
Semantic Business Process Validation

Ingo Weber1, Jörg Hoffmann2, and Jan Mendling3

1 SAP Research, Karlsruhe, Germany
ingo.weber@sap.com

2 University of Innsbruck, STI, Austria
joerg.hoffmann@sti2.at

3 BPM Group, Queensland University of Technology, Australia
j.mendling@qut.edu.au

Abstract. The use of formal semantics for the support of Business Process Man-
agement is an emerging branch of research, with substantial economic potential.
In particular, business processes modelled in graphical notations such as BPMN
can be semantically annotated to specify more precisely what the individual tasks
in the process will be responsible for. This raises the need for, and opens up the
opportunity to apply, semantic validation techniques: techniques that take the an-
notations and the underlying ontology into account in order to determine whether
the tasks are consistent with respect to each other, and with respect to the un-
derlying workflow structure. To this end, we introduce a formalism for semantic
business processes, which combines definitions from the workflow community
with definitions from AI; we introduce some validation tasks that are of inter-
est in this context. We then make first technical contributions towards solving
this kind of problem. We identify a class of processes where the validation tasks
can be solved in polynomial time, by propagating certain pieces of information
through the process graphs. We show that this class of processes is maximal in
the sense that, with more general semantic annotations, the validation tasks be-
come computationally hard. We outline how the validation information gathered
can serve to automatically suggest bug fixes.

1 Introduction

One of the promises of service-oriented architectures is increased flexibility through
loose coupling of components. In enterprise applications, Web services can be used to
encapsulate business functionality. The process flow can then, to a large degree, be sep-
arated from the implementation of the process activities. This increased flexibility can
be a key advantage when acting in rapidly changing markets. In such an environment, a
business expert models a business process on a high level of abstraction, like the Busi-
ness Process Modelling Notation (BPMN) [18]. Semantic techniques can then be used
to help bridge between the high-level process and the actual IT infrastructure. Namely,
the business expert can annotate the tasks in the process (the steps that are atomic from
the business expert’s point of view) with semantic information relative to an ontology
that formalises the underlying business domain. Then, based on a Semantic Web Ser-
vices (SWS) infrastructure, advanced support – discovery, composition, mediation – for
binding the process, i.e., for implementing it with concrete services, becomes possible.

Since modelling is an error-prone activity, the above scenario calls for validation
techniques: prior to trying to bind the process, validation should help to ensure that the
process model as such makes sense. A validation method may be useful after binding
the process, as well: being implemented at a more detailed level, the bound process may
reveal flaws that were not visible at the BPMN level of abstraction. Possible validation
questions are, for example: Is there an effect conflict, i.e., two tasks with conflicting
semantic effects and no ordering constraint between them (simple example: two write-
operations in a database)? Is a particular task reachable, i.e., is there any execution
of the process that involves the task? Is a particular task executable, i.e., is its semantic
precondition guaranteed to be true when trying to execute it? Answers to these questions
are certainly useful as a help for the modeller, and for binding the process; we will see
that one can even design techniques that automatically suggest (potential) bug fixes.

Traditional validation techniques, as considered in the workflow community (e.g.
[24]) and the model checking community (e.g. [7]), do not deal with ontological ax-
iomatizations, which are at the heart of the semantic annotations required in the above
scenario. Hence mapping our validation problem into existing methodologies is, to say
the least, problematic. Thus we suggest a different approach, Semantic Business Pro-
cess Validation (SBPV), which is explicitly designed to deal with this kind of validation
tasks. We introduce a formal execution semantics for semantic business processes in the
context of axiomatizations, and we identify associated validation tasks. We make first
technical contributions towards solving this kind of problem.

Our SBPV formalism is a natural combination of definitions from the workflow
community (e.g. [24,25]), and the AI actions and change community (e.g. [27,10,12]).
The former deal with the semantics of workflow structures, via a notion of token passing
adopted from Petri Nets. The latter deal with the semantics of logical preconditions and
effects in the presence of a logical theory – the axioms of the ontology – constraining
the behaviour of the underlying domain. In particular, this distinguishes us from all
other works [15,6,22,20,21] extending Business Process validation beyond workflows
(see Section 6 for details). We formalise the validation tasks outlined above. Thereafter:

– We identify a class of processes, termed basic processes, where the validation tasks
can be solved in polynomial time. Basic processes have no cycles, no branching
conditions, and an ontology consisting of only binary clauses. Naturally, this de-
liberately restricted class covers only a subset of real-world processes. We specify
validation algorithms inspired by the token passing that underlies the workflow
semantics; instead of passing only tokens, logical information is propagated. Al-
though the key ideas are straightforward, some of the details are quite intricate.

– We show that the class of basic processes is maximal in the sense that, when allow-
ing more general semantic annotations, then the validation tasks become computa-
tionally hard. In particular, this holds already for very simple branching conditions,
and for Horn clauses instead of binary clauses.

– We outline methods suggesting bug fixes, based on the information propagated by
our validation algorithms. This suggests that, in general, one should try to obtain
this information (rather than only “yes/pass” answers to the validation questions).

Section 2 introduces our SBPV formalism. Sections 3 and 4 present our polynomial-
time algorithms for basic processes, and our results their computational borderline.

Section 5 outlines how bug fixes can be suggested, Section 6 discusses related work,
Section 7 concludes. For space reasons, the presentation is very concise; many techni-
cal details (including all proofs), and more illustrative examples, are moved to [26].

2 Semantic Business Processes

We introduce a formalism, i.e., a formal execution semantics, for business processes
whose tasks are annotated with logical preconditions and effects (Section 2.1). We then
present a number of validation tasks that are of interest for such processes (Section 2.2).
We illustrate the formalism with an example annotated BPMN process (Section 2.3).

