers to their sons and parents. Each node rep-
resents a cluster and there is a set of at most two boundary vertices associated
with the cluster. The leaf nodes represent the edges. The non-leaf node holds
information how it is joined from its sons (Fig. 1). According to this information
it is possible to construct any cluster.

70 Michal Vajbar

(a)

(b)

(c)

(d) (e)

Fig. 1. The cases of joining two neighbouring clusters into the parent cluster (assumed
from [1]). The • are the boundary vertices of the parent cluster. The ◦ are the boundary
vertices of children clusters that did not become the boundary vertices of the parent.
The dashed line presents the cluster path of the parent cluster. Moreover, there exist
symmetric variants for (b) and (c).

2.2 Supported Operations

When we work with a forest (a set of trees) then each tree of the forest is
represented by one top tree. Given vertices v and w, the whole forest is controlled
by following operations:

link(v, w) – If v and w occur in different trees then a new edge (v, w) is created.
cut(v, w) – If the graph contains the edge (v, w) then the edge is removed.
expose(v, w) – If v and w occur in the same tree then the top tree is rebuilt so

that v and w become the external boundaries and the path v . . . w becomes
the root path (Fig. 1a, 1b). It is possible to call expose with one vertex to
create the root cluster with only one external boundary (Fig. 1c, 1d).

select(R) – A special operation for nonlocal algorithms. The R is a top tree.
This operation is described in the Section 2.4.

A number of clusters can be changed by the operations above. These changes
are executed by local operations:

create() = e – Creates a top tree with only one cluster e consisted of one edge.
join(A, B) = C – A and B are the neighbouring root clusters of top trees RA

and RB . This operation creates a new cluster C = A∪B which represents a
root cluster of the top tree RC consisted of RA and RB .

split(C) = (A, B) – The C is the root cluster of a top tree RC . The split removes
C and divides the top tree RC into top trees RA and RB . The clusters A

and B are created from the C as the root clusters of the new top trees.
destroy() – This operation removes the cluster represented by one edge.

The operations link, cut and expose invoke a sequence of the local operations.
Each local operation always changes just one cluster. The root cluster may rep-
resent only a part of the tree T during the rebuilding, but in the end it represents
whole T again.

Using Top Trees For Easy Programming of Tree Algorithms 71

2.3 Usage of Top Trees

Algorithms working over top trees associate information that they need with
clusters or vertices. The local operations describe how to deal with the informa-
tion during the changes. Then to describe the algorithm it is enough to define
the manner of the local operations.

To keep the structure in a consistent state it is possible to change information
only in the root cluster or in the external boundary vertex. So the top tree must
be rebuilt by the expose operation when we want to change information saved in
the cluster specified by a path v . . . w or by a vertex v. Then the path becomes
the root path and specified vertices become external boundary vertices. The
structure does not allow to change any information outside of the root cluster.

2.4 Types of Algorithms

Tree algorithms can be classified as local or nonlocal. The local algorithms deal
with local properties of the tree. The local property is defined in the following
way: if the property holds for an edge or a vertex in the whole tree T then
it holds for the same edge or the vertex in any subtree of T . An example can
be the searching for the heaviest edge or the finding out the distance between
two vertices. The local properties can be computed easily in bottom-up manner
in the top tree. The nonlocal algorithms are different. They deal with nonlocal
properties: this kind of property can be held by one edge (or a vertex) in the
whole tree and by another one in any subtree. For example the searching for the
center or the median of the tree. Evidently, the using of top trees for nonlocal
algorithms is more difficult than for local algorithms.

Top trees have to support a fourth operation called select to enable nonlocal
algorithms running. This operation is very complex so only basic idea is showed
here. The detailed description can be found in [6]. The select gets a top tree R and
it picks one of the children clusters of the root cluster. It is important to realize
that the R represents the whole tree T . The operation works recursively and it
is similar to the binary searching. One child of the root cluster is selected and
this child becomes the root for next iteration. The top tree is rebuilt to prepare
the new root after the selection (details in [6]). So the new root still represents
the whole tree T . The finding finishes when a basic cluster that represents one
edge is found. This cluster is the intersection of all selected clusters.

