
Dimension Reduction Methods for Iris

Recognition

Pavel Moravec and Václav Snášel
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Abstract. In this paper, we compare performance of several dimension reduction

techniques, namely LSI, FastMap, and SDD in Iris recognition. We compare the

quality of these methods from both the visual impact, and quality of generated

"eigenirises".
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1 Introduction

Methods of human identification using biometric features like fingerprint, hand geom-

etry, face, voice and iris are widely studied.

A human eye iris has its unique structure given by pigmentation spots, furrows and

other tiny features which are stable throughout life. It is possible to scan an iris without

physical contact in spite of wearing contact lenses or eyeglasses. The iris is hard to forge

which makes the iris a suitable object for the identification of people. Iris recognition

seems to be more reliable than other biometric techniques like face recognition[3]. Iris

biometrics systems for both private and public use have been designed and deployed

commercially by NCR, Oki, IriScan, BT, US Sandia Labs, and others.

In this paper, we use the Petland’s approach to image retrieval: image vectors of

complete images of the size width × height of the image [13] build the feature vectors.

To fight the high dimension of image vector, we can extract several features which

represent the image and concatenate them into a feature vector. The feature extraction

methods can use different aspects of images as the features, typically the color features

(histograms), shape features (moments, contours, templates), texture features and oth-

ers (e.g. eigenvectors). Such methods are either using a heuristics based on the known

properties of the image collection, or are fully automatic and may use the original image

vectors as an input.

In this paper we will concentrate on the last category – other feature extraction

methods which use known dimension reduction techniques and clustering for automatic

feature extraction.

Singular value decomposition (SVD) was already successfully used for automatic

feature extraction. In case of face collection (such as our test data), the base vectors

can be interpreted as images, describing some common characteristics of several faces.

These base vectors are often called eigenfaces. For a detailed description of eigenfaces,

see [13].
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However SVD is not suitable for huge collections and is computationally expensive,

so other methods of dimension reduction were proposed. We test two of them – Semi-

Discrete decomposition.

Recently, Toeplitz matrix minimal Eigenvalues are also playing a role towards im-

age description and feature extraction [10]. This approach presents a method for the

reduction of image feature points as it deals with the geometric relation between the

points rather than their geometric position [11]. This can reduce the characteristic or

feature points number from n to at least n

10
decreasing the computation level and hence

the task time.

The rest of this paper is organized as follows. The second section explains used

dimension reduction methods. In the third section, we briefly describe qualitative mea-

sures used for evaluation of our tests. In the next section, we supply results of tests

for several methods on ORL face collection. In conclusions we give ideas for future

research.

2 Dimension Reduction Methods

We used three methods of dimension reduction for our comparison – Singular Value De-

composition, Semi-Discrete Decomposition and FastMap, which are briefly described

bellow.

2.1 Singular Value Decomposition

SVD [2] is an algebraic extension of classical vector model. It is similar to the Principal

components analysis (PCA) method, which was originally used for the generation of

eigenfaces. Informally, SVD discovers significant properties and represents the images

as linear combinations of the base vectors. Moreover, the base vectors are ordered ac-

cording to their significance for the reconstructed image, which allows us to consider

only the first k base vectors as important (the remaining ones are interpreted as “noise”

and discarded). Furthermore, SVD is often referred to as more successful in recall when

compared to querying whole image vectors [2].

Formally, we decompose the matrix of images A by singular value decomposition

(SVD), calculating singular values and singular vectors of A.

We have matrix A, which is an n × m rank-r matrix and values σ1, . . . , σr are

calculated from eigenvalues (λi) of matrix AAT as σi =
√

λi. Based on them, we

can calculate column-orthonormal matrices U = (u1, . . . , ur) and V = (v1, . . . , vr),
where UT U = In a V T V = Im, and a diagonal matrix Σ = diag(σ1, . . . , σr), where

σi > 0, σi ≥ σi+1.

The decomposition

A = UΣV T

is called singular decomposition of matrix A and the numbers σ1, . . . , σr are singular

values of the matrix A. Columns of U (or V ) are called left (or right) singular vectors

of matrix A.

Now we have a decomposition of the original matrix of images A. We get r nonzero

singular numbers, where r is the rank of the original matrix A. Because the singular
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values usually fall quickly, we can take only k greatest singular values with the corre-

sponding singular vector coordinates and create a k-reduced singular decomposition of

A.

Let us have k (0 < k < r) and singular value decomposition of A

A = UΣV T
≈ Ak = (UkU0)

(

Σk 0
0 Σ0

) (

V T

k

V T
0

)

We call Ak = UkΣkV T

k
a k-reduced singular value decomposition (rank-k SVD).