2.1 Annotated Process Graphs

Our business processes consist of different kinds of nodes (task nodes, split nodes, . . .)
connected with edges. We will henceforth refer to this kind of graphs as process graphs.
For the sake of readability, we first introduce non-annotated process graphs. This part
of our definition is, without any modification, adopted from the workflow literature,
following closely the terminology and notation used in [25].

Definition 1. A process graph is a directed graph G = (N , E), where N is the disjoint
union of {n0, n+} (start node, stop node),NT (task nodes),NPS (parallel splits),NPJ

(parallel joins), NXS (xor splits), and NXJ (xor joins). For n ∈ N , IN(n)/OUT (n)
denotes the set of incoming/outgoing edges of n. We require that: for each split node n,
|IN(n)| = 1 and |OUT (n)| > 1; for each join node n, |IN(n)| > 1 and |OUT (n)| =
1; for each n ∈ NT , |IN(n)| = 1 and |OUT (n)| = 1; for n0, |IN(n)| = 0 and
|OUT (n)| = 1 and vice versa for n+; each node n ∈ N is on a path from the start to
the stop node. If |IN(n)| = 1 we identify IN(n) with its single element, and similarly
for OUT (n); we denote OUT (n0) = e0 and IN(n+) = e+.

The intuitive meaning of these structures should be clear: an execution of the pro-
cess starts at n0 and ends at n+; a task node is an atomic action executed by the process;
parallel splits open parallel parts of the process; xor splits open alternative parts of the
process; joins re-unite parallel/alternative branches. The stated requirements are just
basic sanity checks any violation of which is an obviously flawed process model.

Formally, the semantics of process graphs is, similarly to Petri Nets, defined as a
token game. A state of the process is represented by tokens on the graph edges. Like
the notation, the following definition closely follows [25].

Definition 2. Let G = (N , E) be a process graph. A state t of G is a function t : E 7→
N; we call t a token mapping. The start state t0 is t0(e) = 1 if e = e0, t0(e) = 0
otherwise. Let t and t′ be states. We say that there is a transition from t to t′ via n,
written t→n t′, iff one of the following holds:

1. n ∈ NT ∪ NPS ∪ NPJ and t′(e) = t(e) − 1 if e ∈ IN(n), t′(e) = t(e) + 1 if
e ∈ OUT (n), t′(e) = t(e) otherwise.

2. n ∈ NXS and there exists e′ ∈ OUT (n) such that t′(e) = t(e)− 1 if e = IN(n),
t′(e) = t(e) + 1 if e = e′, t′(e) = t(e) otherwise.

3. n ∈ NXJ and there exists e′ ∈ IN(n) such that t′(e) = t(e) − 1 if e = e′,
t′(e) = t(e) + 1 if e = OUT (n), t′(e) = t(e) otherwise.

An execution path is a transition sequence starting in t0. A state t is reachable if there
exists an execution path ending in t.

Definition 2 is straightforward: t(e), at any point in time, gives the number of tokens
currently at e. Task nodes and parallel splits/joins just take the tokens from their IN
edges, and move them to their OUT edges; xor splits select one of their OUT edges; xor
joins select one of their IN edges. For the remainder of this paper, we will assume that
the process graph is sound: from every reachable state t, a state t′ can be reached so that
t′(e+) > 0; for every reachable state t, t(e+) ≤ 1. This means that the process does
not contain deadlocks, and that each completion of a run is a proper termination, with
no tokens remaining inside the process. These properties can be ensured using standard
workflow validation techniques, e.g. [24,25].

For the semantic annotations, we use standard notions from logics, involving logical
predicates and constants (the latter correspond to the entities of interest at process ex-
ecution time).1 We denote predicates with G,H, I and constants with c, d, e. Facts are
predicates grounded with constants, Literals are possibly negated facts. If l is a literal,
then ¬l denotes l’s opposite (¬p if l = p and p if l = ¬p); if L is a set of literals then
¬L denotes {¬l | l ∈ L}. We identify sets L of literals with their conjunction

∧
l∈L l.

Given a set P of predicates and a set C of constants, P[C] denotes the set of all literals
based on P and C; if arbitrary constants are allowed, we write P[].

A theory T is a closed (no free variables) first-order formula. Given a set C of
constants, T [C] denotes T with quantifiers interpreted over C. For the purpose of our
formal semantics, T can be arbitrary. For computational purposes, we will consider
the following standard restrictions. A clause is a universally quantified disjunction of
atoms, e.g., ∀x.¬G(x) ∨ ¬H(x). A clause is Horn if it contains at most one positive
literal. A clause is binary if it contains at most two literals. A theory is Horn (binary) if it
is a conjunction of Horn (binary) clauses. Note that binary clauses can be used to specify
many common ontology properties such as subsumption relations ∀x.G(x) ⇒ H(x)
(φ ⇒ ψ abbreviates ¬φ ∨ ψ), attribute image type restrictions ∀x, y.G(x, y) ⇒ H(y),
and role symmetry ∀x, y.G(x, y) ⇒ G(y, x). An example of a property that is Horn
(but not binary) is role transitivity, ∀x, y, z.G(x, y) ∧G(y, z)⇒ G(x, z).

An ontology O is a pair (P, T) where P is a set of predicates (O’s formal termi-
nology) and T is a theory over P (constraining the behaviour of the application domain
encoded by O). Annotated process graphs are defined as follows.