3 Used Implementation

We have developed an implementation of top trees in our previous work [7].
Our implementation results from Tarjan and Werneck’s work [5, 8]. It combines
tree decomposition used in Sleator and Tarjan’s ST-trees [4] with compression
and raking used in Frederickson’s topology trees [2]. These principles ensure the
representation of a tree graph T and bring the great idea of clustering. For more
details see [7].

72 Michal Vajbar

In our implementation, all four operations are supported in O(log n) amor-
tized time where n is a number of vertices. This time analysis is proved in [5]
for link, cut and expose. For select it is proved in [7].

The data structure and both languages TFL and TQL were developed in
Java language. Source codes with examples and documentation are available on
author’s homepage1.

4 Top Tree Friendly Language (TFL)

In our previous work [7], we have implemented top trees, but the usage still
requires a detail knowledge of the structure which is quite complex. So we have
decided to develop a declarative programming language that makes the structure
available to users with only a basic knowledge.

The declarativity saves users from technical details of the implementation
and it allows to focus on the designing of a tree algorithm. So hence it came the
name of the language - Top Tree Friendly Language (for short TFL).

We did not try to develop the almighty programming language. The aim was
a language that simplifies the designing of algorithms. The TFL allows to write
a simple and short source code quickly and then easily verify its functionality
with the TQL (Sec. 5).

4.1 Basics of TFL

The source code of the language consists of several blocks that form two sections.
In the first section, there is declared a name of the algorithm and information
stored in vertices and clusters. A description of the designed algorithm occurs in
the second section of the script. A line or block comment can be used anywhere.

In the declarative section, it is necessary to keep the order of three obligatory
blocks - firstly the algorithm name in the algorithm block, then the declaration
of the vertex in the vertex block and finally the declaration of the cluster in the
cluster block. An example can be seen in Fig. 2.

The declaration of the vertex and the cluster contains a specification of vari-
ables to store information. The variables are described by a data type. All sup-
ported types are depicted in the section 4.3. In the cluster block, there it is
possible to use a special array. The array holds information of the specified data
type for two keys - the boundary vertices of the relevant cluster. The cluster is
the only block where the arrays can be declared. This construction resulted from
the need of some algorithms that require to hold different information for both
boundary vertices in each cluster.

In the second section, there is described a behaviour of the algorithm. Two
levels of the blocks are used here whereas the only one level occurs in the declar-
ative section. The root blocks form the first level. They are var, create, destroy,
join, split and selectQuestion. These blocks are not obligatory, but their occur-
rence has to correspond to the mentioned order. They describe the algorithm

1 http://siret.ms.mff.cuni.cz/vajbar

Using Top Trees For Easy Programming of Tree Algorithms 73

/* The declaration of the algorithm name and saved information: */

algorithm { algorithmName } // 1. the name of the algorithm

vertex { // 2. the declaration of vertex information

type1 variable1, variable2;

type2 variable3; }

cluster { // 3. the declaration of cluster information

type3 variable4;

array(type2) variable5, variable6; }

/* The description of the algorithm: */

...

Fig. 2. The structure of the TFL source code.

during the local operations as their names imply. In the root blocks, there can
be used only the blocks of the second level called auxiliary blocks. The var and
the selectQuestion are exceptions without the local blocks.

The auxiliary blocks contain the procedural tools of the TQL language that
are depicted in the section 4.4. They can be read as the sequences of the com-
mands that are executed if some condition holds (e.g. the cluster represents a
path). The blocks are explained in more detail in the following subsection.

4.2 Algorithm Description

The conception of the blocks corresponds to the train of thought during the
algorithm designing. Thanks to blocks the process of the designing is divided into
the smaller problems which can be solved more simply. That brings a declarative
way of the programming, so an user takes care of the designing only. There is
no need to take care of the technique how the result is achieved. Moreover, only
basic procedural tools are needed to describe the work of the algorithm in the
blocks.

The root block var. The var is a special kind of the root block. There are
declared global variables that can be used in any other root block. The syntax of
the declaration is the same as in the vertex block. Arrays are not allowed there.

