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Abstract. We propose a learning model for integrating OWL DL on-
tologies with statistical learning. In contrast to existing learning methods
for the Semantic Web and approaches to the use of prior knowledge in
machine learning, we allow for a semantically rich and fully formal rep-
resentation of rules and constraints which enhance and control the learn-
ing task. In our implementation, we achieve this by combining a latent
relational graphical model with description logic inference in a modular
fashion. To demonstrate the feasibility of our approach we provide exper-
iments with real world data accompanied by a set of SHOIN (D) axioms.
The results illustrate two practical advancements: First, the probability
of unknown roles of individuals can be inductively inferred without vio-
lating the constraints and second, known ABox axioms can be analyzed
by means of clustering individuals per associated concept.

1 Introduction

This paper focuses on the combination of statistical machine learning with OWL
DL ontologies and proposes Infinite Hidden Semantic Models (IHSM) for this
task. The purpose of this is to allow (i) for the completion of the knowledge
base with predictions about unknown roles of individuals while considering con-
straints as background knowledge for the machine learning process and (ii) for
the analysis of the known concepts of individuals by means of clustering.

While there is some research on data mining for the Semantic Web (SW), like
instance-based learning and classification of individuals, considering constraints
specified in the ontology during this tasks has hardly been tried so far. The
same applies to the use of ”hard” constraints as opposed to the ubiquitous use
of ”soft” background knowledge in machine learning.

While we use a social network OWL DL ontology as running example, and
settle on relational learning as an apparently natural counterpart for logical
constraints, our general approach is in no way restricted to these and could be
easily adapted to other formal and learning frameworks.

The remainder of this paper is structured as follows: In Section 2 we specify
an ontology in OWL DL that defines the taxonomy, relational structure and
constraints. Next we show how to infer a relational model from the ontology and
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transfer the relational model into an IHSM (see Section 3). Then, we learn the
parameters of this model in an infinite and unsupervised manner while taking
the constraints into account (see Section 4). In Section 5 the IHSM is evaluated
empirically using a complex dataset from the semantic web. Finally, we discuss
related work and conclude in Section 6.

2 Formal Framework

We settle on the SHOIN (D) [1] description logic, because ontology entail-
ment in the current Semantic Web quasi-standard OWL DL can be reduced
to SHOIN (D) knowledge base satisfiability. But since we don’t make use of
any special features our approach could be adapted to any other description
language, OWL variant or full first-order logic.

C → A|¬C|C1 u C2|C1 t C2|∃R.C|∀R.C |
≥ nS| ≤ nS|{a1, ..., an}| ≥ nT | ≤ nT |

∃T1, ..., Tn.D|∀T1, ..., Tn.D|D → d|{c1, ..., cn}

Here, C denote concepts, A denote atomic concepts, R denote abstract roles
or inverse roles of abstract roles (R−), S denote abstract simple roles, the Ti
denote concrete roles, d denotes a concrete domain predicate, and the ai / ci
denote abstract / concrete individuals.

A SHOIN (D) ontology or knowledge base is then a non-empty, finite set
of TBox axioms and ABox axioms (“facts”) C1 v C2 (inclusion of concepts),
Trans(R) (transitivity), R1 v R2, T1 v T2 (role inclusion for abstract respec-
tively concrete roles), C(a) (concept assertion), R(a, b) (role assertion), a = b
(equality of individuals), and a 6= b (inequality of individuals). Concept equality
is denoted as C1 ≡ C2 which is just an abbreviation for mutual inclusion, i.e.,
C1 v C2, C2 v C1. Defining a semantics of SHOIN (D) is not required within
the scope of this work, the canonical semantics which we assume in this work
can be found, e.g., in [1].