Instead of the Ak matrix, a matrix of image vectors in reduced space Dk = ΣkV T

k

is used in SVD as the representation of image collection. The image vectors (columns

in Dk) are now represented as points in k-dimensional space (the feature-space). For

an illustration of rank-k SVD see Figure 1.

Fig. 1. rank-k SVD

Rank-k SVD is the best rank-k approximation of the original matrix A. This means

that any other decomposition will increase the approximation error, calculated as a sum

of squares (Frobenius norm) of error matrix B = A−Ak. However, it does not implicate

that we could not obtain better precision and recall values with a different approxima-

tion.

To execute a query Q in the reduced space, we create a reduced query vector qk =
UT

k
q (another approach is to use a matrix D′

k
= V T

k
instead of Dk, and q′

k
= Σ−1

k
UT

k
q).

Instead of A against q, the matrix Dk against qk (or q′
k
) is evaluated.

Once computed, SVD reflects only the decomposition of original matrix of images.

If several hundreds of images have to be added to existing decomposition (folding-in),

the decomposition may become inaccurate. Because the recalculation of SVD is expen-

sive, so it is impossible to recalculate SVD every time images are inserted. The SVD-

Updating [2] is a partial solution, but since the error slightly increases with inserted

images. If the updates happen frequently, the recalculation of SVD may be needed soon

or later.

2.2 SDD Method

Semidiscrete decomposition (SDD) is one of other LSI methods, proposed recently for

text retrieval in [8]. As mentioned earlier, the rank-k SVD method (called truncated

SVD by authors of semidiscrete decomposition) produces dense matrices U and V , so
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Xk Dk Yk

T

Values {-1,0,1} Values {-1,0,1}Nonnegative
real values

Fig. 2. "rank-k" SDD

the resulting required storage may be even larger than the one needed by the original

term-by-document matrix A.

To improve the required storage size and query time, the semidiscrete decomposi-

tion was defined as

A ≈ Ak = XkDkY T

k
,

where each coordinate of Xk and Yk is constrained to have entries from the set ϕ =
{−1, 0, 1}, and the matrix Dk is a diagonal matrix with positive coordinates.

The SDD does not reproduce A exactly, even if k = n, but it uses very little storage

with respect to the observed accuracy of the approximation. A rank-k SDD (although

from mathematical standpoint it is a sum on rank-1 matrices) requires the storage of

k(m + n) values from the set {−1, 0, 1} and k scalars. The scalars need to be only

single precision because the algorithm is self-correcting. The SDD approximation is

formed iteratively.

The optimal choice of the triplets (xi, di, yi) for given k can be determined using

greedy algorithm, based on the residual Rk = A−Ak−1 (where A0 is a zero matrix).

2.3 FastMap

FastMap [6] is a pivot-based technique of dimension reduction, suitable for Euclidean

spaces.

In first step, it chooses two points (feature vectors) from the matrix A, which should

be most distant for calculated reduced dimension. Because it would be expensive to

calculate distances between all points, it uses following heuristics (all chosen points are

image vectors from matrix A):

1. A random point c0 is chosen.

2. The point bi having maximal distance δ(ci, bi) from ci is chosen, and based on it

we select the point ai with maximal distance δ(bi, ai)
3. We iteratively repeat step 2 with ci+1 = ai (authors suggest 5 iterations).

4. Points a = ai and b = bi in the last iteration are pivots for the next reduction step.

In second step (having the two pivots a, b), we use the cosine law to calculate po-

sition of each point on line joining a and b. The coordinate xi of point pi is calculated

as

xi =
δ2(ai, pi) + δ2(ai, bi)− δ2(bi, pi)

2δ(ai, bi)
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and the distance function for next reduction step is modified to

δ′2(p′i, p
′

j) = δ2(pi, pj)− (xi − xj)
2

The pivots in original and reduced space are recorded and when we need to process a

query, it is projected using the second step of projection algorithm only. Once projected,

we can again use the original distance function in reduced space.

3 Qualitative Measures of Retrieval Methods

Since we need an universal evaluation of any retrieval method, we use some measures to

determine quality of such method. In case of Information Retrieval we usually use two

such measures - precision and recall. Both are calculated from the number of objects

relevant to the query Rel – determined by some other method, e.g. by manual annotation

of given collection and the number of retrieved objects Ret. Based on these numbers

we define precision (P ) as a fraction of retrieved relevant objects in all retrieved objects

and recall (R) as a fraction of retrieved relevant objects in all relevant objects. Formally:

P =
|Rel ∩Ret|

|Ret|
and R =

|Rel ∩Ret|

|Rel|

So we can say that recall and precision denote, respectively, completeness of re-

trieval and purity of retrieval. Unfortunately, it was observed that with the increase of

recall, the precision usually decreases [12]. This means that when it is necessary to re-

trieve more relevant objects, a higher percentage of irrelevant objects will be probably

obtained, too.

