Abductive Reasoning in Environmental Decision
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Abstract Decision trees and rule-based system including variants based on propo-
sitional and fuzzy logic have been the method of choice in many applications of
environmental decision support systems. Reasons are the ease of use, the capabil-
ity of representing uncertainty, and the fast computation of results at runtime when
using decision trees or other similar means for knowledge representation. Unfor-
tunately there are drawbacks related with these modeling paradigms. For example,
the cause-effect relationships between quantities are not captured correctly. The re-
sulting model is well appropriated for a certain purpose but can hardly be re-used.
Moreover, maintaining the knowledge base can be an intricate task. In this paper we
focus on the problems related with decision trees in the context of environmental
decision support systems using an example from the domain. We further present ab-
ductive reasoning as an alternative for modeling and show how these technique can
be easily implemented using existing techniques.
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1 Introduction

Decision support systems gain importance. This holds especially in the environmen-
tal domain where decisions have to be drawn but where knowledge is not commonly
accessible and not easy to obtain. In most cases environmental decision support sys-
tems like [1, 2] are based on decision trees, rule-based systems, case-based systems,
or fuzzy logic. Although, these methodologies have been successfully used in prac-
tical applications, e.g., [16], they have some drawbacks. One drawback is that the

Franz Wotawa
Technische Universitit Graz, Institute for Software Technology, Inffeldgasse 16b/2, A-8010 Graz,
e-mail: wotawa@ist.tugraz.at

Ignasi Rodriguez-Roda and Joaquim Comas
Laboratory of Environmental and Chemical Engineering University of Girona, E-17071 Girona,
Catalonia (Spain) e-mail: {ignasi.rodriguezroda, joaquim.comas}@udg.edu

AIAI-2009 Workshops Proceedings [270]



models used are different from the models used in physics or chemistry. Hence, it
is necessary to rewrite the model in order to fit the purpose. On the other hand there
is the advantage that decisions can be easily obtained from the models and thus
explaining the reasons behind a decision is easy.

In order to make modeling straightforward without loosing the capabilities of
providing a decision and the reasons behind in an easy way, model-based reasoning
has been developed. In model-based reasoning a model is directly used to provide
solutions for a problem like diagnosis. The model itself should be as close as pos-
sible to the original model. Model-based reasoning has been successfully applied to
diagnosis [17]. There are applications also in the environmental domain. See for ex-
ample the work by Struss and colleagues [12, 13, 18, 14]. All described applications
are based on consistency-based diagnosis where models of the correct behavior have
to be available. However, there is another methodology for model-based reasoning
which relies on abductive reasoning. In abductive reasoning models of the faulty
behavior have to be formalized in order to get an explanation for a given problem.
In the environmental domain the faulty behavior is usually known as well as their
consequences. Hence, abductive reasoning seems to provide a good foundation for
environmental decision support systems.

In this paper, we discuss the problems behind decision trees and other similar
methods used for modeling in detail by means of using a knowledge-based model
to detect the risk of microbiology-related solids separation problems, which is one
of the main critical perturbation in the biological treatment of wastewater. After-
wards we introduce abductive reasoning and present an algorithm that allows for
computing minimal explanations. Finally, we give a brief presentation of our imple-
mentation and a conclusion.

2 Problem description

In this section we discuss modeling using decision trees in detail. We use Comas et
al. [2] decision tree model that is used to predict the risk of bulking, foaming, and
rising sludge, microbiology-related operational problems when simulating biologi-
cal wastewater treatment. Beside the decision trees for the different types of risks the
authors give a verbal explanation and tables where the involved parameters and their
corresponding risks are related to each other. In order to be more comprehensive we
focus on only one simplified phenomenon, i.e., the risk of foaming. According to
Comas et al. [2] the risk of foaming is influenced by the food-to-microorganism ra-
tio (F/M_fed), the sludge residence time (SRT), the dissolved oxygen concentration
(DO), and the ratio between readily biodegradable substrate concentration (S;) and
the slowly biodegradable substrate concentration (X;). The verbally given explana-
tions relate these parameters to the growth of certain microorganism, i.e., Nocar-
dioforms and Microthrix parvecilla, which cause two different types of foaming.
The given explanation is modeled using decision trees. Figure 1 depicts the given
decision tree. Moreover, the authors also specify the behavior by means of a table.
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Low or
significant
oscillations
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Risk of FOAMING due to Risk of FOAMING due to high readily
low F/M ratio biodegradable organic matter fraction