2.1 Constraints

Constraints are actually just knowledge bases (e.g., formal ontologies), and our
approach is expected to work with all kinds of logical frameworks which allow for
satisfiability (or consistency) checks over some given set of formulas. Formally,
we define a set of constraints C to be the deductive closure Θ(KB) of a given
knowledge base KB , with Θ(KB) = {c|KB |= c}.
The application-specific constraint set, that we use as an OWL DL ontology is
similar to the well-known Friend-Of-A-Friend (FOAF) social network schema,
together with additional constraints which will be introduced later. The following
ontology SN comprises only a fragment of the full FOAF-like ontology we have
used (with DOB meaning ”date of birth” and hasBD meaning ”has birthday”.).
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Person v Agent knows− v knows ∃knows.> v Person
> v ∀knows.Person ∃hasBD.> v Person > v ∀hasBD.DOB

> v≤ 1 hasBD > v≥ 1 hasBD ∃yearV alue.> v DOB
> v ∀yearV alue.gY ear > v≤ 1 yearV alue ∃residence.> v Person
> v ∀residence.Location > v≤ 1 residence ∃attends.> v Person
> v ∀attends.School ∃hasImage.> v Person > v ∀hasImage.Image

In addition to these axioms, we provide the machine learning algorithm with
an ABox which models an incomplete social network. The later machine learn-
ing task consists essentially in a (uncertain) completion of this given network
fragment. An example for such additional individuals-governing constraints A:
tim : Person, tina : Person, tom : Person
(tina, tim) : knows, (tina, tom) : knows

Note that these relationships among persons cannot be weakened or overwrit-
ten by the learning process, even if they contradict observed data. They need to
be provided manually by the knowledge base engineer. As further constraints, we
assume some specific properties G of the analyzed social network. The following
set of axioms expresses that every two persons who know each other must share
the same chat account provider in case they have a chat account. We present a
fragment of the full set:

ProvA ≡ ∃ HasProv.ProvA ProvB ≡ ∃ HasProv.ProvB
ProvA v Person ProvB v Person

FriendProvA ≡ ∃ knows.ProvA FriendProvB ≡ ∃ knows.ProvB
FriendProvA v Person FriendProvB v Person

ProvFrProvA ≡ ∃ IsProvOf.FriendProvA
ProvFrProvB ≡ ∃ IsProvOf.FriendProvB

ProvFrProvA v ProvA ProvFrProvB v ProvB
∃ knows Thing v Person > v ∀ knows.Person
HasProv ≡ IsProvOf− ∃ HasProv Thing v Person
> v ∀ HasProv.Prov HasProv ≡ IsProvOf−

∃ IsProvOf Thing v Prov > v ∀ IsProvOf.Person
provA : ProvA provB : ProvB
provC : ProvC provD : ProvD

The complete set of constraints in our running example is then C = Θ(SN t
A tG). (Prov stands for ”chat account provider”.)

Example Data The set of data used as examples for the learning tasks takes
the outer form of restricted SHOIN (D) ABox formulas. But in contrast to
the constraints, an example (as a formula) might be wrong, in the sense that it
contradicts C. We also do not require the examples to be mutually consistent.
In order to maintain compatibility with the expected input format for relational
learning, we restrict the syntax of example data to the following two forms:

instance : category
(instancea, instanceb) : role
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SHOIN (D) roles correspond to binary predicates in FOL, and - more or less -
naturally to the relations we would like to induce in the following from observed
data. The set of all example data as logical formulas is denoted as D.

3 Infinite Hidden Semantic Models

The proposed Infinite Hidden Semantic Model (IHSM) is a machine learning
algorithm from the area of Statistical Relational Learning (SRL) [2]. The novelty
is its additional ability to exploit formal ontologies given as a set of logical
formulas. In our case, the constraints are provided as a SHOIN (D) ontology
with a T- and an ABox (either can be empty).

In traditional ML prior knowledge is specified implicitly by probability dis-
tributions, parameters of the learning algorithm or selection of features. In more
advanced models prior believes can be specified by hyperparameters and by the
dependency structure in-between random variables. However, we define the re-
lational structure by logical formulas which at the same time impose constraints
on the learning.

In this section, we first show how the ontology from Section 2 defines a
Relational Model (RM). Then we describe how to extend it to an Infinite Hidden
Relational Model (IHRM) and how to constrain it resulting in the IHSM.

3.1 Relational Models

tim : Person

knows

usa : 
Location

tina : 
Person

tom : 
Person

Imagehas

knows
uk : 

Location
residence

residence

Fig. 1. Partial sociogram of the LJ-FOAF-domain.

