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Abstract: This paper aims in the construction of an Artificial Neural Network 
model that performs successful estimation of the Maximum Water Supply (m3 

/sec) and of the Special Water Flow (m3/sec*Km2) using several topographic, me-
teorological and morphometric parameters as independent variables. Support Vec-
tor Machines applying specific Kernel algorithms [9] are used to determine the Er-
ror or Loss of the Neural Network model and to enhance its ability to generalize. 
Data come from the Greek island of Thasos, which is located in the North-Eastern 
part of the Aegean sea. As a matter of fact, this manuscript can be considered as a 
specific case study, but its modeling design principles and its Error minimization 
methods can be applied in a wide range of research studies and applications 
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1.  Introduction 
Effective water resources management is one of the most crucial environmental 
challenges of our times. Extreme flood incidents happen more and more often all 
over the world and they cause immense damages in infrastructure and in human 
lives.  
This research effort has two distinct orientations of equal importance. First it deals 
with the development of Artificial Neural Network (ANN) modeling of both aver-
age annual maximum water supply (m3/sec) (AAMWS) and special water flow 
(SWF) (m3/sec*Km2)  for the torrential watersheds of a wide mountainous area. It 
also deals with the supportive role of Soft Computing methods like e-Regression 
Support Vector Machines towards the evaluation of neural network models.  From 
this point of view this specific contribution can be considered as having an inno-
vative role towards ANN development and evaluation.  
Another key aspect is the fact that it is performed by using structural data (remain-
ing unchanged over-time) and only few actual real time measurements. Under this 
perspective this modeling effort can be considered cost and time effective and it 
can provide invaluable assistance towards the design of flood protection and pre-
vention policy. Existing methods like the one of Gavrilovic [6] [23] concentrate 
mostly in the load of sediments and secondly in the influence of various structural 
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and dynamic factors. The equation of Gavrilovic is very useful and widely used 
but it cannot respond to sudden changes in the morphometric background of a tor-
rential stream. For example if the percentage of forest cover is suddenly reduced 
dramatically due to a major forest fire, the Gavrilovic equation absorbs this 
change during the first years and it requires a longer period of time to show a sig-
nificant difference.  
 
1.1. Literature Review 
Estimation of both AAMWS and SWF is a very important process, as it can serve 
for the rough calculation of existing water supplies and for the evaluation of the 
potential Torrential Risk for each mountainous watershed.  
ANN have been used effectively in various research projects concerning water 
protection and water management in Europe, in USA and in many other countries. 
An ANN using Fuzzy Logic has been developed in the Netherlands for the control 
of water levels in polder areas [14]. Another ANN that performs river flow fore-
casting has been developed also in the Netherlands [3]. Also in USA (US Depart-
ment of Energy) and in Europe, ANN have been developed for the prediction of 
stream-water quality [1],[15]or towards water-management in general. Wastewa-
ter and water management and protection models using ANN have also been de-
veloped recently [7],[20]. UNESCO has also funded several research projects us-
ing ANN and fuzzy logic for urban water management and flood risk evaluation 
[25][10]. Finally neural networks have been used for the prediction and forecast-
ing of water resources variables [15].  

 
2. The Environmental Problem of floods 
 
2.1. Data and research area 
Actual data corresponding to the eight input parameters described above were ga-
thered from the twenty most important mountainous streams of the Thasos island. 
The average annual rain height corresponds to a period of thirty years. Thus, thir-
ty data records were structured for each torrential stream, raising the total number 
of existing data vectors to six hundred. Except of the rain height and forest cover, 
the rest of the input parameters are structural and they do not change significantly 
overtime.  A small sample of the available data that were used in this research is 
presented in the following table 1.  
In the case of water resources modeling the input data are points in a space Rn and 
the output represents points in the well-known plain Rk where k =2 in this case, 
since the output parameters are two.  
According to [18] there are eight main parameters that influence the AAMWS and 
the SWF and for which there are available data in the Greek repositories. So the 
input space can be considered as vectors of the R8 space. The eight input data are 
the average altitude, the average slope, the average annual rain height, the per-
centage of forest cover, the percentage of compact geological forms, the area, the 
total number of pipes and the total length of the pipes of the torrential watersheds 
of Thasos island. 
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Table 1: A small sample of the selected data records 