Definition 3. An annotated process graph is a tuple G = (N , E ,O,A). (N , E) is a
process graph, O = (P, T) is an ontology, and A, the annotation, is a partial function
mapping n ∈ NT ∪ {n0, n+} to (pre(n), eff(n)) where pre(n), eff(n) ⊆ P[], and
mapping e ∈ OUT (n) for n ∈ NXS to (con(e), pos(e)), where con(e) ⊆ P[] and
pos(e) ∈ {1, . . . , |OUT (n)|}. We require that: there does not exist an n so that T ∧
eff(n) is unsatisfiable or T ∧ pre(n) is unsatisfiable; there does not exist an e so that

1 Hence our constants correspond to BPEL “data variables” [17]; note that the term “variables”
in our context is reserved for variables as used in logics, quantifying over constants.

T ∧con(e) is unsatisfiable; there do not exist n, e, and e′ so that e, e′ ∈ OUT (n),A(e)
and A(e′) are defined, and pos(e) = pos(e′).

We refer to cycles in (N , E) as loops; we refer to edges e for whichA(e) is defined
as case distinctions (sometimes, process graphs without loops and/or case distinctions
will be of interest). We refer to pre(n) as n’s precondition, eff(n) as n’s effect (some-
times called postcondition in the literature), con(e) as e’s condition, and pos(e) as e’s
position. The annotation of tasks – atomic actions that will on the IT level correspond to
Web service executions – in terms of logical preconditions and effects closely follows
Semantic Web service approaches such as OWL-S (e.g. [1,8]) and WSMO (e.g. [9]). All
the involved sets of literals (pre(n), eff(n), con(e)) are interpreted as conjunctions.2

Similarly to Definition 1, the requirements stated in Definition 3 are just basic san-
ity checks. If a precondition/effect/condition contradicts the theory, then the respective
task node/edge will never be applicable. The requirement on edge positions is a minor
technical detail, stating that no two edges are assigned the same position. This closely
corresponds to standard process languages such as BPEL [17], where the positions are
assigned based on the order of appearance in the input file. This ensures that the out-
come of an xor split is deterministic – if the xor split edges are annotated. Note here that
Definition 3 allowsA to be a partial function. That is, an arbitrary subset of the process
may be not annotated. The rationale behind this is that validation will take place dur-
ing modelling. In such a context, it is useful to allow validation of partially modelled –
partially annotated – processes. The formal semantics is:

Definition 4. Let G = (N , E ,O,A) be an annotated process graph. Let C be the set
of all constants appearing in any of the annotated pre(n), eff(n), con(n). A state s of
G is a pair (ts, is) where t is a token mapping and i is an interpretation i : P[C] 7→
{0, 1}. A start state s0 is (t0, i0) where t0 is as in Definition 2, and i0 |= T [C], and
i0 |= T [C] ∧ eff(n0) in case A(n0) is defined. Let s and s′ be states. We say that there
is a transition from s to s′ via n, written s→n s′, iff one of the following holds:

1. n ∈ NPS ∪NPJ ∪NXJ , is = is′ , and ts →n ts′ according to Definition 2.
2. n ∈ NXS , is = is′ , and t′(e) = t(e) − 1 if e ∈ IN(n), t′(e) = t(e) + 1 if
e = e′, t′(e) = t(e) otherwise, where either e′ ∈ OUT (n) and A(e′) is undefined,
or e′ = argmin{pos(e) | e ∈ OUT (n),A(e) is defined,is |= con(e)}.

3. n ∈ NT ∪ {n+}, ts →n ts′ according to Definition 2, and either: A(n) is un-
defined and is = is′ ; or is |= pre(n) and is′ ∈ min(is, T [C] ∧ eff(n)) where
min(is, T [C] ∧ eff(n)) is defined to be the set of all i that satisfy T [C] ∧ eff(n)
and that are minimal with respect to the partial order defined by i1 ≤ i2 :iff
{p ∈ P[C] | i1(p) = is(p)} ⊇ {p ∈ P[C] | i2(p) = is(p)}.

An execution path is a transition sequence starting in a start state s0. A state s is
reachable if there exists an execution path ending in s.

Given an annotated process graph (N , E ,O,A), we will use the term execution path
of (N , E) to refer to an execution over tokens that acts as ifAwas completely undefined
(in which case Definition 4 essentially simplifies to Definition 2).

2 It is easy to extend our formalism to allow arbitrary formulas for pre(n), eff(n), con(e); ex-
tending the actual validation leads to harder decision problems, and remains future work.

The part of Definition 4 dealing with n ∈ NPS ∪ NPJ ∪ NXJ parallels Defini-
tion 2, and should be easy to understand: the tokens pass as usual, and the interpretation
remains unchanged. For n ∈ NXS , the definition says that an output edge e′ is se-
lected where either e′ is not annotated, or e′ has the smallest position among those
edges whose condition is satisfied by the current interpretation, is. Note that this is a
hybrid between a deterministic and a non-deterministic semantics, depending on how
many output edges are annotated. If all edges are annotated, then we have a case dis-
tinction as handled in, e.g., BPEL, where the first case (smallest position) with satisfied
condition is executed (Section 11.2 in [17]). If no edges are annotated, then the valida-
tion must foresee that an arbitrary case distinction may be created later on during the
modelling, so no assumptions can be made on the form of that case distinction, so any
possibility must be taken into account. Definition 2 just generalises these two extremes
in the straightforward way.