In order to predict unknown instances of roles, we need to create an ab-
stract RM of concepts and roles defined in our social network ontology, first.
This is done to inform the learning algorithm about which relations to con-
sider. Based on the TBox axioms given by the ontology we can create a simple
sociogram as depicted in Fig. 1. A sociogram consists of three different ele-
ments: Concept individuals (individuals that are instances of a concept (e.g.
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tim : Person)), Attribute instances (relations between a concept and a lit-
eral (e.g. Tim : hasImage)), Role instances (relations between concepts (e.g.
(tina, tim) : knows))

Concepts, attributes and roles are those defined in the TBox. They build
the basis of the RM. Note that many TBox elements first need to be deduc-
tively inferred from the ontology, so that all individuals can be assigned to its
most specific concepts. This process is known as Realization in description logic
reasoning. Fig. 2 shows the full RM we use for experiments in Section 5.

Person
Date

Image

has
OnlineChat

Account

Location

#BlogPosts 

School

holds

dateOfBirth

residence attends

posted

located

knows

Fig. 2. Relational Model of the LJ-FOAF-domain.

3.2 Infinite Hidden Relational Models

To obtain a probabilistically sound model based on the RM, random variables as
well as probability distributions and their parameters need to be introduced next.
Following [3] or [4] we extend the RM to a Hidden Relational Model (HRM) by
assigning a hidden variable denoted as Z to each concept. The according HRM
of the sociogram shown in Fig. 1 is depicted in Fig. 3. Following the idea of
hidden variables in Hidden Markov Models (HMMs) or Markov Random Fields
those additional variables can be thought of as unknown properties (roles or
attributes) of the attached concept. In addition the hidden variables in the IHSM
incorporate restrictions in the form of constraints imposed by the ontology (see
Section 3).

Considering the HRM model shown in Fig. 3, information can now propagate
via those interconnected hidden variables Z. E.g. if we want to predict whether
tom Z1

3 might know tina Z1
2 we need to consider a new relationship R3,2. Intu-

itively, the probability is computed based on (i) the attributes A1
3 and A1

1 of the
immediately related persons Z1

3 and Z1
2 ; (ii) the known relations associated with

the persons of interest, namely the role knows and residence R2,1, R3,1 and R3,2;
(iii) higher-order information and constraints transferred via hidden variables Z1

3

and Z1
2 . Given that the hidden variables have discrete probability distributions
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tim : Person

knows

usa : 
Location

tina : 
Person

tom : 
Person

Imagehas

knows
uk : 

Location
residence

residence

Fig. 3. Hidden relational model of the sociogram defined in Fig. 1.

they can be intuitively interpreted as clusters where similar individuals (in our
case similar persons, locations, schools,...) are grouped.

Considering the special importance of the hidden variables in the proposed
model their effectiveness highly depends on the number of components that
can be represented. Infinite Hidden Relational Models introduced by [3] and[4]
offer a solution to this problem. In the IHRM, a hidden variable has a potentially
infinite number of states, which have the ability to determine the optimal number
of actually occupied components automatically during the inference process.

Finally, we need to define the variables, their probability distributions and
parameters. The most important parameters of an IHRM are shown in Fig. 4.
The state of Zi specifies the cluster assignment of the concept i. K denotes
the number of clusters in Z. Z is sampled from a multinomial distribution with
parameter vector π = (π1, . . . , πK), which specify the probability of a concept
belonging to a cluster, i.e. P (Zi = k) = πk. π is referred to as mixing weights,
and is drawn according to a stick breaking construction with a hyperparameter
α0. α0 is referred to as a concentration parameter in Dirichlet Process (DP)
mixture modeling. It determines the tendency of number of states in Z.

Attributes Ac are generated from a Bernoulli distribution For each com-
ponent, there is an infinite number of mixture components θk. Each person
inherits the mixture component, thus we have: P (Gi = s|Zi = k,Θ) = θk,s.
These mixture components are independently drawn from a prior G0. The base
distributions Gc0 and Gb0 are conjugated priors with hyperparameters βc and βb.

