
Quality Classifiers for Open Source Software
Repositories

George Tsatsaronis, Maria Halkidi, and Emmanouel A. Giakoumakis

Abstract Open Source Software (OSS) often relies on large repositories, like
SourceForge, for initial incubation. The OSS repositories offer a large variety of
meta-data providing interesting information about projects and their success. In this
paper we propose a data mining approach for training classifiers on the OSS meta-
data provided by such data repositories. The classifiers learn to predict the success-
ful continuation of an OSS project. The ‘successfulness’ of projects is defined in
terms of the classifier confidence with which it predicts that they could be ported in
popular OSS projects (such as FreeBSD, Gentoo Portage).

1 Introduction

Initial open source software (OSS) projects rely on large repositories for hosting and
distribution until they become independent. A huge amount of project meta-data is
collected and maintained in such software repositories providing useful information
about projects and their success. In this paper we propose a data mining approach
that processes the meta-data contained in such OSS repositories. The proposed ap-
proach aims at the construction of a classifier that is trained on the meta-data of
existing projects and predicts the successful continuation of any given OSS. The
successfulness of a project is defined with regard to the confidence level of the clas-
sifier which predicts that this project will be ported in widely used OSS projects (e.g.
FreeBSD). We argue that the classifier decision, along with its confidence level, can
be incorporated into known models of software success, like the model of DeLone

George Tsatsaronis
Department of Informatics, Athens University of Economics and Business, 76, Patission Str.,
Athens, e-mail: gbt@aueb.gr

Maria Halkidi
Department of Technology Education and Digital Systems, University of Piraeus, e-mail: mhalk@
unipi.gr

Emmanouel A. Giakoumakis
Department of Informatics, Athens University of Economics and Business, 76, Patission Str.,
Athens, e-mail: mgia@aueb.gr

AIAI-2009 Workshops Proceedings [179]

and McLean [4], or its reexamination and expansion for OSS software, by Crow-
ston et al. [3]. We have experimentally evaluated the proposed mining approach in
the SourceForge and the FreshMeat OSS project meta-data released from the Floss
project. We also evaluated the importance of the underlying features using Informa-
tion Gain and Chi-Square. The results of this study report high F-Measures for the
classifiers based on the most important FLOSS features.

The proposed approach consists of two main steps: a) data collection and pre-
processing, b) training classifiers. The meta-data in OSS repositories are usually
provided in formats that are not suitable for mining. Thus, one of the most impor-
tant elements in the proposed approach is the pre-processing procedure. Techniques
such as parsing, crawling and feature selection are used to collect data from the
FLOSS project, which contains crawled projects from important OSS repositories,
like SourceForge and FreshMeat. We also discuss methods that can be used to train
classifiers on the stored project data.

The rest of the paper is organized as follows. Section 2 discusses related work in
mining OSS projects and related models for measuring information systems’ suc-
cess. Section 3 presents the data mining approach for extracting knowledge from
OSS repositories. Section 4 provides experimental results and analysis. Section 5
concludes and gives further insight to possible future work.

2 Related Work

Data Mining in Software Engineering. Data mining is widely used for supporting
industrial scale software maintenance, debugging and testing. An approach that ex-
ploits classification methods to analyze logical bugs is proposed in [7]. This work
treats program executions as software behavior graphs and develops a method to
integrate closed graph mining and SVM classification in order to isolate suspicious
regions of non-crashing bugs. A semi-automated strategy for classifying software
failures is presented in [9]. This approach is based on the idea that if m failures
are observed over some period during which the software is executed, it is likely
that these failures are due to a substantially smaller number of distinct defects. A
predictive model for software maintenance using data and text mining techniques is
proposed in [10]. To construct the model, they use data collected from more than
100.000 open source software projects lying in the SourceForge portal. Using SAS
Enterprise Miner and SAS Text Miner, they focused on collecting values for vari-
ables concerning maintenance costs and effort from OSS projects, like Mean Time
to Recover (MTTR) an error. They clustered the remaining projects based on their
descriptions, in order to discover the most important categories of OSS projects ly-
ing in the SourceForge database. Finally, they used the SAS Enterprise Miner to
train classifiers on the MTTR class variable. The reported results highlight inter-
esting correlations between the class variable and the number of downloads, the
use of mail messages and the project age. There is also a number of other works
[12, 1, 5, 9, 7] that use classification methods in software engineering, assisting

AIAI-2009 Workshops Proceedings [180]

with its main tasks (development, debugging, maintenance, testing).