Fig. 1 Decision tree for evaluating the risk of foaming taken from [2]

In the given table each entry specifies a qualitative value for the risk of foam-
ing given a qualitative value for a parameter. In order to be self contained the table
representing the knowledge stored in the left decision tree of Figure 1 is given in
Table 1 ignoring the DO parameter. Beside the fact that the DO parameter is not
represented it is interesting to note that the authors use a qualitative representation
for the parameters and the risk assessment. To obtain a qualitative representation of
a parameter value requires an additional step. In the case of Comas et al. [2] a fuzzi-
fication step is used. After obtaining a qualitative value for the risk defuzzification
can be used to finally receive a quantitative risk value.

Table 1 Table representing the knowledge behind foaming due to low F/M

F/M _fed
SRT Low Normal High Very High
Very Low ||Low Low Low Low
Low Low Low Low Low
Normal Moderate Low Low Low
High High Moderate Low Low
Very High||High Moderate Low Low

Given the table and the decision trees it becomes obvious that the original de-
cision tree does not represent the cases where the risk assessment is at the level
moderate or low. Moreover, the decision trees from Figure 1 should be put together
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in order to represent the whole knowledge at once. Both of these weaknesses of the
original decision tree model from [2] can be easily incorporated in a decision tree
by introducing new leaf nodes for the different sort of risk assessments and new
connections. However, there are other issues which hardly can be tackled in such a
simple way.

Consider the SRT values given in Table 1. If SRT is known to be low the foaming
risk is low and there is no need to know any value for F/M anymore. Hence, the size
of the decision tree, which corresponds to the number of decisions, depends on the
ordering of the decision. Algorithms for decision tree induction take care of the size
of the decision tree by selecting the optimal ordering of decisions to be taken. But
even in the case of optimal orderings a decision tree requires to answer decisions
that need not to be answered always. Hence, decision trees cannot adapt to certain
situations. We term this problem as poor flexibility problem.

Another drawback of decision trees is that the absence of knowledge cannot be
handled appropriately. In particular it is hardly possible to conclude any default
knowledge. For example, it might be useful to assume that there is a low risk of
foaming in case we have no knowledge at all. Such reasoning can only be repre-
sented if adding a new decision asking whether there is knowledge available or not.
However, in this case the knowledge that no knowledge is there is now explicit
available, which is not the same in default reasoning where something can be con-
clude unless it contradicts given knowledge. Therefore, decision trees lack handling
default reasoning in case of unavailable knowledge.

Since decision trees are constructed in a way that supports a certain task, they
usually do not represent the whole knowledge available. For example, in the waste
water treatment plant domain there is knowledge regarding the growth of certain
microorganisms as function of parameters. In the decision tree this knowledge is
not represented. Instead only decisions regarding parameter values are represented.
Decision trees represent a sequence of questions to be answered by the user in order
to distinguish final conclusions. Hence, it is not necessary to represent all cause-
effect relationships, which do not support this task. The fact that decision trees are
not complete representations of models for a domain is a problem for extracting
knowledge to be generally used.

Because of the mentioned problem of decision trees, i.e. the:

the poor flexibility,
the absence of default reasoning capabilities, and
the incompleteness

they are usually hard to maintain. In many cases small changes of the underlying
theory causes huge changes of the decision tree. This might not be a problem in
cases where either the domain knowledge is small or not very much elaborated, or
where the decision tree is automatically extracted from a set of data. In the latter
case the decision trees help to extract useful information regarding relationships of
certain parameters.