Roles Ri,j between two persons (i and j) are a samples drawn from a binomial
distribution with parameter φk,`, where k and ` denote cluster assignments of the
person i and the person j, respectively. φbk,` is the correlation mixture component
indexed by potentially infinite hidden states k for ci and ` for cj , where ci and
cj are indexes of the individuals involved in the relationship class b. Again,
Gb0 is the Dirichlet Process base distribution of a role b. If an individual i is
assigned to a cluster k, i.e. Zi = k, the person inherits not only θk, but also
φk,`, ` = {1, . . . ,K}.
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Entity
Attri-
bute Relation

Fig. 4. Parameters of a IHRM.

3.3 Infinite Hidden Semantic Models

The (IHSM) is based on the simple idea that formal constraints can be imposed
on the hidden variables. This way a user-designed formal ontology with logical
rules can be considered during the learning process. As mentioned before, predic-
tions about attributes and roles depend on the hidden variables Z. If probable
predictions for an individual belonging to cluster Zi are checked against the
ontology, it can be determined if individual i is consistent with this cluster ac-
cording to the constraints. This way valid cluster assignments can be obtained
and invalid cluster assignments are excluded.

4 Learning, Constraining and Predictions

The key inferential problem in the IHSM is to compute the joint posterior distri-
bution of unobservable variables given the data. In addition, we need to maintain
consistent cluster assignments during learning. As computation of the joint pos-
terior is analytically intractable we use Markov chain Monte Carlo (MCMC)
sampling to approximate the posterior distribution. In specific, we apply the
blocked Gibbs sampling (GS) with truncated stick breaking representation [5] .

Let D be the set of all available observations (observed example data, each
represented as a logical formula as defined in 2.1), and let Agents = AgentI

be the set of all instances of category Agent under interpretation I - that is
informally, all persons which contribute to the social network. At each iteration,
we first update the hidden variables conditioned on the parameters sampled in
the last iteration, and then update the parameters conditioned on the hidden
variables. So, for each entity class

1. Update hidden variable Zci for each eci
(a) Constrain to satisfiable cluster assignments:

For entity cluster k, let F kext = F k ∩ {(em, en) : r|em, en ∈ Agents, r ∈
R,m 6= n} be the set of those logical formulas in the example data set
which represent some relation (“role”) r between two different individuals
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(persons) em and en where person em is assigned to cluster k already and
en is assigned to a cluster other than cluster k. To keep the notation
compact, we spell out role instances (e1, e2) : r only asymmetrically (i.e.,
we omit (e2, e1) : r if we have covered the case (e1, e2) : r). Let Fk ⊆ D
be the set of all example formulas which have already been used to learn
cluster k so far, that is, the subset of the data D which has been used
for forming that cluster until now. Let furthermore θ(e,D) be the set of
all sampled formulas in D where the person e appears, i.e., f ∈ θ(e,D)
iff f ∈ D ∧ (f ≡ e : c ∨ f ≡ (e, ex) : r for some c ∈ C, ex ∈ Agents
and r ∈ R. We use ρ(e, j) to express that a certain entity e has already
been assigned to a certain cluster j. The following steps are now used in
order to check whether cluster k is usable w.r.t. the given set of logical
constraints C:

i. Identify the largest subset F kclean of formulas within F kext which is
consistent with C and the set of example data about person eci :

F kclean ⊆ 2F
k
ext ,∃ I, I |= F kclean ∪ θ(eci , D) ∪ C,

∀F ⊆ 2F
k
ext ,∃ I, I |= F ∪ θ(eci , D) ∪ C : F ⊆ F kclean

(I being an interpretation).
ii. Verify whether F kclean, the formulas which have been used to learn

“related” other clusters, θ(eci , D) and the constraints are consistent
in sum if we replace in F kclean the names of all persons which are
assigned to clusters other than k with the name of person eci . Let
F kupd = {(ec

i , em) : r|(en, em) : r ∈ F kext} be the latter set of formulas.
Furthermore, let F krel =

⋃
j 6=k,ρ(em,k),(em,en):r∈F j F j be the set of all

formulas in all other clusters than k which “relate” to cluster k using
role formulas. The overall consistency check for cluster k yields a
positive result iff