Models of OSS Success. The most popular model for measuring information sys-
tems’ (IS) success is the one proposed by DeLone and McLean [4]. They actually
introduce six interrelated factors of success: 1) system quality, 2) information qual-
ity, 3) use, 4) user satisfaction, 5) individual impact, and 6) organizational impact.
Based on this approach, Seddon [11] reexamined the factors that can measure suc-
cess and concluded that the related factors are system quality, information quality,
perceived usefulness, user satisfaction and IS use. Based on those approaches, a
number of measures that can be used to assess the success in FLOSS is presented
by Crowston et al. in [3]. These measures are defined based on the results of a
statistical analysis applied to a subject of project data in FLOSS. Specifically the
empirical study was based on a subset of SourceForge projects. In this paper we
propose another such measure, that can be added to the use and the user satisfaction
factors of the proposed models of success.

3 Software Success Classification Approach

We introduce a classification approach that adopts data mining techniques in order
to extract useful information from OSS repositories and further analyze it to predict
softwares’ successful continuation. Based on that, our approach aims at construct-
ing a metric that assesses software success and which can be considered as an im-
plementation of the factors use and user satisfaction to the model of DeLone and
McLean [4] for measuring IS success. An expansion of this model has been pro-
posed by Crowston et al. [3] for OSS software, according to which the data lying
in FLOSS from SourceFourge are mapped to potential measures of OSS success.
The following metric can be incorporated to the System use process phase, as this
is described in [3]. We have developed the proposed metric taking into account the
FLOSS data for both SourceForge and FreshMeat repositories.

3.1 OSS Porting Classification Metric

Without loss of generality we consider that OSS software ported to widely used
open source operating systems is widely accepted as useful and significant by the
majority of users. Then we claim that a project is considered to be successful, from
the point of view of popularity and user satisfaction, if it is selected to be ported
in two of the most popular open source operating systems, namely FreeBSD and
Gentoo. Based on this, we construct classifiers, and we use the confidence of their
classification output as a metric of OSS successfulness. The main modules of our
approach can be summarized as follows: (a) Data collection and pre-processing.
The OSS repositories maintain huge amount of OSS meta-data that provide useful
information about the hosted projects. This module refers to methods used to col-
lect data from OSS repositories and properly pre-process them for data mining.(b)
Software classification. This module provides the methods to train classifiers for

AIAI-2009 Workshops Proceedings [181]

predicting projects’ course over time, trained on the collected OSS meta-data. The
classifiers are built to predict the successful continuation of an OSS based on a spe-
cific set of project features. Based on the trained classifiers, new project releases (or
unclassified projects) can be classified with regard to their successfulness (as this
has been defined above).

Data Collection and Preprocessing Techniques
A large amount of data are collected and maintained in OSS repositories. These
data contain useful information about projects that we aim to analyze so as to extract
interesting knowledge and make inferences about future course of projects. However
the data are provided in various formats that in most of the cases are not suitable
for data mining. Thus, a pre-processing procedure is needed before data mining is
applied to the available data. Specifically, techniques such as crawling and feature
selection are used to collect project data from various OSS portals and select those
that contain interesting information for further analysis. Crawling usually refers to
the process of browsing the World Wide Web in a methodological and automated
manner. An extensive analysis of a crawling mechanism is provided by Chakrabarti
in Chapter 2 of [2]. We used a smaller crawling mechanism to browse the Web
pages of the two open source operating systems (FreeBSD, Gentoo) and collect
further information about the projects existing in SourceForge and FreshMeat for
later processing. Many of the programming techniques used are described in [8]. For
the processing of the SourceForge and the FreshMeat data, we used the FLOSS data
and index. Feature selection is the technique of selecting a subset of relevant features
for creating robust learning models. In our approach, feature selection techniques
assist in a two-fold manner. Firstly, they assist the mining procedure with further
analyzing the project data crawled. Thus, they provide an image of all the features
being used. Secondly they assist in selecting the features that are more useful with
regards to the final classification, which in our case is to predict whether an OSS
software is successful enough to be ported in FreeBSD and Gentoo Portage. As
feature selection criteria, we have adopted Information Gain (IG) and Chi-Squared
(x2).