Modeling in the domain of natural sciences is a difficult and time consuming
task. In many cases especially when explanations are important the models repre-
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sent cause-effects relationships because effects can be explained in terms of their
causes. In most cases decision trees do not capture cause-effect relationships. In-
stead decisions are based on effects whereas the leaf nodes represent the causes.
Hence, reasoning is applied from effects to causes and not vice versa. Note that in
our example application, i.e., the risk assessment, someone can argue that the deci-
sion trees indeed represent the reasoning from causes to effects although, the used
causes are not necessarily the root causes from which all explanations start. A more
typical example of the successful use of decision trees for modeling is discussed in
[1] where cause-effect reasoning is not handled correctly.

Given the fact that decision trees are very successfully used in practice a question
arises. Is cause-effect modeling essential in practice? No, this is not the case, and
even from a more philosophical perspective, causality is not the only way of express-
ing explanations in science (see for example [15]). However, as already mentioned
causality-based models are usually available when it comes to explanations. Hence,
when using a modeling paradigm like decision trees, which is not able to represent
causality in all cases, we have to convert the cause-effect models into models allow-
ing for reasoning from effects to causes. This conversion is a tedious task because
it requires the elimination of multiple explanations. We always are able to eliminate
multiple explanations. For this purpose distinguishing observations, i.e., decisions,
have to be introduced. In summary, we can say that it is not inevitable for success-
ful practical use to represent cause-effect reasoning in the model but this requires
additional effort in order to eliminate ambiguities in explanation.

In the next section, we discuss an alternative reasoning schema, i.e., abductive
reasoning, which allows using models representing cause-effect relationship directly
and thus avoiding the mentioned problems.

3 Abductive reasoning

Given the problems regarding modeling using decision trees or rule-based systems,
which we discussed in the previous section, we now focus on a different modeling
paradigm. In abductive reasoning the causes are inferred from a logical model rep-
resenting cause-effect relationships. Therefore, the logical model is most closely to
models available. Note that for example in medicine the available model describe
causes, i.e., diseases, and their effects, i.e. symptoms but the medical doctors have
to conclude the disease from the available symptoms. Hence, medical doctors al-
ways use abductive diagnosis. The formalization of this process including therapy
is discussed in [11]. Wotawa [19] describes the application of abductive reasoning
in the environmental domain and focuses on effects. In particular [19] introduces an
algorithm for computing the next optimal observation necessary to reduce possible
explanations. The underlying ideas came from work on consistency-based diagno-
sis, i.e., [17, 8, 9]. The difference between consistency-based diagnosis and abduc-
tive diagnosis is that the former uses the correct behavior only whereas the latter has
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knowledge regarding the behavior in case of faults. Console et al. [4, 3] formally
prove the relationship between abductive and consistency-based diagnosis.

In this section, we focus on the implementation of abductive reasoning. The idea
is to rely on well-known algorithms. In particular we show how assumption-based
truth maintenance systems [5, 6] can be used for computing abductive explanations
for given effects. Before introducing the algorithm we briefly give the basic defini-
tions. For a more detailed explanation we refer the interested reader to [19]. We start
with the definition of knowledge base.

Definition 1 (Knowledge base (KB)). A knowledge base (KB) is a tuple (A, Hyp,Th)
where A denotes the set of propositional variables, Hyp C A the set of hypothesis,
and T'h the set of horn clause sentences over A.

In the definition of KB hypotheses corresponds directly to causes such that for
every cause there is a propositional variable that allows to hypothesis about the
truth value of the cause. Hence, we use the terms hypotheses and causes in an inter-
changeable way. Having knowledge about a system and some observations we are
interested in finding explanations. This leads naturally to the definition of abduction.

Definition 2 (PHCAP). Given a knowledge base (A,Hyp,Th) and a set of obser-
vations Obs C A then the tuple (A, Hyp, Th,Obs) forms a propositional horn clause
abduction problem (PHCAP).