∃ I, I |= θ(eci , D) ∪ F kupd ∪ F krel ∪ C ∧ F kclean 6= ∅

(b) Assign to cluster where the consistency check described above yielded a
positive result with probability proportional to:

π
c(t)
k P (Aci |Z

c(t+1)
i = k,Θc(t))×

∏
b′

∏
j′

P (Rb
′

i,j′ |Z
c(t+1)
i = k, Z

cj′ (t)

j′ , Φb
′(t))

2. Update πc(t+1) as follows:
(a) Sample vc(t+1)

k from
Beta(λc(t+1)

k,1 , λ
c(t+1)
k,2 ) for k = {1, . . . ,Kc − 1} with

λ
c(t+1)
k,1 = 1 +

Nc∑
i=1

δk(Zc(t+1)
i ),

λ
c(t+1)
k,2 = αc0 +

Kc∑
k′=k+1

Nc∑
i=1

δk′(Zc(t+1)
i ),



IX

and set vc(t+1)
Kc = 1. δk(Zc(t+1)

i ) equals to 1 if Zc(t+1)
i = k and 0 otherwise.

(b) Compute πc(t+1) as: πc(t+1)
1 = v

c(t+1)
1 and

π
c(t+1)
k = v

c(t+1)
k

k−1∏
k′=1

(1− vc(t+1)
k′ ), k > 1.

Before the next iteration we update the parameters:

θ
c(t+1)
k ∼ P (·|Ac, Zc(t+1), Gc0),

φ
b(t+1)
k,` ∼ P (·|Rb, Z(t+1), Gb0).

After the GS procedure reaches stationarity the role of interest is approx-
imated by looking at the sampled values. Here, we only mention the simplest
case where the predictive distribution of the existence of a relation Ri,j between
to known individuals i, j is approximated by φbi′,j′ where i′ and j′ denote the
cluster assignments of the objects i and j, respectively.

5 Experiments

There is almost no work on statistical relational learning with formal ontologies
in general and SW data in particular. The lack of experiments on large and
complex real world ontologies is not only due to the absence of algorithms but
also due to missing suitable datasets. In this section we will present both, a
large and complex SW dataset and the methodology of how to apply IHSM in
practice. Ultimately, we evaluate the feasibility of our approach by presenting
first experimental results with IHSM in this domain.

5.1 Data and Methodology

As mentioned before our core ontology is based on Friend of a Friend (FOAF)
data. The FOAF ontology is defined using OWL DL/RDF(S) and formally spec-
ified in the FOAF Vocabulary Specification 0.913. Besides that we make use of
further concepts and roles that are given in the data. We gathered our FOAF
dataset from user profiles of the community website LiveJournal.com4.

All extracted concepts and roles are shown in Fig. 2. Tab. 1 lists the number of
individuals and instantiated roles. As expected for a social networks knows is the
primary source of information. This real world data set offers both a sufficiently
large set of individuals for inductive learning and a formal ontology specified in
RDFS and OWL. To demonstrate the full potential of IHSM we additionally
add constraints that are not given in the original ontology (see Section 2.1).

To implement all features of IHSM we made use of open source software
packages: The semantic web framework Jena5 is used to load, store and query
3 http://xmlns.com/foaf/spec/
4 http://www.livejournal.com/bots/
5 http://jena.sourceforge.net/
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Table 1. No. of individuals, no. of instantiated roles and final number of clusters

Concept #Indivi. Roles #Inst. #C. IHRM #C. IHSM

Location 23 residence 45 7 9
School 69 attends 128 6 6

OnlineChatAccount 4 holdsAccount 37 3 4
Person 1258 knows 2513 16 19

hasImage 53
Date 6 dateOfBirth 33 2 2

#BlogPosts 5 posted 54 2 2

the ontology and Pellet6 provides the OWL DL reasoning capabilities. We im-
plemented IHSM and integrated it into this framework. In our experiments the
truncation parameter was set to #Individuals/4 and α0 = β0 = 10. We ran
100 iterations each, where 50 iterations are discarded as the burn-in period. As
this is intended to provide a feasibility evaluation rather than a performance
benchmark we did not carry out any parameter tuning.

5.2 Results

We will now report first results on learning the LJ-FOAF data set. Concerning
the computational complexity, the additional consistency check for every indi-
vidual per iteration is approximately slower by a factor of 6. However, this is
partly due to the prototypical implementation of IHSM.

An interesting outcome is the number of clusters per hidden variable after
convergence (see Table 1). Considering the difference between IHRM and IHSM,
the larger cluster numbers suggest that concepts affected by constraints are likely
to be found more diverse by IHSM.

Fig. 5 compares the learned parameter φknows of IHRM to the one learned by
IHSM. This indicates the correlation of Person clusters with regard to the role
knows. IHRM converged to 16 und IHSM to 19 clusters. On top of the clusters
we show the number of instances per cluster. A brighter cell indicates stronger
relations between two clusters. Note that knows is considered a directed relation,
thus this does not result in a symmetric matrix.

Although hard to generalize, a cell with 50% gray might indicate that no
significant probabilistic dependencies for individuals in this cluster are found
in the data. Regarding this, it seems to be surprising that knows-relations of
large clusters predominantly show this characteristics. Interestingly, individuals
in those large clusters are those user profiles that are just referenced by other
persons but not extracted by the web crawler. Besides that, social networks
tend to have a few strongly connected users and many less active users with
little connections. This may reinforce this effect.

As mentioned before, IHSM results in more diverse clusters. Most interest-
ingly, there are rows with noticeable darker cells (marked with black arrows)

6 http://pellet.owldl.com/
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9 15 4 360 5324372682208 42712 1 76 276 6 49 2565228163333028239 2 15 3515

Fig. 5. Correlation mixture component φknows for each combination of clusters
ZPerson. Left: without constraining (IHRM). Right: with constraining (IHSM). #In-
dividuals per cluster is shown on top.

and those darker cells are symmetric. This suggests that those clusters represent
conflicting individuals. In fact, all of those cells contained at least one pair of
persons that conflicted with the ontology. This indicates that one of the main
goal of IHSM is achieved, namely the exploitation of constraints provided by the
ontology.

6 Related Work and Conclusion

Very generally speaking, our proposed method aims at combining machine learn-
ing with formal logic. So far, machine learning has been mainly approached either
with statistical methods, or with approaches which aim at the inductive learn-
ing of formal knowledge from examples which are also provided using formal
logic. The most important direction in this respect is Inductive Logic Program-
ming (ILP). Probabilistic- and Stochastic Logic Programming (e.g., [6]) (SLP)
are a family of ILP-based approaches which are capable of learning stochastically
weighted logical formulas (the weights of formulas, respectively). In contrast to
that, our approach learns probability distributions with the help of a given,
formal theory which acts as a set of hard constraints. To our best knowledge,
this direction is new. Although (S)ILP and statistical relational learning [2] are
conceptually very closely related and often subsumed under the general term
relational learning, statistical relational learning is still rarely integrated with
formal logic or ontologies as prior knowledge. One exception are Markov Logic
Networks (MLN) [7] which combine First Order Logic and Markov Networks
and learn weights of formulas.
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Surprisingly there are also hardly any applications of (pure) SRL algorithms
to (SW) ontologies. The few examples, e.g. [8], [9], do not consider formal con-
straints. The use of hard constraints for clustering tasks in purely statistical ap-
proaches to learning, as opposed to the ubiquitous use of ”soft” prior knowledge,
has been approached in, e.g., [10]. A common characteristic of these approaches
is that they work with a relatively narrow, semi-formal notion of constraints and
do not relate constraints to relational learning. In contrast to these works, our
approach allows for rich constraints which take the form of a OWL DL knowledge
base (with much higher expressivity). The notion of forbidden pairings of data
points (cannot-link constraints [10]) is replaced with the more general notion of
logical (un-)satisfiability w.r.t. formal background knowledge.

With the presented approach, we hope to open up a new line of future
research directions. In general we are curious to see more work on inductive
learning with SW ontologies and on the other hand SW ontologies that can be
supplemented by uncertain evidence. Concerning IHSM in particular a detailed
empirical and theoretical analysis on the effect of constraining on clusters seems
promising. We also expect experimental proof for improved predictive perfor-
mance when formal ontologies are exploited.
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