According to the IG criterion, the expected reduction of uncertainty in guessing
the class variable, once the feature value is known, needs to be measured. This is
expressed through measuring the expected reduction in entropy, once the feature
value is known, given by equation 3. While for the case of discrete value features
equations 1-2 apply, in the case of the continuous value features, the domain of
each feature variable X is divided into many subintervals of a given equal length
and each Xi is true iff X belongs to the corresponding interval. Let S be the set of s
data objects. Considering a set of m classes Ci, the expected information needed to
classify a given object is defined as follows:

I(s1, . . . ,sm) =−
m

∑
i=1

pilog2(pi) (1)

where si is the number of data objects in S labeled ci and pi is the probability
that an object belongs to class ci, pi = si/s. Let attribute A have v distinct values
{α1,α2, . . . ,αv}. The attribute A can be used to partition S in v subsets {Si}v

i=1,

AIAI-2009 Workshops Proceedings [182]

where Si contains those objects in S that have value αi for A. The entropy or expected
information based on the partitioning of S into subsets by A is given by:

E(A) =
v

∑
j=1

s1 j + . . .+ sm j

s
−

m

∑
i=1

pi jlog2(pi j), . . . ,sm j) (2)

where si j is the number of data objects of class Ci in a subset S j, and pi j = si j

|S j| is
the probability that an object in S j belongs to class Ci. The encoding information
that would be gained by branching on A is:

Gain(A) = I(s1 j, . . . ,sm j)−E(A) (3)

Chi-squared (x2) is often used to measure the association between two features
in a contingency table. In the case of a binary classification problem it can be used
to measure the association between an input feature and the class variable, as shown
in the following equation:

x2 =
r

∑
i=1

(
(niP−µiP)2

µiP
+

(niN −µiN)2

µiN
) (4)

where r are all the possible values of the examined feature, N and P are the two
classes (Negative and Positive respectively), niP and niN are the number of instances
belonging to class P or N respectively and have the value i of the examined feature,
and µi j = n∗ jni∗

n with n being the number of instances, i = 1, . . . ,r and j = P,N. In
this work we use both IG and chi-square to measure the significance of the stored
features contained in the OSS projects’ meta-data, as crawled by the FLOSS project.

Software Classification
In order to train classifiers that can predict the degree of successfulness of an OSS ly-
ing in FreshMeat or SourceForge, the most important factor is to define the projects
that belong to the classes of successful and unsuccessful projects. This can be the
training set of projects that can be used for training the classifiers. The approach
we adopt is to define as successful the OSS projects that have been ported in both
FreeBSD and Gentoo Portage. This heuristic criterion satisfies part of the System
use process phase of the model of successfulness defined in [3], namely Interest,
Number of Users and User Satisfaction. We concluded to that criterion after having
crawled the FreeBSD, Gentoo Portage and the Debian Popularity Contest, aiming
to find their common set of projects with the considered FLOSS projects. FreeBSD
Ports1 is a package management system for the FreeBSD operating system and it
contains all projects that are ported to FreeBSD. Portage2 is also a package man-
agement system but it contains projects ported to Gentoo Linux. Furthermore, De-
bian Popularity Contest3 is a project which attempts to map the usage of Debian
packages. For the Gentoo Portage, we have used the latest snapshot4 in order to
determine the projects that are ported into it. From the Debian Popularity Contest
we have collected for each package of Debian the number of users who installed

1 http://www.freebsd.org/
2 http://www.gentoo.org/
3 http://popcon.debian.org/
4 http://gd.tuwien.ac.at/opsys/linux/gentoo/snapshots/

AIAI-2009 Workshops Proceedings [183]

it, the number of users who use it frequently, the number of users who do not use
it frequently, the number of users who upgraded to the latest version of the soft-
ware and the number of users that did not publish enough information. After having
carefully analyzed all these data and examined several criteria that can be used as
determining successful and unsuccessful projects, we concluded that the aforemen-
tioned criterion (porting of an OSS project in both FreeBSD and Gentoo Portage)
expressed better the System Use as discussed earlier, and also provided better exper-
imental results that other criteria examined.