The root blocks create and destroy. These blocks describe the algorithm
during the local operations of the corresponding names. It is necessary to dis-
tinguish if the cluster represents a path or if it is a point cluster. So there are
two auxiliary blocks:

path – the current base cluster is a path cluster

point – the current base cluster is a point cluster

A content of the block is executed if the condition above holds. These auxiliary
blocks can occur in any order but each at most once.

74 Michal Vajbar

The root blocks join and split. The blocks describe the algorithm during
the appropriate local operations. There have to be considered the types of the
parent and both children clusters. According to these types the behaviour of the
algorithm can be described by following auxiliary blocks:

path child – current descendant of the parent cluster is a path cluster
point child – current descendant of the parent cluster is a point cluster
path parent – parent cluster is a path cluster
point parent – parent cluster is a point cluster
path and path – clusters represent the variant Fig.1a
path and point – clusters represent the variant Fig.1b
point and path – clusters represent a symmetry to the variant Fig.1b
point and point – clusters represent the variant Fig.1e
lpoint over rpoint – clusters represent the variant Fig.1c
rpoint over lpoint – clusters rep. a symmetry to the variant Fig.1c
lpoint and rpoint – clusters represent the variant Fig.1d

A content of the block is executed if the condition above holds. These auxiliary
blocks form three groups: * child, * parent and the variants from the figure 1.
In the join block, the groups have to occur in the mentioned order. In the split,
the order of * child and * parent is switched. Within the scope of the groups
the blocks can occur in any order.

The mentioned orders correspond to a succession that should be observed
during the algorithm designing. When two neighbours are connected by the join

then typically the data from them are prepared at first (* child) and then the
data of the parent cluster are computed (* parent). If the algorithm needs more
information about the clusters then the blocks from third group can be used. The
procedure is analogical for the split. Firstly the data from the parent cluster are
prepared (* parent) and then the data for the children are computed (* child).
Eventually, the blocks from the third group can be used of course.

The root block selectQuestion. The last of the root blocks describes the
way how the decision during one step of the select operation proceeds. The
selectQuestion can be seen as the fifth local operation. Its content is slightly
different from the other root blocks. There are no auxiliary blocks and the syntax
follows:

selectQuestion {

/* any code */

if (condition) {

/* any code */

select a;

}

else {

/* any code */

select b;

}

}

Using Top Trees For Easy Programming of Tree Algorithms 75

The command select (a|b); specifies the cluster that is selected. The a (b)
denotes the left (right) child. The usage of the cluster names can be found in
Section 4.5.

4.3 Supported Data Types

The language supports four data types - integer, real, string and boolean. It
should be sufficient for the most of tree algorithms. The string represents the
sequences of characters. The values must be surrounded by the quotation marks.
The boolean type was included to allow working with logical values true and
false.

The integral numbers are represented by the integer data type and the real
numbers by the real. The language does not enable a casting between these
two data types. The both numeral types support positive and negative infinity -
IpINF and ImINF for the integer and RpINF and RmINF for the real. This differen-
tiation between the types of the infinities results from the using of the auxiliary
variables. It is described in the Section 4.5. The work with the infinities abides
by the standard IEEE 754 [3].

The variables declarated in the vertices and the clusters are initialized by the
default values according to the data types. A null string "" is the default for the
string and the false for the boolean. The integer is initialized by integral zero
0 and the real by decimal zero 0.0.

4.4 Constructions of Programming Language

By the procedural tools we try to cover usual needs of the algorithm designing.
We have implemented a lot of tree algorithms over the top trees and it has
revealed that there are only two essential commands. The first is the assignment
of a value into a variable and the second is if-else construction. It seems to be very
little, but it is not. There is no need to support more complicated constructions
like for -loops or while-loops and the need of switch-block can be substituted by
the if-else very easily.