Torrential  
  Stream 

Aver-
age Wa-
tershed 
Altitude 

Av-
erage 
Wa-

tershed 
Slope 

Average 
watershed 

annual 
rain-height 

Percen-
tage of for-
est cover of 
watershed 

Percen-
tage of wa-

tershed 
compact 

geological 
forms 

m % Mm % % 
Thasos 433.21 35.61 1059.40 81.47 87.81 
Panagia 261.14 28.50 919.03 56.68 78.97 
Potamia 574.74 49.93 1151.40 88.83 84.89 
Skala Po-
tamias 535.44 53.31 1126.10 56.14 76.55 

Mavrou 
Lakou 378.19 50.84 1023.20 88.08 85.15 

Kleisidiou 330.64 35.67 975.11 36.49 100.02 

Thimonias 325.41 35.10 971.88 93.74 96.83 
 
The two output parameters of the model are the AAMWS and the corresponding 
SWF which is estimated [13] by the following formula 1 where F is the area of the 
mountainous watershed in Km2 and a is a parameter determined by water man-
agement specialists. The parameter a takes values in the closed interval [0.6,1]. 
SWF is a normalized version (per km2) of the mean water supply (MWS). 

qmax = a
F+5.0

32  (1) 

 
3. Theoretical Background 
 
3.1. ANN 
Modern ANNs are rooted in many disciplines, like neurosciences, mathematics, 
statistics, physics and engineering. They find many successful applications in such 
diverse fields as modeling, time series analysis, pattern recognition and signal 
processing, due to their ability to learn from input data with or without a teacher.  
Their computing power is achieved through their massively parallel distributed 
structure and their ability to learn and therefore generalize [8]. Generalization re-
fers to their ability to produce reasonable output for inputs not encountered during 
the training process [8]. ANN consist of units called neurons whose computing 
ability is typically restricted to a rule for combining input signals and an activation 
rule that takes the combined input to calculate the output signal [2].  
The proper design of ANN requires the development of various topologies using 
numerous optimization algorithms and transfer functions, before determining the 
optimal one. We have experimented thoroughly towards this direction. Sixty per-
cent of the actual data records corresponding to the eight independent parameters, 
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have been used as input in the training phase and the other 40% were used as in-
put in the testing phase of the ANN in order to evaluate the generalization ability.  
 
3.2. Support Vector Machines 
The support vector machines (SVM) or optimal margin classifiers are new type of 
learning algorithms based on statistical learning theory proposed by Vapnick [27]. 
SVM are used not only for classification but for regression (functional approxima-
tion) problems as well [4],[28]. When used for classification, a SVM algorithm 
creates a Hyperplane that separates the data into two classes. Given training 
examples labeled either "yes" or "no", a maximum-margin hyperplane is identified 
which splits the "yes" from the "no" training examples, such that the distance 
between the hyperplane and the closest examples (the margin) is maximized. It is 
a fact that SVM can handle multiple continuous and categorical variables. To con-
struct an optimal hyperplane, SVM employees an iterative training algorithm, 
which is used to minimize an error function. According to the form of the error 
function, SVM models can be classified into various distinct groups:  

• Classification SVM Type 1 (also known as C-SVM classification)  
• Classification SVM Type 2 (also known as nu-SVM classification)  
• Regression SVM  (also known as epsilon-SVM regression)  

In this project, an epsilon-regression SVM (ERSVM) was applied. In an ERSVM 
one has to estimate the functional dependence of the dependent variable y on a set 
of independent variables x. Here an ε-tube is constructed that determines the loss 
degree of the regression. It assumes, like other regression problems, that the rela-
tionship between the independent and dependent variables is given by a determi-
nistic function f plus the addition of some additive noise: y = f(x) + noise (2) 
The task is then to find a functional form for f that can correctly predict new cases 
that the SVM has not been presented with before. This can be achieved by training 
the SVM model on a sample set. In our case the ANN plays the role of the predict-
ing function. In fact the learning machine is given l training data from which it at-
tempts to learn the input-output relationship (which may have the form of depen-
dency, mapping or function) f(x). In this case the training data set has the form D 
= {(Xi,Yi)∈Rn×R | i∈{1,…,l}}which means that it contains one pair of values 
(Xi,Yi). It should be specified that the inputs X are n-dimensional Vectors that be-
long to Rn and the output Y of the system are continuous values [12]. The SVM 