Let us finally consider the “semantic” part of Definition 4, dealing with task nodes
and their semantic annotations. First, note that we interpret the quantifiers in T over
the constants C that are used in the annotation. The rationale is that the process should
execute based on those entities that are actually available (it remains open to examine
whether it makes sense to drop this assumption). Consider now the start states, of which
there may be many, namely all those that comply with T , as well as eff(n0) if that is
annotated. This models the fact that, at design time, we don’t know the precise situa-
tion in which the process will be executed. All we know is that, certainly, this situation
will comply with the domain behaviour given in the ontology, and with the properties
guaranteed as per the annotation of the start node (if any). The semantics of task node
executions is a little more intricate. IfA(n) is undefined, then the logical state i remains
of course unchanged. If A(n) is defined, then pre(n) is required to hold. The tricky bit
lies in the definition of the possible outcome states i′ in the latter case. Our semantics
defines this to be the set of all i′ that comply with T and eff(n), and that differ minimally
from i. This is where we draw on the AI actions and change literature, for a solution to
the frame and ramification problems. The latter problem refers to the need to make ad-
ditional inferences from eff(n), as implied by T ; this is reflected in the requirement that
i′ complies with both. The frame problem refers to the need to not change the previous
state arbitrarily – e.g. if a web service makes a booking via account A, then the balance
of account B should remain unaffected; this is reflected in the requirement that i′ differs
minimally from i. More precisely, i′ is allowed to change i only where necessary, in the
sense that there is no i′′ that makes do with fewer changes. This semantics follows the
possible models approach (PMA) [27]; while this approach is not uncontroversial, it
underlies most of the recent work on formal semantics for execution of Semantic Web
services (e.g. [14,5,11]). Alternative semantics from the AI literature (see [12] for an
excellent overview) could be used in principle; this is a topic for future research.

2.2 Validation Tasks

We now formally define the validation properties that we consider in this paper. We start
with a definition of parallel – un-ordered – task nodes; some of the validation tasks will
be about potential conflicts between such nodes.

Definition 5. Let G = (N , E ,O,A) be an annotated process graph, n1, n2 ∈ N . We
say that n1 and n2 are parallel, written n1 ‖ n2, if there exist execution paths t1 and t2
of (N , E) so that n1 is executed before n2 on t1, and n2 is executed before n1 on t2.

We will show in Section 3 how parallel nodes can be detected. Note that t1 and t2
here are token executions, ignoring the semantic annotations; i.e., Definition 5 refers
only to the workflow structure. We are interested in validating the following properties:

Definition 6. Let G = (N , E ,O,A) be an annotated process graph. Let n ∈ NT ∪
{n+}. Then, n is reachable iff there exists a reachable state s so that ts(IN(n)) > 0;
n is executable iff, for all reachable states s with ts(IN(n)) > 0, we have s |= pre(n).
G is reachable (executable) iff all n ∈ NT ∪ {n+} are reachable (executable).

Let n1, n2 ∈ NT , n1 ‖ n2. Then, n1 has a precondition conflict with n2 if T ∧
eff(n1) ∧ pre(n2) is not satisfiable; n1 and n2 have an effect conflict if T ∧ eff(n1) ∧
eff(n2) is not satisfiable.

Consider first the notions of reachable and executable task nodes n. Reachability
is important because, if n is not reachable, then it is completely useless; this certainly
indicates a malfunction of the process model. As for executability, if n is not executable
then the process may reach a state where n is active – it has a token on its incoming edge
– but its prerequisites for execution are not given. If the process is being executed by a
standard (non-semantic) engine, e.g. based on BPEL, then the implementation of n will
be executed anyway, which may lead to errors. In general, the possibility to activate a
task without establishing its precondition indicates that the process model does not take
sufficient care of achieving the relevant conditions in all possible cases.

Reachability and executability are both temporal properties on the behaviour of the
process, and of course it may be of interest to allow arbitrary validation properties via a
suitable temporal logic (see e.g. [19,23]). We leave this open for future work; the focus
on reachability and executability is, in that sense, an investigation of special cases. Note
that these special cases are of practical interest (perhaps more so than the fully general
case allowing arbitrarily complex quantification which may never be used in practice).

Consider now the precondition and effect conflicts from Definition 6. Such conflicts
indicate that the semantic annotations of different task nodes may be in conflict; n1 may
jeopardise the precondition of n2, or n1 and n2 may jeopardise each other’s effects.3

If n1 and n2 are ordered with respect to each other, then this kind of conflict cannot
result in ambiguities and should not be taken to be a flaw; hence Definition 6 postu-
lates n1 ‖ n2. Apart from that, it is debatable to some extent whether such conflicts
represent flaws, or whether they are a natural phenomenon of the modelled process.
Our standpoint is that they are flaws, because in a parallel execution it may happen that
the conflicting nodes appear at the same time. Obviously, once parallelity is clarified,
precondition and effect conflicts can be found by a simple loop over all pairs of par-
allel task nodes. In the remainder of the paper, we will assume that such a loop has
completed successfully, i.e., without finding any conflicts. Note that reachability can be
established as a side-effect of executability:

3 For illustration it is useful to consider the special case where T is empty: then, a precondition
conflict means there exists l ∈ eff(n1) ∩ ¬pre(n2); similarly for effect conflicts.

Lemma 1. Let G = (N , E ,O,A) be an annotated process graph without case distinc-
tions where (N , E) is sound and all n ∈ NT are executable. Then all n ∈ NT are
reachable.

We consider process graphs without case distinctions in our validation technique
described in Section 3 below. We provide methods only for checking executability.
With Lemma 1, once that is established, we know that reachability is also given. Note
that Lemma 1 does not hold if G has case distinctions: a node may not be reachable
because an edge condition on e may never become true.

2.3 An Example Process

We consider a sales order process that is inspired by the BPEL specification [3]. Figure 1
shows this process in BPMN, where as usual the symbol + represents parallel splits
and joins. The receipt of a sales order triggers three concurrent activities: initiating the
production scheduling, deciding on the shipper, and drafting a prize calculation. Once
the shipper has been decided, the price calculation can be completed and the logistics
can be arranged. After the latter, also the production scheduling can be completed.
Finally, the invoice is processed. The process model is obviously sound in the workflow
sense. However, let us take the perspective of a German machine producer (we call it
GMP) that manufactures to order. This involves that production, delivery, and pricing
are tailored to the product requirements of the customer.