For the overall comparison of precision and recall across different methods on a

given collection, we usually use the technique of rank lists [1], where we first sort the

distances from smallest to greatest and then go down through the list and calculate

maximal precision for recall closest to each of the 11 standard recall levels (0.0, 0.1,

0.2, . . . , 0.9, 1.0). If we are unable to calculate precision on i-th recall level, we take the

maximal precision for the recalls between i − 1-th and i + 1-th level. From all levels,

we calculate mean average, which is a single-value characteristics of overall precision-

recall ratio.

4 Experimental Results

For testing of the different methods, we used iris collection consisting of 384 irises. The

iris were scanned by TOPCON optical device connected to the CCD Sony camera. The

acquired digitized image is RGB of size 576 × 768 pixels. Only the red (R) component

of the RGB image has been used in our experiments because it appears to be more

reliable than recognition based on green or blue components or converting the irises

to grayscale first. It is in accord with [4], where near-infrared wavelengths are used

anyway.
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Fig. 3. Several irises from the collection

We have excluded one of the three irises for each eye for further querying (so that

the query iris would not be included in the collection and skew the query results), which

led to a collection of 256 irises of 64 people.

An example of several irises from the collection is shown in Figure 3, the first 12

query vectors are shown in Figure 8. We did not isolate the central part and eyelids to

provide comparable results with[9].

4.1 Generated “Eigenirises” and Reconstructed Images

Many of tested methods were able to generate a set of base images, which could be

considered to be “eigenirises” as is the case of PCA, SVD and several other methods.

We are going to provide examples of both factors (base vectors) – “eigenirises” and

reconstructed images which can be obtained from regenerated Ak. We calculated results

for all methods in several dimensions, for the demonstration images we will use k = 64.

We do not provide these images for FastMap, where it is not possible (we could have

provided the images used as pivots in each step of FastMap process).

With SVD, we obtain factors with different generality, the most general being among

the first. The first few are shown in figure 4. The eigenirises with higher index bring

more details to reconstructed images.

The reconstructed images for rank-64 SVD method are somewhat blurred, but gen-

erally still recognizable, which can bee observed in figure 5.

The SDD method differs slightly from previous methods, since each factor contains

only values {−1, 0, 1}. Gray in the factors shown in figure 6 represents 0; −1 and 1 are

represented with black and white respectively.

The images in figure 7 are reconstructed least exactly from all methods (although

consistently), but this is to be expected due to the three-valued encoding of base vectors.

One may note a general loss of fine details, which is unfortunate, since it means that the

query process would be highly affected and the retrieval results poor.
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Fig. 4. First 64 eigenirises (out of possible 256) for SVD method

Fig. 5. Reconstructed images for SVD method

Fig. 6. First 18 base vectors (out of 100) for SDD method
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Fig. 7. Reconstructed images for SDD method

4.2 Query Evaluation

Fig. 8. Several irises used for querying

First, we calculated the mean average precision (MAP) for all relevant images in

rank lists. The relative MAPs (against original matrix A – 100%) are shown in Table 1.

One would suspect, that querying in original dimension would provide better results

that any of the dimension reduction methods. In Table 2 we show the number of queries,

where the first returned iris was of the same person (out of 128).

5 Conclusion

In this paper, we have compared several dimension reduction methods on real-live im-

age data (using L2 metrics). Whilst the SVD is known to provide quality results, it is

computationally expensive and in case we only need to beat the “curse of dimensional-

ity” by reducing the dimension, FastMap may suffice.

There are some other newly-proposed methods, which may be interesting for fu-

ture testing, e.g. the SparseMap [7]. Additionally, faster pivot selection technique for

FastMap may be considered. We may also benefit from the use of Toeplitz matrices and

their minimal eigenvalues relation.
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Table 1. Mean average precision of iris comparison (VSM: 49%)

Reduction method

k FastMap SVD SDD

4 25% 14% 3%

8 33% 31% 3%

16 39% 44% 4%

32 42% 46% 4%

64 45% 48% 5%

128 47% 49% 5%

Table 2. Number of queries, where the person was successfully identified (VSM: 83)

Reduction method

k FastMap SVD SDD

4 32 37 2

8 47 56 3

16 54 75 3

32 60 81 5

64 64 82 4

128 96 84 5

What we currently need is a better iris segmentation, i.e. removing the central piece

(in our case in light reflection), eyelids, and identifying the exact iris position, such as

methods described in [5].
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