uses approximating functions of the form )(),(
1

xwwxf i

N

i
iφ∑

=

= (3) where the 

functions φi(x) are called features [12]. In regression problems like the one we are 
facing in this study, typically some measures of error approximation are used.  
 
3.3. Applications of RSVM to ANN evaluation 
Let’s suppose that we have an ANN with an input vector X, a bias weight vector 
b, a hidden layer weights matrix V, and an output weight vector wT.  More specif-
ically:  X=[X1,X2,X3,……,Xn]

T (4) b=[b1,b2,b3,……,bj]
T (5)   

w=[w1,w2,w3,……,wj,wj+1]
T  (6) 
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The output layer neurons may have linear activation functions (for regression 
problems) or sigmoid for classification or pattern recognition tasks. The approxi-
mation scheme for such an ANN is shown in formula 8 [12]: 

)(),,,(),,,(
1

j
T
jj

J

j
j bxvwbwVXFbwVXo +== ∑

=

σ     (8) 

The construction of a SVM algorithm for regression is actually a problem of mi-

nimizing the empirical risk 
e
empR and 2W at the same time. Actually the prob-

lem is the estimation of a linear regression hyperplane f(x,w) =WTx+b. This can 
be achieved by minimizing the quantity R given by formula 9 [12]: 

( ) 







−+= ∑

−

l

i
eii wxfyCwR

1

2 ,
2
1 (9) Here Vapnick’s ε-

insensitivity loss function replaces squared error and C ~1/λ.  
In fact Vapnick introduced a general type of error (loss) function the linear loss 
function with ε-insensitivity zone which is given by the following formula 10 [12]. 

( ) { ( )
( ) otherwisewxfy

wxfyif
wxfy

...,
,...0

,
ε

ε
ε −−

≤−
=− (10) 

According to this algorithm the loss equals to 0 if the difference between the pre-
dicted by the ANN value f(x,w) and the measured value is less than ε.  In this way 
function 10 defines a ε-tube. In the cases with the ANN predicted value within the 
tube, the loss (or error) is zero. In all other cases the loss equals to the magnitude 
of the difference between the ANN output value and the radius ε of the tube. If ξ 
and ξ* are given by the following formulas 11 and 12, then formula 13 presents the 
final value of risk R that has to be minimized [27],[12]. 

The following equations 11 and 12 ( ) ξε =−− wxfy , (11) 

( ) *, ξε =−− wxfy  (12) are valid for all of the data that are located 

above the tube.  
For all of the data that are located below the tube equation 13 is 

true 



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(13)                                                                           

In the above formula 13 the following constrains should stand. 

ξε +≤−− bxwy i
T

i (14) *ξε +≤−+ ii
T ybxw    (14)                                                                                                      
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0≥ξ li ,1=  (15) 0* ≥ξ li ,1=   (16)                                                                                                                       

The following figure 1 clearly shows the case of an ε-tube and the parameters in-
volved.  

 
Figure 1: The parameters used in one dimensional ERSVM 

In the previous formulae the ξ and ξ* are slack variables for measurements “above” 
and “below” an ε-tube. Both slack variables are positive values. Finally it should 
be clarified that the constant C which influences a trade-off between an approxi-

mation error and the weights vector norm W is a design parameter whose val-

ue is chosen by the user. Also the norm 22
1 ... nwwW ++= where W is the 

weight vector. An increase in C penalizes larger errors (large ξ and ξ*) and so it 
leads to a decrease in approximation error [12]. 
 