Decide on
Shipper

Arrange
Logistics

Production
Scheduling

Production

Draft Price
Calculation

Complete
Price

Calculation

Invoice
Processing

Receive
Order

Fig. 1. Example of a sales order process modeled in BPMN.

GMP has used the depicted process successfully and without encountering any
problems for years to produce and deliver to the national market. Now the company
has made the decision to consider also international orders and delivery. Recently, it
has received an order of 10 impulse turbines for power generation from a country that
currently faces political unrest. According to German legislation such a delivery re-
quires approval from the Bundesamt für Wirtschaft und Ausfuhrkontrolle (BAFA), i.e.
the authority that controls German foreign trade. In order to deal with the complexity
of international trade, GMP has decided to replace some of its production steps with
services from experts. The key account manager for international clients has signed
agreements with respective service providers. The new set of services including their

preconditions and postconditions are summarized in the top part of Table 1. In partic-
ular, the Production Scheduling, the Production, and Arrange Logistics tasks are now
provided by new services that have more specialized preconditions and postconditions.
Further, a domain theory, depicted in the bottom part of Table 1, has beed added, cap-
turing some simple domain constraints that can be easily validated by stakeholders if a
systems analyst translates them into natural language. Finally, Table 1 introduces thee
process variables that capture the state of the involved business objects: order (o), pro-
duction (p), calculation (c), shipper (s), and shipment (sh).

Activity Precondition Postcondition
Receive Order orderReceived(o)
Production Scheduling orderReceived(o) productionScheduled(o,p)

orderApproved(o)
Production productionScheduled(o,p) productionCompleted(o,p)

calculationPrepared(o,c) calculationUpdated(o,c)
Decide on Shipper orderReceived(o) shipperDecided(o,s)
Arrange Logistics shipperDecided(o,s) calculationUpdated(o,c)

calculationPrepared(o,c) shipmentApproved(o,sh)
Draft Price Calculation orderReceived(o) calculationDrafted(o,c)
Complete Price Calculation calculationPrepared(o,c) calculationFinalized(o,c)
Invoice Processing productionCompleted(o,p)

calculationFinalized(o,c) orderCompleted(o)
Purpose Definition
Order status ∀x : ¬orderReceived(x) ∨¬orderCompleted(x)
Production status ∀x, y : ¬productionScheduled(x,y) ∨¬productionCompleted(x,y)
Calculation status ∀x, y : calculationDrafted(x,y) =⇒ calculationPrepared(x,y)

∀x, y : calculationUpdated(x,y) =⇒ calculationPrepared(x,y)
∀x, y : ¬calculationDrafted(x,y) ∨¬calculationFinalized(x,y)
∀x, y : ¬calculationUpdated(x,y) ∨¬calculationFinalized(x,y)
∀x, y : ¬calculationPrepared(x,y) ∨¬calculationFinalized(x,y)
∀x, y : ¬calculationDrafted(x,y) ∨¬calculationUpdated(x,y)

Order approval ∀x, y : shipmentApproved(x,y) =⇒ orderApproved(x)

Table 1. Semantic annotations in the example. Top: preconditions and postconditions
of the services. Bottom: axioms of the domain theory.

In a discussion with the production engineer the key account manager is embar-
rassed to learn that his set of services will not work for the production process of GMP,
although the workflow of this process is sound. There are:

Non-executable tasks: In order to cover the BAFA export approval, GMP has chosen a
shipper whose Arrange Logistics service provides a postcondition of shipmentAp-
proved if BAFA approves the delivery. Furthermore, GMP selected a Production
Scheduling service that requires orderApproved as a precondition in order to block
production until it is clear that the ordered goods can be exported. This alone is
fine since, by the axiomatization, an order is approved if its shipment is approved.
However, there is now a dependency between arranging logistics and scheduling
the production, which determines the order of these two activities. Logistics must

be arranged before the production is scheduled. This is not done by the process,
and hence the precondition of production scheduling is not fulfilled when trying to
execute it.

Precondition conflicts: The new Arrange Logistics task require the calculation c to be
prepared (drafted or updated), so that it can be updated. However, Complete Price
Calculation is not ordered with respect to Arrange Logistics, and if it is executed
first then the status of c changes to finalized.

Effect conflicts: The new Arrange Logistics and Production services of GMP update
the prize calculation, as indicated by their effect calculationUpdated. On the other
hand, the parallel task Complete Price Calculation establishes the conflicting post-
condition calculationFinalized. Hence, whether or not the calculation is finalized
at the end of the process depends on which one of these nodes is executed last – a
clearly undesirable behavior.

3 Polynomial-Time Validation Methods

We now specify an efficient validation algorithm for a particular class of processes,
namely:

Definition 7. Let G = (N , E ,O,A), O = (P, T), be an annotated process graph. G
is basic if it contains neither loops nor case distinctions, and T is binary.

Note that our example from Section 2.3 is a basic annotated process graph. For
complexity considerations, we will in the following assume fixed arity, i.e., a fixed
upper bound on the arity of the predicates P . This is a realistic assumption because
predicate arities are typically very small in practice (e.g., in Description Logics the
maximum arity is 2). Given a process graph whose annotations mention the constants
C, and a set L of literals (such as a task node effect), in the following we denote L :=
{l ∈ P[C] | T ∧ L |= l}, i.e., L is the closure of L under implications in the theory
T . Since T is binary, L can be computed in polynomial time given fixed arity [4].
Note that, with binary T , an effect conflict can be easily detected as the (negative)
overlap of the closure over the effect sets, i.e., T ∧ eff(n1) ∧ eff(n2) is not satisfiable
iff eff(n1) ∩ ¬eff(n2) 6= ∅, and similarly for precondition conflicts.