Given a PHCAP we are interested in a solution. Hence, similarly to [11] we
define solutions as follows:

Definition 3 (Diagnosis; Solution of a PHCAP). Given a PHCAP (A,Hyp, Th, Obs).
Aset A C Hyp is asolution if and only if AUTh = Obs and AUTh = L. A solution
A is parsimonious or minimal if and only if no set A’ C A is a solution.

In this definition diagnoses need not to be minimal or parsimonious. In most
practical cases only minimal diagnoses or minimal explanations for given effects are
of interest. Hence, from here on we assume that all diagnoses are minimal diagnoses
if not specified explicitly.

Example 1. We use the rightmost decision tree from Figure 1 and model the knowl-
edge represented there as KB. We use fm_fed, srt, do to represent the involved
variables. foaming_risk is used to represent risk of foaming. The values of the
variables are given in parantheses. The horn clauses for representing the knowledge
can be formulated as follows:

fm_fed(low) A srt(high) — foaming.risk (high)

fm_fed(low) A srt(very-high) A do(low) — foaming.risk (high)

This model is not complete because there are currently no hypothesis specified,
which are of interest to explain a certain observation. In this example we are in-
terested in explaining the assessment of risk. Hence, we introduce the hypotheses
FM_fed_L, SRT_H, SRT_VH, DO_L that represents certain values of the involved
variables. Extending the KB with information regarding hypothesis requires to add
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the following rules:

FM_fed.L — fm_fed (low)

SRT_-H — srt (high)

SRT_.VH — srt (very-high)

DO.L — do (low)

Moreover, from Table 1 we might conclude that a SRT value that is low or very
low always leads to a low risk. This holds also for F/M_fed in case of being high
or very high. Such knowledge can also be introduced in a similar way: FM_fed H —
fm_fed (high)

FM_fed.VH — fm_fed (very-high)

SRT.LL — srt (low)

SRT_VL — srt (very_-low)

fm_fed (high) — foaming.-risk (low)

fm_fed(very-high) — foaming._risk (low)

srt (low) — foaming._risk (low)

srt (very_-low) — foaming.risk (low)

What is missing to complete the KB is information regarding inconsistencies.
Obviously it can never be the case that a variable has different values assigned
at the same time. Hence, we introduce rules like foaming_risk (high) A
foaming.risk (low) — 1 to KB where | represents the contradiction, i.e.,
an always wrong proposition.

(From the KB we can abductively conclude the following explanations, i.e., di-
agnoses, from the observation foaming_risk (high): { FM_fed.H, SRT.H },
{ FM_fed_H, SRT_VH, DO_L }. Both diagnoses are parsimonious. { FM_fed_H,
SRT_H, DO_L } is also an explanation but not minimal. { FM_fed_H, SRT_H, SRT_L
} is not a diagnosis because it leads to an inconsistency.

Abductive reasoning, i.e., providing a parsimonious explanations for observa-
tions given a KB, can be implemented by checking all subsets of the hypotheses
whether they allow inferring the observations in a consistent way. This unfortunately
is not effective in practice. Another way is to rely on available systems and algorithm
for reasoning based on explanations. Assumption-based truth maintenance systems
(ATMS) [5, 6] can be used for this purpose. An algorithm implementing the ATMS
has been provided by de Kleer [7]. Many improvements for computing solutions
based on ATMS has been suggested including [10]. An ATMS also works on KB
defined in this paper when using the word assumptions instead of hypothesis. The
ATMS works on a graph representation of KB. Assumptions, propositions, and the
contradiction are represented as nodes. The contradiction is named NoGood in terms
of the AMTS. The rules are represented as set of connections between nodes. Ev-
ery node in an ATMS has a label. The label comprises all sets of assumptions from
which the corresponding proposition can be derived.

Example 2. The hypothesis FM_fed_H is represented by a node. The label of this
node is a set comprising the hypothesis because this node is only true if the hy-
pothesis, i.e., the assumption, is assumed to be true. The label of the proposi-
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tion fm_fed (high) comprises the set FM_fed_H because of rule FM_fed H —
fm_fed (high).