4. Hydrological Neural Model 
Training is the process of ANN development, where the connection weights are 
adapted or modified in response to stimuli being presented at the input buffer and 
optionally to the output buffer. The hidden layer is the place where the data is be-
ing processed and it may consist of one or two sub-layers.  
The feed forward network structure with input, output and HSL varying from 1 to 
2, applying various optimization algorithms were tried in the training phase. We 
have experimented with the back propagation (BP) optimization algorithm (intro-
duced by Rummelhart et al.) [21],[22][24][26], the general regression ANN archi-
tecture, the modular ANN topology [5] and the radial basis function (RBF) model. 
Our experimentations included the employment of various transfer functions.  
Modular ANNs were proposed by Jacobs, Jordan, Nowlan and Hinton [19]. They 
consist of a group of BP networks referred to as “local experts” competing to learn 
different aspects of a problem. A “gating network” controls the competition and 
learns to assign different parts of the data space to different networks. When only 
one ANN is appropriate for a given problem, the gating network tends to favor it 
[19]. RBF are ANN having an internal representation of hidden neurons which are 
“radially symmetric”. For a neuron to be radially symmetric it needs to have the 
following three constituents: a) A center which is a vector in the input space that is 
typically stored in the weight vector from the input layer to the pattern unit. b) A 
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distance measure to determine how far an input vector stands from the center. In 
this case standard Euclidean distance is used. c) A transfer function (using a single 
variable) which determines the output of the Neuron by mapping the output of the 
distance function.  
The “root mean square error” (RMS Error) and the Confusion Matrix (CM) were 
used to check the validity of the ANN. The CM is roughly a kin to a scatter dia-
gram, with the x-axis representing the desired output and the y-axis representing 
the actual output. The main difference from a scatter diagram is that the CM 
breaks the diagram into a grid. Each grid square is called a bin. Each output from 
the probe point produces a count within one of the bins [19]. For example if the 
probe point produces an output of 0.6 and the desired output was 0.5 then the bin 
around the intersection of 0.6 from the y-axis and 0.5 from the x-axis receives a 
count. These counts are displayed by a bar within the bin and the bar grows as 
counts are received. The bin receiving the most counts is shown at full height, 
while all of the other bins are scaled in relation to it [19]. The network with the 
optimal configuration must have the bins (the cells in each matrix) on the diagonal 
from the lower left to the upper right. Also more sophisticated Soft Computing 
tools were also applied to examine and determine the validity of the optimal ANN. 
An important aspect of the CM is that the value of the vertical axis of the pro-
duced histogram is the common mean correlation (CMC) coefficient of the desired 
(d) and the predicted output (y) across the Epoch. The CMC is calculated by the 
following formula (2): 

( )( )

( ) ( )∑∑
∑

−−

−−
=

22 yydd

yydd
CMC

ii

ii , ∑=
n

id
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d
1

1
 and ∑=

n

iy
E

y
1

1
          

(17)   
It should be clarified that i ranges from 1 to n (the number of cases in the data 
training set) and E is the Epoch size which is the number of sets of training data 
presented to the ANN learning cycles between weight updates. 

 
5. Experimental Results 
The first and the most important thing that had to be determined was the topology 
of the ANN and its optimization and transfer functions. Thus various experimenta-
tions were performed using various numbers of hidden sub-layers with various 
numbers of neurons used in each sub-layer.  
The six hundred data records were divided in two subsets, the training and the 
testing one. The division was performed in a totally random manner. The training 
set included the 60% of the data and the testing the rest 40%. Training has shown 
that the optimal Artificial Neural Network (OANN) was the one that used BP op-
timization algorithm with the “tangent hyperbolic” activation function (mapping 
into the range –1.0 to 1.0) and with the “extended delta bar delta” (ExtDBD) 
training rule [11], [17] as the transfer function. It consisted of eight neurons in the 
input layer, only one hidden sub-layer with nine neurons and two neurons in the 
output layer. The RMS Error in the training phase was 0.0045 and the R2 =0.9997. 
It should be clarified here that the ExtDBD is a heuristic technique that has been 
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successful in a number of application areas and it uses termed momentum. A term 
is added to the standard weight change, which is proportional to the previous 
weight change. In this way good general trends are reinforced and oscillations are 
damped [19]. The random number seed was kept constant before each training 
round and the learning coefficient ratio was kept at 1. The following figure 2, 
shows the architecture of the OANN. 