The syntax of the if-else is the same as in other programming languages.
The construction can contain any number of elseif parts and the else part is not
necessary:

if (condition1) {

/* any code */

} elseif (condition2) {

/* any code */

} else {

/* any code */

}

The language TFL supports basic arithmetic operations +, -, *, /. The divi-
sion is integral for the integer. Numbers can be compared by ==, !=, <, >, <= and
>=. The integer and the real type cannot be combined anywhere. There is an

76 Michal Vajbar

operator & for string concatenation. The language also offers the logical AND &&

and the OR ||. The priorities of the operators are ordinary and the order can
be specified by parentheses (,). The summary of operators with their priorities:

Priority Operator type Operator
1 unary minus -

2 multiplication, division * /

3 enumeration, subtraction, concatenation + - &

4 comparison == != < > <= >=

5 logical operators && ||

6 assignments = += -= *= /= &=

4.5 Using of Variables

There are two kinds of variables in the TFL. The first kind includes the variables
declared in the vertex and the cluster block. The second kind are auxiliary vari-
ables. The names have to match the regular expression [a-zA-Z][a-zA-Z0-9]*.
To make accessing to clusters and vertices easier the labels were set up:

c current cluster
a left child of the current cluster
b right child of the current cluster

child mark for a and b in * child blocks
left left boundary vertex
right right boundary vertex

common common vertex of the children
border the only boundary vertex of the point cluster

The usage of the names employs dot notation similarly to the object-oriented
programming languages:

variable global (declared in var) or auxiliary variable
cluster.variable auxiliary variable or declared in cluster

cluster.array[vertex] value attached to vertex in cluster array
cluster.vertex.variable auxiliary or declared variable of the vertex

vertex.variable abbreviation for c.vertex.variable

Auxiliary variables. In the root block (excepting the var), the auxiliary vari-
ables can be used. They do not need to be declared. The TFL learns the type
from the first value that is assigned to the variable. Therefore each auxiliary vari-
able must be initialized by some value. This is the reason for using one type of
the infinity for the integer and another one for the real. The creation of auxiliary
arrays is not allowed.

4.6 Example of Usage

The usage of the language is very easy as can be seen from the following example
- the finding out the length of a path. The path is specified by two vertices and

Using Top Trees For Easy Programming of Tree Algorithms 77

the technique was described by Alstrup et al. [1]. Each cluster holds its length.
The algorithm needs to implement only the join. If a point cluster is created
then its length is zero. The length of a path cluster is computed as the sum of
the children lengths. The produced source code is very short and simple:

/****** The length of the path ******/

/*** Declaration of stored information ***/

algorithm {lengthOfWay} // name of the algorithm

vertex { integer name; } // we store name of the vertex in vertices

cluster { integer length; } // we store length of the cluster in clusters

/*** Description of the algorithm ***/

join {

path_child { // if a or b is the path, then we remember its length

child.l = child.length;

} point_child { // if a or b is the point, then its length is zero

child.l = 0;

} path_parent { // path cluster length is the sum of its children

c.length = a.l + b.l;

} point_parent { // point cluster length is zero

c.length = 0;

}

}

5 Top Tree Query Language (TQL)

The TQL is a simple query language that was developed to control top trees.
The language allows the adding of the vertices, joining and splitting of the edges
or working with information stored in the top trees. There are supported the
same data types as in the TFL.

To enable an easy manipulation with nodes of the forest one statement stored
in the nodes must be unique. The user can choose that unique identifier which
is preferred. This identifier cannot be the boolean, because it can determine only
two values.

5.1 Adding of Nodes

When a new node is created then some values are saved into the statements
declared in the vertex block of the TFL. To make it simpler there is a node

command:

node (param1, param2, ...) (param3=value1, param4=value2, ...);

node;

So there can be declared the order of some parameters and default values
of another parameters. The order of declarative and definition part is arbitrary
and it is not necessary to use both of them. The default values have to match

78 Michal Vajbar

the data types and the unique identifier cannot be used. It is possible to call this
command at any time. When the node is called without the parameters then it
displays the current order and the default values settings.

A new node is created in the following manner:

unique_name (value1, value2, ...) (param1=value3, param2=value4, ...);

The enumeration part must agree with the declaration of the node. In the assign-
ment part, the default values can be overwritten and other parameters defined.
The parts can occur in any order. Any part can be omitted, but at least one has
to be applied.

5.2 Joining and Splitting of Edges

Analogous to the nodes there is a command to specify the order of parameters
and the settings of default values for edges that were declared in the cluster

block of TFL:

edge (param1, ...) (param2=val1, param3[L]=val2, param3[R]=val3, ...);

edge;

The usage is the same as for the node, but moreover there can be used an array.
To access the entries of the array there are marks L and R for the left and the
right boundary vertex.

The command for the edge joining enables to specify the position of the new
edge with regard to the position of other edges:

u {a} -- v {b} (value1, value2, ...) (param1=value3, ...);

When edges are organized in circular order around u and v, then the new edge
(u, v) is the right successor of the (u, a) and the (v, b). This position specification
can be omitted. For the enumeration and the assignment parts there are the same
rules as for the nodes creation. A node can be created during the joining - all
its parameters have to be set by default values and no position specification can
be used.

The removing of the edges is very easy:

u ## v;

5.3 Reading Information and Another Commands

Sometimes it is important to read the information stored in the vertex v or in
the cluster with boundary vertices u, v:

info(v);

info(u,v);

In the TQL language, there is a lot of embedded functions that were prepared
for the most frequently used operations (e.g. value changing, . . .). In addition,
the language enables to program custom functions as a plug-in in the Java lan-
guage. The details can be seen in our previous work [6].

Using Top Trees For Easy Programming of Tree Algorithms 79

6 Final Remarks

We have developed a complex solution that allows using top trees for easy pro-
gramming of tree algorithms. The solution is built on our implementation of top
trees [7] and it is formed by Top Tree Friendly Language (TFL) and Top Tree
Query Language (TQL).

The TFL is a declarative programming language that makes the structure
available to users with only a basic knowledge of top trees. The declarativity
saves users from technical details of the implementation and it allows to focus
on the designing of tree algorithms. The TQL is a simple query language that was
developed to control top trees. The language allows the adding of the vertices,
joining and splitting of the edges or working with information stored in the top
trees. In addition, the language TQL can be extended by custom functions.

Both languages form an useful tool that enables to write a simple and short
source code quickly and then easily verify its functionality. So the tool makes
the algorithm designing easier and more comfortable.

6.1 Related Work

To the best of our knowledge, there exists no similar tool to compare with. Top
trees are relatively young data structure. Excepting the work of Alstrup et al.
[1] and Tarjan and Werneck’s works [5, 8], we did not find any other information
about top trees.

References

1. S. Alstrup, J. Holm, K. D. Lichtenberg, and M. Thorup. Maintaining information
in fully dynamic trees with top trees. ACM Trans. Algorithms, 1(2):243–264, 2005.

2. G. N. Frederickson. Data structures for on-line updating of minimum spanning
trees, with applications. SIAM Journal of Computing, 14(4):781–798, 1985.

3. IEEE-Task-P754. ANSI/IEEE 754-1985, Standard for Binary Floating-Point Arith-
metic. IEEE, New York, aug 12 1985. A preliminary draft was published in the
January 1980 issue of IEEE Computer, together with several companion articles.
Available from the IEEE Service Center, Piscataway, NJ, USA.

4. D. D. Sleator and R. E. Tarjan. A data structure for dynamic trees. Journal of
Computer and System Sciences, 26(3):362–391, 1983.

5. R. E. Tarjan and R. F. Werneck. Self-adjusting top trees. In SODA ’05: Proceedings
of the sixteenth annual ACM-SIAM symposium on Discrete algorithms, pages 813–
822, Philadelphia, PA, USA, 2005. Society for Industrial and Applied Mathematics.

6. M. Vajbar. Modelling dynamic trees. Master’s thesis, Department of Software
Engineering, Charles University in Prague, 2008.

7. M. Vajbar and K. Toman. Implementation of self-adjusting top trees. Technical
Report No 2008/3, Charles University, Prague, Czech Republic, 2008.

8. R. F. Werneck. Design and analysis of data structures for dynamic trees. PhD
thesis, Princeton University, Princeton, NJ, USA, 2006. Adviser-Robert E. Tarjan.