The task of the ATMS is to ensure consistency. This is done by changing the
label of nodes. Each node has a label, i.e., a set of sets of assumptions from which
the node can be inferred and from which the contradicting node cannot be inferred.
The latter requirement causes an ATMS algorithm to remove elements from the
label that also lead to the NoGood. Hence, an abductive explanation for a single
proposition is an element of the label of the corresponding node. Because of the
ATMS these elements provide a consistent explanation and fulfill the definition of
abductive diagnosis. The only thing that remains now is the extension to the case
where we have a set of observations to be explained. This extension can be easily
done by adding a rule where the left side is the conjunction of all observations and
the right side is a new proposition explanation not used in the KB. Hence, the
label of explanat ion provides all abductive diagnoses for the given PHCAP. The
following algorithm for computing all parsimonious abductive explanations relies
on this generalization.

Algorithm abductiveExplanations
Input: APHCAP (A,Hyp,Th,Obs)
Output: All minimal diagnoses

1. Store Th in an ATMS

2. Add the rule A,cpps0 — explain to the ATMS where explain is not an
element of A.

3. Return the label of explain as result.

4 Implementation

We have implemented an abductive reasoning system based on an ATMS using the
programming language Java. Figure 2 depicts the main window of our implementa-
tion where the user can edit, save, or load a KB. Instead of A, —, and 1 acomma’,
’->’, and ’false’ are used. To distinguish hypothesis from ordinary propositions the
former start with a capitalized character. Moreover, every rule has to be ended with
a period ’.’. The KB given in Figure 2 is the one discussed in Example 1. Figure
3 shows the window where the results are presented to the user. The label of the
NoGood as well as the label of the node foaming_risk (high) are given. For
the latter we obtain the result also given in Example 1. The labels of the other nodes
can be obtained by expanding the nodes.

Beside the given small abductive theory we tested out implementation on other
KBs having from 10 to about 50 rules and from about 4 to 12 hypotheses. For all
examples, the running time was less than 10 ms on a standard notebook. Because
of the fact that the computational complexity of the underlying problem is expo-
nential, we do not expect to be able to handle larger systems comprising hundreds
of hypotheses. However, in the environmental domain the number of hypotheses
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fm_fed(ow), srt(high) -> foaming_risk(high).
fm_fed(ow), srt(very_high), do(low) -> foaming_risk(high).

foaming_risk(low), foaming_risk(high) -> false.

Messages

Fig. 3 The GUI providing the obtained

Fig. 2 The main GUI of our implementation
results

is expected not to be too high. It is worth noting that the current implementation
does neither use the most well elaborated ATMS algorithm nor is itself optimized.
Hence, for the desired domain and given today’s computational power, the proposed
methodology seems to be appropriated.

5 Conclusion

The purpose of this paper is twofold. First, it discusses problems related to currently
used techniques for environmental decision support systems, which often rely on de-
cision trees, rule-bases, or fuzzy logic. Problems are the missing flexibility, failing
to model default reasoning, and incompleteness. These problems may not impact
a certain application. However, they prevent the models to be adapted and used in
other applications. Moreover, in most cases creating and maintaining such models
is not as easy than expected. Second, the paper provides a solution to the men-
tioned problem. In particular we propose the use of abductive reasoning as basis for
environmental decision support systems. In abductive reasoning models based on
cause-effect relationships can be directly used. Moreover, default reasoning is also
possible.

(From a practical view the use of abductive reasoning for applications has been
limited because of the unavailability of tools that can be used by people who are not
expert in logical-based modeling. Currently, there is an implementation available
but the development of models might still not be that easy. In the future we want
to focus on usability regarding modeling. Moreover, the whole process of decision
making has to be captured by an implementation. Hence, getting more information
in a smart way has to be ensured. Again we leave this topic for future research.
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