 
Figure 2: Architecture of the optimal ANN 

 
Every time an ANN model is developed we need to ensure that the data are com-
patible to the learning algorithms and to the transfer functions applied. When a 
value coming into a processing element (PE) is beyond the PEs transfer function 
range, that PE is said to be saturated and of course the function produces dummy 
values [19]. The tangent hyperbolic function that is used in this specific research is 
mapping into the range –1.0 to 1.0 but it accepts values only between -3 and +3. 
Saturation occurs when a PE’s summation value (the sum of the inputs times the 
weights) exceeds this range. So the input data were normalized by dividing them 
properly (by 1000) so that they will not exceed the acceptable range. This pro-
vided a good performance of the transfer function. 
After the determination of the ANN structure and topology, the testing process 
was performed to prove the potential ability of the ANN to generalize with first 
time seen data. The results of the testing phase are the following. The RMS Error 
was 0.1404 and the R2 =0.9763. Two confusion matrices were developed for the 
two output parameters. Both confusion matrices had all of their cells located very 
close to the diagonal from the lower left to the upper right. The CMC in the case 
of the maximum water flow was equal to 0.9654 whereas in the case of the Special 
Water flow it was equal to 0.9872. The following figure 3 shows the two confu-
sion matrices corresponding to the two output parameters. It is clear that the ANN 
shows a good performance with unseen data and also it retains a good and simple 
structure which is also very important. 
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Figure 3: The Confusion Matrices in the Testing Phase 

A complicated ANN with many hidden sub-layers or with a large number of hid-
den neurons does not guarantee good level of generalization capacity. The specific 
ANN that was developed here has a simple architecture and this is an important 
benefit. Though the generalization ability of the ANN has been demonstrated an 
ERSVM kernel was used to determine the risk of the ANN model. 

 
5.1. Using the SVM to determine the ANN with the minimum Loss 
The output of the ANN (with first time seen data) and the actual experimental val-
ues (coming from direct measurements in the most important torrential streams of 
the island) were used as input to the RSVM. Also the weights of the output Layer 
of the BP ANN were input to the SVM to determine the actual risk according to 
formula 13, [27],[29]. 
In both cases the actual measured values were subtracted from the ANN output 
ones in order to estimate the maximum value. For the case of AAMWS ε was de-
fined to be equal to 4.5 almost equal to the maximum difference between the pre-
dicted and the measured values. This value of ε defines the width of a specific 
tube. Based on formulae 11 and 12 and on the values of the weight vector W of the 

developed ANN, ∑
=

l

i 1

ξ = 4.6608 whereas *
1
∑
=

l

i
ξ = 4.924 where constant C was 

defined to have a low value of. 0.1. 
Based on these values and using formula 13, the final estimation for the value of 
risk R for AAMWS was equal to 0.204.  
The following estimations were performed for the SWF. According to formulae 11 
and 12 and using the values of the weight vector W of the developed ANN, the 

∑
=

l

i 1
ξ = 3.289 whereas *

1
∑
=

l

i
ξ = 0.935 where C=0.1 and ε was defined to be 

equal to 1.4 almost equal to the maximum difference between the predicted and 
the measured values.  
Finally the risk R for the Special Water Flow was estimated using formula 13 to 
have a value of 0.1998. In both of the cases the risk was quite low showing that 
the ANN prediction values include quite low risk. This means that the degree of 
loss is quite low for the ANN predicted values, compared to the actual ones. 
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Table 2: The BP ANN output compared to actual measurements in Testing 

Special Water Flow 
Average Annual Maximum Water 

Supply 

Actual Ex-
perimental 

Measurements 
y 

ANN 
Output 

f(X,w) for 
SWF  

Tube 
width 
value ε 

for 
SWF 

Actual Ex-
perimental  

Measurements 
y 

ANN 
Output 

f(X,w) for 
AAMWS 

Tube 
width 
value ε 

for 
AAMWS 

4.97 3.754 1.4 180.94 196.01 4.5 
11.07 11.562  81.69 80.84  
5.11 4.11  176.36 191.628  
9.11 10.588  98.84 94.279  
4.64 3.355  190.77 205.605  