Our validation algorithm performs three steps: (1) Determine a numbering # of the
edges E so that, whenever task node n1 is ordered before task node n2 in every process
execution, then #(IN(n1)) < #(IN(n2)). (2) Using #, execute an M -propagation
algorithm that determines all pairs of parallel task nodes. (3) Determine, for each edge
e, the set of literals that are always true when e is active. In what follows, we explain
in detail only step (3). Steps (1) and (2) can be looked up in [26]. The outcome of step
(2) is a matrix M∗ whose rows and columns correspond to the set of edges E . M∗ji is
a Boolean referring to the edges e, e′ with #(e) = i,#(e′) = j; this value determines
parallelity in the following sense:

Lemma 2. Let G = (N , E ,O,A) be an annotated process graph. There exists ex-
actly one M -propagation result M∗, and for all n1, n2 ∈ NT we have n1 ‖ n2 iff
M∗

#(IN(n2))
#(IN(n1))

= 1. The time required to compute M∗ is polynomial in the size of G.

M∗ is used to determine all parallel task nodes, and, with that, whether any precon-
dition or effect conflicts arise. If so, those are indicated to the human modeller. Once
the conflicts have been resolved, step (3) of our validation algorithm can be started.
This step determines, for each edge e, the set of literals that is always true when e is
active. The computation is based on propagation steps, updating sets of literals that are
assigned to the edges. Upon completion, these literal sets are exactly the desired ones.

Definition 8. Let G = (N , E ,O,A) be a basic annotated process graph without effect
conflicts, and with constants C. We define the function I0 : E 7→ 2P[C] ∪ {⊥} as
I0(e) = eff(n0) if e = OUT (n0), I0(e) = ⊥ otherwise. Let I, I ′ : E 7→ 2P[C] ∪ {⊥},
n ∈ N . We say that I ′ is the propagation of I at n iff one of the following holds:

1. n ∈ NPS∪NXS , and I(IN(n)) 6= ⊥, and for all e ∈ OUT (n) we have I(e) = ⊥,
and I ′ is given by I ′(e) = I(IN(n)) if e ∈ OUT (n), I ′(e) = I(e) otherwise.

2. n ∈ NPJ , and for all e ∈ IN(n) we have I(e) 6= ⊥, and I(OUT (n)) = ⊥, and
I ′ is given by I ′(e) =

⋃
e′∈IN(n) I(e

′) if e = OUT (n), I ′(e) = I(e) otherwise.
3. n ∈ NXJ , and for all e ∈ IN(n) we have I(e) 6= ⊥, and I(OUT (n)) = ⊥, and
I ′ is given by I ′(e) =

⋂
e′∈IN(n) I(e

′) if e = OUT (n), I ′(e) = I(e) otherwise.
4. n ∈ NT , and I(IN(n)) 6= ⊥, and I(OUT (n)) = ⊥, and

I ′(e) =


eff(n) ∪ (I(IN(n)) \ ¬eff(n)) e = OUT (n)
I(e) \ ¬eff(n) M∗

#(e)
#(IN(n)) = 1 and I(e) 6= ⊥

I(e) otherwise

If A(n) is not defined then eff(n) := ∅ in the above.

If I∗ results from starting in I0, and stepping on to propagations until no more propa-
gations exist, then we call I∗ an I-propagation result.

Definition 8 is a little hard to read but relies on straightforward key ideas. The
definition of I0 is obvious. For split nodes (case 1), the OUT edges simply copy their
sets from the IN edge. For parallel joins (case 2), the OUT edge assumes the union
of I(e) for all IN edges e; for xor joins (case 3), the intersection is taken instead. The
handling of task nodes (case 4) is somewhat more subtle. First, although there are no
effect conflicts it may happen that a parallel node has inherited (though not established
itself, due to the postulated absence of effect conflicts) a literal which the task node
effect contradicts; hence line 2 of case 4.4 Second, we must determine how the effect of
n may affect any of the possible interpretations prior to executing n. This is non-trivial
due to the complex semantics of task executions, based on the PMA [27] definition of
minimal change for solving the frame problem, c.f. Section 2.1. Our key observation is:

(*) With binary T , if executing a task makes literal l false in at least one possible
interpretation, then ¬l is necessarily true in all possible interpretations.

4 The interactions of parallel nodes with conflicting effects may be quite subtle, and require a
much more complicated propagation algorithm. We are currently working on such an extended
algorithm, which will allow the user to tolerate effect conflcits if desired.

Due to this observation, it suffices to subtract ¬eff(n) in the top and middle lines of
the definition of I ′(e): l does not become false in any interpretation, unless ¬l follows
logically from eff(n). Importantly, (*) does not hold for more general T ; see [26] for
an example where T is Horn.

Note that the I-propagation algorithm ignores preconditions. This may seem odd
since preconditions play an essential part in executability. The trick is as follows. Let,
for any edge e,

⋂
e be the set of literals that will always be true when e is active. Then,

assuming that all task nodes are executable, one can prove that
⋂
e = I∗(e). Now, if all

nodes are executable, then, since
⋂

(e) = I∗(e), we have pre(n) ⊆ I∗(IN(n)) for all
n ∈ NT ∪ {n+}. Conversely, if n ∈ NT is the first node where pre(n) 6⊆ I∗(IN(n)),
then all of n’s predecessors are executable and we know, with the same arguments as
before, that I∗(IN(n)) =

⋂
IN(n). Hence n is not executable. We get:

Theorem 1. Let G = (N , E ,O,A) be a basic annotated process graph without effect
conflicts. There exists exactly one I-propagation result I∗. G is executable iff, for all
n ∈ NT ∪ {n+}, pre(n) ⊆ I∗(IN(n)). With fixed arity, the time required to compute
I∗ is polynomial in the size of G.