Having determined the successfulness criterion, it is straightforward to construct
classifiers taking into account the features offered by SourceForge and FreshMeat
(an analysis of the features follows in the next section). Classification is a two step
process:

1. Training step. A classification model is built describing a predefined set of classes
(i.e Successful, UnSuccessful). The model is trained by analyzing a set of data
whose classification (class labels) is known (training data set).

2. Classification step. First the predictive accuracy of the trained model (classifier)
is estimated. If it is acceptable the classifier is used to classify project instances
for which the class label is unknown.

Since each repository (FreshMeat, SourceForge) maintains different attributes
for the hosted projects, a classifier per repository must be developed. Based on our
approach any of the widely used classification algorithms can be used to analyze
the training set of projects and construct the software classification model. In our
current work, we have adopted Naive Bayesian, Decision trees and Support Vec-
tor Machines classification methods to train three different classifiers based on the
available set of project data. For each of these classifiers, the successfulness metric
is their confidence level of the classified instance. For the SVM, it is the distance of
the considered project feature vector, from the hyperplane separating negative from
positive instances. For the NB (Naive Bayesian) classifier, it is the probability that
the considered project feature vector belongs to the successful class. Finally, for the
decision trees (i.e. the C4.5 classifier) it is the frequency of occurrence of the train-
ing examples that are in the successful class, following the branch of the tree with
attribute values of the examined instance. The experimental study in section 4 shows
the performance of all three used classifiers for both FreshMeat and SourceForge.

3.2 Features Description

In this work we have used project data that have been collected and are available
from the FLOSSMole project 5. Specifically we work with the releases of Source-
Forge and FreshMeat project data indexed by the FLOSS repository. Below we
present the main attributes (features) of the project data in the FLOSS repository
that are used for the classification process. Also we indicate which portal (Fresh-
Meat - FM or SourceForge - SF) maintains each attribute for the projects it hosts.

5 http://flossmole.sourceforge.net/

AIAI-2009 Workshops Proceedings [184]

1. Project License (FM and SF): Project’s license type (such as GPL, LGP, BSD
License, Freeware, Shareware etc)

2. Vitality Score (FM) which is defined as VitalityScore = V∗T0
Tn

where V is the number of the project’s versions, T0 is the time elapsed since first
project upload (usually counted in days), and Tn is the time elapsed since latest
version upload.

3. Popularity Score (FM): Represents project’s popularity based on:

• Users’ visits in project’s URL, i.e. URL hits(further referred to as a). They
refer to the visits in project’s original web site, and not at FreshMeat’s site for
the project.

• Users’ visits in FreshMeat’s project site (b).
• Users’ subscriptions (c).

Then, the popularity score is measured as: PopularityScore =
√

(a+b) · (c+1)
4. Rating (FM): Any subscribed user can rate a project. Given 20 or more user

ratings, the project engages a ratings based ranking. Rating is measured as a
means of a weighted ranking (WR), which is computed as follows:

WR = (v(v+m))R+(m(v+m)) ·C (5)

where: R = average (mean) rating for the project from users = (Rating)
v = number of votes for the project = (votes)
m = minimum votes required (currently 20)
C = the mean vote across the whole report

5. Subscriptions (FM): Number of subscribed users in a project.
6. Developers (FM and SF): Number of developers per project and other informa-

tion about them.
7. Target audience / End Users (SF): The target group of the resulting software.
8. Executing operating system (SF): The operating system in which the resulting

project software can execute.
9. DBMS Environment/Technology (SF): For the projects using a DBMS, this is the

used DBMS environment, or technology in general.
10. Programming Language (SF): The programming language in which the project

software is written.
11. Number of downloads (SF).
12. Interface (SF): The interface of the project (Library, Command Line, Web, GUI

etc).
13. Natural language (SF): The natural language of the project (English, France,

etc).
14. Topic (SF): The topic of the project (Databases, Network Administration).
15. Registration Date (FM and SF): The date that the project was inserted into the

portal.
16. Days since Registration Date (FM and SF): Days elapsed since the registration

date.

AIAI-2009 Workshops Proceedings [185]

17. Project status (SF): The status of the project (such as Beta, Planning, Produc-
tion/Stable, Alpha, Pre-Alpha etc)

18. Number of project donators (SF).
19. Rank (SF): A ranking of the projects produced by SourceForge, considering

downloads and days since registration date.

4 Experimental Evaluation

Experimental Setup. The projects that we considered for our experiments num-
bered 112915 for SourceForge and 41908 for FreshMeat. For both portals, we found
the projects which are available from FreeBSD Ports and Gentoo Portage in order
to label them as successful. For our experiments, we used 10-fold cross validation
on three classifiers (decision trees, Naive Bayes, and SVM). For learning decision
trees, we used the J48 algorithm that is WEKA’s [13] implementation of the C4.5
(an extension of the basic ID3 algorithm) decision tree learner. We also used WEKA
for the Naive Bayesian classifier. For support vector machines (SVMs) we used
Joachim’s SV Mlight[6]. For each of the two data sets (FreshMeat and SourceForge),
we trained all three classifiers on all of the features described. For the features evalu-
ation IG and chi-square was used. For the evaluation of the classifiers, we measured
precision, recall and F-Measure. The goal of this experiment is to prove the value
of the OSS portals’ meta-data, and consequently the value of the proposed success
metric that is based on training classifiers, as an additional factor of OSS success.

Features Analysis. Feature selection requires analysis of all considered features.
We have computed IG and chi-square values of all features using 10-fold cross vali-
dation, based on the used criterion. The measurements for the IG and the chi-square
criteria are shown in Table 1 for the FreshMeat and the SourceForge repositories.
The results are shown in decreasing order of importance based on the IG measure.
From the results obtained we note primarily that the produced feature rankings based

FreshMeat
Information Gain Chi-Square

Popularity 0.324 1793.254
Subscriptions 0.319 1756.487

Vitality 0.238 1781.661
#Rating 0.219 1253.699
Rating 0.189 111.144
Days 0.107 620.316

Developers 0.05 269.701
License 0.033 187.66

SourceForge
Information Gain Chi-Square

Downloads 0.199 759.95
Rank 0.153 595.337
OS 0.145 558.826

Language 0.138 533.17
Days 0.119 469.172
Status 0.095 381.716

Interface 0.078 317.054
Developers 0.075 298.099

Users 0.072 276.279
License 0.03 112.715
DBMS 0.01 5.548
Donors 0 0

Table 1 Information Gain and Chi-Square for the FreshMeat and SourceForge Features.

AIAI-2009 Workshops Proceedings [186]

on the two measures (IG and chi-square) are exactly the same in the case of Source-
Forge, while in the case of FreshMeat the only discrepancy is that the third fea-
ture according to IG is ranked second according to chi-square. This shows that the
selected criterion of successfulness (porting of an OSS to FreeBSD and Portage)
produces a stable ranking of features for both IG and chi-square. Regarding the fea-
tures’ importance, in the case of the FreshMeat data, the top 5 features proved to
be popularity, subscriptions, vitality, number of ratings and ratings, while in the
case of the SourceForge data, these are downloads, rank, OS, language and days.
The IG drops dramatically for the rest features. At this point we must note that the
top ranked features according to both measures include the features we were ex-
pecting to rank high, based on previously proposed models [3]. The feature ranking
can be used to decrease the classifiers’ model size. In the next section we show that
the learned models can be reduced to only considering the top 5 features for each
repository, without important decrease in performance.
Classifiers Evaluation. In order to measure the classifier’s performance without

introducing subset selection or feature selection bias, we have used 10-fold cross
validation. The results from the 10 folds are averaged to produce a single estimation.
We use F-measure to estimate the quality of each classifier. F-measure is defined as
the harmonic mean between a classifier’s precision and recall. All three measures
were computed as follows:

Recall =
TruePos

TruePos+FalseN
,Precision =

TruePos
TruePos+FalsePos

(6)

F−measure =
2 · precision · recall
precision+ recall

(7)

where TruePos is the number of the actual successful projects classified as success-
ful, FalseN is the number of the actual successful projects classified as unsuccessful
and FalsePos is the number of the actual unsuccessful projects classified as suc-
cessful. Table 2 shows Precision, Recall and F-Measure values for the 10-fold cross
validation execution of the J.48, Naive Bayes and SVM classifiers in the Fresh-
Meat and the SourceForge data sets respectively. SVMs managed overall the top
F-Measure compared to J.48 and the NB classifiers. For the FreshMeat data set, the
classifiers reached an F-Measure of around 75%, with a precision reaching 88% for
the SVMs. For the SourceForge data set, the classifiers reached an F-Measure of
the same level with an overall smaller precision from the FreshMeat data set. In
general, the classifiers performance for the SourceForge data set is smaller than in

FreshMeat SourceForge
Precision Recall F-Measure Precision Recall F-Measure

SVM All Features 0.88 0.57 0.69 0.67 0.75 0.7
SVM Top-5 Features 0.62 0.96 0.75 0.66 0.73 0.69

C4.5 All Features 0.79 0.81 0.79 0.77 0.71 0.73
C4.5 Top-5 Features 0.77 0.78 0.77 0.75 0.7 0.72

NB All Features 0.76 0.83 0.79 0.81 0.78 0.79
NB Top-5 Features 0.74 0.84 0.78 0.79 0.76 0.77

Table 2 Precision (P), Recall (R) and FMeasure (F1) for SVM, C4.5 and NB in the FreshMeat and
SourceForge data sets.

AIAI-2009 Workshops Proceedings [187]

FreshMeat, depicting that FreshMeat’s features are more descriptive for the used
criterion of porting. This is also verified from the IG and chi-square feature values
in Table 1. Overall, the proposed metric can predict whether a project will be ported
into FreeBSD and Gentoo Portage, with high F-Measure.

5 Conclusions and Future Work

In this paper we propose a new Open Source Software (OSS) successfulness met-
ric, that is based on the development of classifiers which predict the porting of an
OSS into the FreeBSD and Gentoo Portage open source operating systems. We have
evaluated the proposed metric by measuring the performance of Support Vector Ma-
chines (SVM), Decision Trees (C4.5) and Naive Bayes classifiers constructed on
the features contained for all projects in FreshMeat and SourceForge. We also con-
ducted an analysis of the features’ importance and we experimentally show that the
classifiers obtain similar performance if the top-5 features are kept, instead of all,
which also include the most important features according to previous related work.
As a future work we aim at combining heuristic criteria and/or manually annotated
projects to enrich the training procedure with instances of better quality. We also
aim at stacking classifiers for the purpose of boosting the classifier’s performance.

Acknowledgments. We wish to thank D. Drosos for his assistance with the experimental study.
This work was supported by EU Commision, FP6, contract No IST-5-033331 (SQO-OSS).

References

1. Bowring, J., Rehg, J., M.J., H.: Acive learning for automatic classification of software behav-
ior. ISSTA (2004)

2. Chakrabarti, S.: Mining the Web. Morgan Kaufmann (2003)
3. Crowston, W., Hoison, J., Annabi, H.: Information systems success in free and open source

software development: Theory and measures. Software Process Improvement and Practice,
Vol. 11, pp. 123–148 (2006)

4. DeLone, W., McLean, E.: Information systems success: The quest for the dependent variable.
Information Systems Research, Vol. 3(1), pp. 60–95 (2006)

5. Francis, P., Leon, D., Minch, M., Podguraki, A.: Tree-based method for classifying software
failures. In: International Symposium on Software Reliability Engineering (2004)

6. Joachims, T.: Making large-scale SVM learning practical. Advances in Kernel methods - sup-
port vector learning. B. Scholkopf, C. Burges and A. Smola (ed.), MIT-Press. (1999)

7. Liu, C., Yan, X., Yu, H., Han, J., Yu, P.: Identifying reasons for software changes using historic
databases. In: SDM (2006)

8. Loton, T.: Web Content Mining with Java. Wiley (2002)
9. Podgurski, A., Masri, W., McCleese, Y., Minch, M., Sun, J., Wang, B., Masri, W.: Automated

support for classifying software failure reports. In: ICSE (2003)
10. Raza, U., Tretter, M.J.: Predicting software outcomes using data mining and text mining. In:

SAS Global Forum (2007)
11. Seddon, P.: A respecification and extension of the delone and mclean model of is success.

Information Systems Research, Vol. 8(3), pp. 240–253 (1997)
12. Williams, C., Hollingsworth, J.: Automating mining of source code repositories to improve

bug finding techniques. IEEE Transactions on Software Engineering 31(6):466–480. (2005)
13. Witten, I., Frank, E.: Data Mining: Practical machine learning tools and techniques. Morgan

Kaufmann (2005)

AIAI-2009 Workshops Proceedings [188]