10.45 11.745  86.44 83.275  
14.28 13.206  63.28 66.413  

7 6.349  128.9 140.593  
11.27 11.117  80.07 80.146  
6.59 5.458  136.54 154.573  

 
6. Conclusion 

 
The developed OANN for the case of Thasos island, has proven its ability to esti-
mate the AAMWS and the SWF successfully and reliably and most of all its abili-
ty to generalize with first time seen data. This has been proven not only by the in-
struments used in the Training and Testing phases but also from the low risk 
estimation that was done by an ERSVM. Water management experts should con-
sider the estimations of the ANN for each watershed in order to design specific 
measures and the proper actions towards an orthological management of the exist-
ing water supplies in the mountainous watersheds. In this way the Torrential Risk 
and the Risk of water lack can be reduced. 
Thus not only a useful and reliable tool has been developed for the water man-
agement of Thasos but also the potential use of ANN on a wider scale has been 
proven. More similar applications can be developed for other areas with available 
data. The modeling methodology is innovative and it uses a lot of modern instru-
ments and algorithms that evaluate its performance from various perspectives.  
Of course we can not claim that this model has covered all of the parameters de-
termining the AAMWS and its corresponding SWF. With this volume of data 
(twenty torrential streams concerning a period of thirty years) using the eight men-
tioned input parameters this study can be considered as a successful preliminary 
one. The results of this research effort have a limited scope for the area of Thasos, 
but the modeling methodology can be applied in any place. However it can only 
be considered a preliminary one. A future effort with more data series concerning 
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perhaps more variables, will determine beyond any doubt the final structures of 
the proper ANN.  

 
References 
1. Bowers J.A., Shedrow C.B., (2000) Predicting Stream Water Quality using Ar-
tificial Neural  Networks. Westinghouse Savannah River Company, SRS Ecology 
Environmental Information Document, MS-2000-00112. Savannah River Site, Ai-
ken, SC 29808, US Department of Energy 
2. Callan R., (1999) The Essence of Neural Networks. Prentice Hall, UK 
3. Dibike Y., Solomatine D., (1999) River Flow Forecasting using Artificial Neur-
al Networks European Geophysical Society (EGS) XXIV General Assembly, The 
Hague, The Netherlands 
4. Drucker, H., C.J.C. Burges, L. Kaufman, A Smola, and V.N. Vapnik, (1997) 
Support Vector Regression Machines Advances in neural information processing 
systems Volume 9, 155-161. Cambridge, MA:MIT Press 
5. Gaupe, D., (1997) Principles of artificial neural networks World Scientific. Sin-
gapore 
6. Gavrilovic Sl. (1972) Inzenjering o bujicnim tovoklima i eroziji. Beograd 
7. Hamed M. M., Khalafallah M. G., and Hassanien E. A., 2004. Prediction of 
wastewater treatment plant performance using artificial neural networks. Envi-
ronmental Modelling and Software, Elsevier Science, October 2004, Vol. 19, Is-
sue 10, pp. 919-928. 
8. Haykin S., (1999) Neural Networks A Comprehensive Foundation. Prentice 
Hall,USA.  
9. Herbrich R., (2002) Learning Kernel Classifiers: Theory and Algorithms. MIT 
Press, Cambridge, MA. 
10. Iliadis L., Maris F., Marinos D., (2004) A Decision Support System using 
Fuzzy relations for the estimation of long-term torrential risk of mountainous wa-
tersheds: The case of river Evros. Proceedings  
ICNAAM 2004 Conference, Chalkis, Greece 
11. Jacobs, R.A. (1988) Increased rates of convergence through learning rate 
adaption. Neural Networks 1:295-307. 
12. Kecman V., (2001)  Learning and Soft Computing. MIT Press. London Eng-
land. 
13. Kotoulas D., (2001) Hydrology and Hydraulics of natural Environment, pp. 
223. Aristoteles University of Thessaloniki, Greece. 
14. Lobbrecht A.H., Solomatine D.P., (1999) Control of water levels in polder 
areas using neural networks and fuzzy adaptive systems. Water Industry Systems: 
Modelling and Optimization Applications, Vol,  1. pp. 509-518.  Research Studies 
Press. Baldock, UK 
15. Maier H. R., Dandy G. C., (2000) Neural networks for the prediction and fore-
casting of water resources variables: a review of modelling issues and applica-
tions  