4 Computational Borderline

Since the class of basic processes can be validated in polynomial time, it is interest-
ing to determine the computational borderline of this positive result: What happens if
we generalise this class? We give negative results for allowing case distinctions, and
for allowing more general ontologies. It is an open question whether or not loops, or
structured loops, can be dealt with efficiently. We are currently investigating this.

Lemma 3. Assume an annotated process graph G = (N , E ,O,A) that is basic except
thatA(e) may be defined for some e ∈ E . Deciding whether G is reachable is NP-hard.
Deciding whether G is executable is coNP-hard.

Lemma 4. Assume an annotated process graph G = (N , E ,O,A) that is basic except
that T is not binary. Deciding whether G is reachable is Σp

2 -hard in general, and NP-
hard if T is Horn. Deciding whether G is executable is Πp

2 -hard in general, and coNP-
hard if T is Horn.

Importantly, Lemma 4 holds even for propositional T . Our main result regarding
the computational borderline follows directly from Lemmas 3 and 4:

Theorem 2. Assume an annotated process graph G = (N , E ,O,A). Unless P = NP,
neither reachability nor executability can be decided in polynomial time if one of the
following holds: G is basic except that it may contain case distinctions; G is basic except
that T may involve Horn clauses.

Basic process graphs are generous in that they allow predicates with large arity,
and in that they do not require the start node effect eff(n0) to be complete. One might
wonder if sacrificing this generality could buy us anything. This is not the case: the
proofs of Lemmas 3 and 4 do not exploit this feature.

Corollary 1. Theorem 2 holds even if predicate arity is fixed to 0, and eff(n0) is com-
plete, i.e., if for every p ∈ P[C]: either p ∈ eff(n0) or ¬p ∈ eff(n0).

5 Fixing Bugs

It would of course be desirable to be able to not only inform the human modeller that
a process is flawed, but to also suggest actual fixes for the detected bugs. This is a
highly difficult task – in general, it requires an understanding of the intentions behind
the process; such an understanding may not be apparent from the semantic annotations.
This notwithstanding, it is interesting to observe that some bug fixes are possible based
on the information determined by our algorithms from Section 3.

Assume that task node n is not executable. Assume further that we know the set of
literals I(n) that are true in any state where n is activated – i.e., in case the process is
basic, I(n) is the set I∗(IN(n)) as per Definition 8. Then we can fix this bug by in-
serting a new task node n′ before n, and setting pre(n′) := I(n) and eff(n′) := pre(n).
SWS discovery and composition can then be used to seek an implementation of n′. In
other words, we can try to automatically fill the holes in the process implementation.
Note that this is only possible if our validation method answers not only “yes/no”; as
is the case for our method from Section 3, the method needs to know internally which
literals will be true at which points. If the validation method uses a decision procedure,
like e.g. a SAT solver, for a case where answering “yes/no” is hard, then one may have
to make extra arrangements to also obtain the information I(n).

If n1 and n2 have a precondition or effect conflict, then it may be possible to resolve
that conflict via enforcing an ordering constraint between n1 and n2. In many cases, this
can be done by inserting an additional parallel split and join between n1 and n2. Note
that, for effect conflicts, there is a choice between the two possible orders. Note also
that such a bug fix, and also the bug fix for executability outlined above, may introduce
new bugs. Some of these issues can be overcome, e.g., by careful selection of SWS for
the implementation, and/or by careful selection of ordering constraints.

6 Related Work

Verification of business process models has been a field of intense research since sev-
eral years; see, e.g. [24] as an entry point into this literature. Indeed, as stated, for its
workflow part our formalism adopts the Petri Net based approach from [24], in the no-
tation used by [25].5 What distinguishes our approach from all this work are our use of
preconditions and effects, and of ontologies – of logical theories T – that constrain the
behaviour of the underlying business domain. In particular, while propositional precon-
ditions and effects can be modelled in terms of Petri Nets, this is not possible for our
theories T and their impact on the semantics of executing tasks (as per Definition 4).

Some other works have appeared that extend Business Process validation beyond
workflows; none of these works explores the same direction as ours, but it is worthwhile
to point out the differences. The most closely related work is [13], which annotates
task nodes with logical effects, and uses a propagation algorithm somewhat reminiscent
of our I-propagation. There are, however, a number of important differences between
the two approaches. [13] allow CNF effects, which are considerably more expressive

5 We choose [25] since it works on the workflow model itself, rather than on a corresponding
Petri Net, and hence simplifies our notations.

than our purely conjunctive effects; on the other hand, their propagation algorithm is
exponential in the size of the process (the size of the propagated constructs multiplies
at every xor join), in stark difference to our polynomial time methods. Further, [13]
consider neither preconditions nor logical theories that constrain the domain behavior.
Finally, while we provide a formal execution semantics and prove our methods correct
relative to that semantics, the work of [13] proceeds at a rather informal intuitive level.

Another related work is [15], which like our work introduces a notion of “semantic”
correctness. Namely, [15] allow to annotate pairs of tasks as “exclusive” (respectively
“dependent”), meaning they cannot (they must) co-occur in any process. This is a lim-
ited form of semantic annotation – not incorporating any logical formalism – which can
be modelled in our approach using appropriate preconditions and effects, with empty
theory T . In that sense, [15] handles an interesting special case of our framework.

In terms of its terminology, [6] is strikingly similar to our approach, extending pro-
cess models with predicates, constants, and variables. However, the meaning of these
constructs is very different from ours, using them to specify constraints on role assign-
ments, i.e., on the assignment of resources to tasks – while in our model, logics is used
to detail the actual execution of the process within a given business domain.

[16] describe methods to check compliance of a process with a set of “rules”. This
is related to our approach in that a theory T could (to some extent) be defined to model
such rules; but not vice versa since we build on general logics, while [16] covers some
practical special cases. Perhaps more importantly, the focus of [16] is different from
ours, concentrating on role assignments as well as “actions” to be triggered during pro-
cess execution. [22] also deal with rules and business processes, but in a setting where
the rules model (parts of) the workflow itself, rather than the surrounding ontology.

Another somewhat related line of work is data-flow analysis, where dependencies
are examined between the points where data is generated, and where it is consumed;
some ideas related to this are implemented in the ADEPT system [20,21]. Data flow
analysis builds on compiler theory [2] (where data flows are examined for sequential
programs mostly); it does neither consider ontologies (theories T) nor logical conflicts,
and hence explores a direction complementary to ours.

7 Conclusion

In Semantic Business Process Management, validation techniques are needed that con-
sider the semantic annotations to check whether a process is consistent. Such validation
techniques are semantic in that they need to work with ontologies. We have devised a
first formalism for this kind of validation. We have identified efficient algorithms for
a class of processes, and proved that this class is maximal with respect to the expres-
siveness of the annotation. Our next step will be to explore our notions from a more
practical perspective. In particular, we believe certain classes of loops can be addressed
with variants of our current algorithms.

References

1. A. Ankolekar et al. DAML-S: Web service description for the semantic web. In ISWC, 2002.

2. A. Aho, R. Sethi, and J. Ullman. Compilers: principles, techniques, and tools. Addison-
Wesley, 1986.

3. T. Andrews, F. Curbera, H. Dholakia, Y. Goland, J. Klein, F. Leymann, K. Liu, D. Roller,
D. Smith, S. Thatte, I. Trickovic, and S. Weerawarana. Business Process Execution Language
for Web Services, Version 1.1. Specification, BEA Systems, IBM Corp., Microsoft Corp.,
SAP AG, Siebel Systems, 2003.

4. B. Aspvall, M. Plass, and R. Tarjan. A linear-time algorithm for testing the truth of certain
quantified boolean formulas. Information Processing Letters, 8:121–123, 1979.

5. F. Baader, C. Lutz, M. Milicic, U. Sattler, and F. Wolter. Integrating description logics and
action formalisms: First results. In AAAI, 2005.

6. E. Bertino, E. Ferrari, and V. Atluri. The specification and enforcement of authorization
constraints in workflow management systems. ACM Transactions on Information Systems
Security, 2(1):65–104, 1999.

7. E. Clarke, O. Grumberg, and D. Peled. Model Checking. The MIT Press, 2000.
8. The OWL Services Coalition. OWL-S: Semantic Markup for Web Services, 2003.
9. D. Fensel et al. Enabling Semantic Web Services: The Web Service Modeling Ontology.

Springer-Verlag, 2006.
10. T. Eiter and G. Gottlob. On the complexity of propositional knowledge base revision, up-

dates, and counterfactuals. Artificial Intelligence, 57(2-3):227–270, 1992.
11. G. De Giacomo, M. Lenzerini, A. Poggi, and R. Rosati. On the update of description logic

ontologies at the instance level. In AAAI, 2006.
12. A. Herzig and O. Rifi. Propositional belief base update and minimal change. Artificial

Intelligence, 115(1):107–138, 1999.
13. George Koliadis and Aditya Ghose. Verifying semantic business process models in inter-

operation. In Intl. Conf. Services Computing (SCC 2007), 2007.
14. C. Lutz and U. Sattler. A proposal for describing services with DLs. In DL, 2002.
15. L. Thao Ly, S. Rinderle, and P. Dadam. Semantic correctness in adaptive process manage-

ment systems. In BPM, 2006.
16. Kioumars Namiri and Nenad Stojanovic. A model-driven approach for internal controls

compliance in business processes. In SBPM, 2007.
17. OASIS. Web Services Business Process Execution Language Version 2.0, April 2007.
18. OMG. Business Process Modeling Notation – BPMN 1.0. http://www.bpmn.org/, 2006.
19. A. Pnueli. The Temporal Logic of Programs. In IEEE Annual Symposium on the Foundations

of Computer Science, 1977.
20. M. Reichert, S. Rinderle, and P. Dadam. ADEPT workflow management system: Flexible

support for enterprise-wide business processes. In BPM, 2003.
21. M. Reichert, S. Rinderle, U. Kreher, and P. Dadam. Adaptive process management with

ADEPT2. In ICDE, 2005.
22. S. Sadiq, M. Orlowska, and W. Sadiq. Specification and validation of process constraints for

flexible workflows. Journal of Information Systems, 30(5):349–378, 2005.
23. W. van der Aalst, H. de Beer, and B. van Dongen. Process mining and verification of prop-

erties: An approach based on temporal logic. In OTM Conferences, 2005.
24. W. van der Aalst and K. van Hee. Workflow Management: Models, Methods, and Systems.

The MIT Press, 2002.
25. J. Vanhatalo, H. Völzer, and F. Leymann. Faster and more focused control-flow analysis for

business process models though sese decomposition. In ICSOC, 2007.
26. I. Weber, J. Hoffmann, and J. Mendling. Semantic business process validation. Technical

report, University of Innsbruck, 2008. Available at http://members.deri.at/˜joergh/papers/tr-
sbpm08.pdf.

27. M. Winslett. Reasoning about actions using a possible models approach. In AAAI, 1988.

http://members.deri.at/~joergh/papers/tr-sbpm08.pdf
http://members.deri.at/~joergh/papers/tr-sbpm08.pdf

	Semantic Business Process Validation