AIAI-2009 Workshops Proceedings [258]



Environmental Modelling and Software, Volume 15, Issue 1, January 2000, pp. 
101-124.  
16. Maier H. R., Morgan N., Chow C. W. K., (2004) Use of ANN for predicting 
optimal alum doses and treated water quality parameters  Environmental Model-
ling & Software, Volume 19, Issue 5, May 2004, pp. 485-494.  
17. Minai, A.A. and R.D. Wiliams. (1990) Acceleration of Back-Propagation 
through Learning Rate and Momentum Adaption. International Joint Conference  
on Neural Networks. Volume I, pp. 676- 679. 
18. Maris, L. Iliadis, (2007) “A computer system using two membership functions 
and T-Norms for the calculation of mountainous watersheds torrential risk: The 
case of lakes Trixonida and Lisimaxia” Book Chapter Book Series: 
“Developments in Plant and Soil Sciences” Book Title: “Eco-and Ground Bio-
Engineering: The Use of Vegetation to Improve Slope Stability” Volume 103 pp. 
247-254 Springer Netherlands 
19. Neuralware, (2001) Getting started. A tutorial for Neuralworks Professional 
II/PLUS. Carnegie, PA, USA 
20. Partalas I., Tsoumakas G., Hatzikos E., Vlahavas I., 2008. Greedy Regression 
Ensemble Selection: Theory and an Application to water Quality. Information 
Sciences 178 (20) pp. 3867-3879 
21. Rummelhart D.E., Hinton G.E., Wiliams, R.J., (1985) Learning Internal Rep 
resentations by Error Propagation. Institute for Cognitive Science Report 8506. 
San Diego, University of California 
22. Rummelhart D.E., Hinton G.E., Wiliams R.J., (1986) Learning Internal Repre 
sentations by Error Propagation. Parallel Distributed Processing, Explorations in 
the Microstructure of Cognition. Vol 1, Foundations. Cambridge, MA: MIT Press. 
23. A. Tazioli, (2009) Evaluation of erosion in equipped basins preliminary results  
of a comparison between the Gavrilovic model and direct measurements of sedi 
ment transport. Environmental Geology. Volume 56, number 5, pp. 825-831,  
Springer Berlin 
24. Thamarai S., Malmathanraj R., (2005) Missile Defense and Interceptor Alloca 
tion by Modifed Bionet Neural Network. Proceedings of the 9th International Con 
ference of EANN, Lille France pp. 299-306. 
25. UNESCO (1998-2000). http://www.unesco-ihe.org/hi/projects.htm 
26. Van Looy S., Meeus J., Wyns B., Vander Cruyssen B., Boullart L., Keyser F. 
(2005) Comparison of Machine Learning models for prediction of dose increase in 
patients with rheumatoid arthritis. Proceedings of the 9th International Conference 
of Engineering  Applications of Neural Networks, Lille France pp. 189-196.  
27. Vapnik V.N., (1995) The nature of statistical learning theory. New York: 
Springer Verlag 
28. Vapnik V.N., S. Golowich, and A. Smola, (1997) Support Vector method for 
functuion approximation regression estimation and signal processing. In Advances 
in neural information processing systems. Vol.9.  Cambridge, MA:MIT Press. 
29. Vapnik V.N., (1998) Statistical learning Theory. New York Wiley.  
 

AIAI-2009 Workshops Proceedings [259]

http://www.springerlink.com/content/x23834/?p=0290bf623d1a4c7ba794378ad3a24899&pi=0�
http://www.springerlink.com/content/p9308g/?p=0290bf623d1a4c7ba794378ad3a24899&pi=0�
http://www.springerlink.com/content/p9308g/?p=0290bf623d1a4c7ba794378ad3a24899&pi=0�
http://www.unesco-ihe.org/hi/projects.htm�



