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Abstract Recently, search based techniques have received great attention as a means of au-
tomating the test data generation activity. On the contrary, more traditional methods that 
automate the test data generation usually employ symbolic execution by incorporating a 
path generation phase and constraint solvers to produce the sought test data. In this paper, 
the benefits of both schools of thought are bridged in an attempt to investigate whether a 
mixed strategy approach could be employed when evaluating a coverage criterion. To this 
effect, a strategy that uses symbolic execution and dynamic domain reduction in order to 
enhance the initial population and approximately prune the search space considered by evo-
lutionary based methods is proposed. This suggestion is also put under a number of tests 
which clearly show a dramatic improvement of its effectiveness. This suggests that the 
combination of evolutionary based and symbolic execution approaches can be beneficial 
toward, automating the generation of test data. 

1. Introduction 

It is a well known fact that the cost of software testing can reach 50% or even 
60% of the total software development cost. In order to reduce the cost overhead, 
a lot of effort has been put by the software engineering community, in an attempt 
to automate the testing activity and thus reduce the overall software development 
cost. The usual way to evaluate the test thoroughness of a piece of software is to 
establish a collection of testing requirements that must be fulfilled when the soft-
ware is executed against test cases, through a number of test coverage criteria that 
guide and evaluate the effectiveness of the test data generated. 

Test data generation techniques based on Genetic Algorithms (GAs) have been 
adopted in the literature [7, 16] and a number of researchers have proposed vari-
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ous algorithms based on both local [2, 16] and global searches [7, 8, 16] with an 
appropriate adaptation of their fitness function according to the coverage criterion 
considered. Evolutionary Algorithms (EA) for test data generation approaches 
have been widely studied in the literature [2, 7, 8, 13, 16] although a number of 
unresolved research issues still remain [7, 13], mainly on the efficiency and effec-
tiveness of these approaches.  

A hybrid approach to test data generation that integrates GAs and symbolic ex-
ecution in a complementary way is proposed. Existing attempts [18, 19] use struc-
tural methods and EAs in an effort to facilitate the testing exercise. The purpose of 
this study is to guide the input domain selection in such a way so as to improve 
and make more efficient the EA. Symbolic execution is used not as a complimen-
tary tool but as a yardstick, towards this purpose. It is used to guide the test data 
selection rather than evaluating a suggested path. In this respect, the proposed me-
thod have no common philosophy with the refs above [13, 18, 19]. Our goal is to 
demonstrate that information from path testing and symbolic execution can be 
used effectively in a combined way, in order to improve the efficiency and effec-
tiveness of the EA. The proposed work stems from suggestions in the literature 
about the reduction of the search space [9, 12] and the observation that candidate 
solutions near the target ones can be efficiently refined through local search algo-
rithms. We argue that the fulfillment of these two directions can be achieved 
through path testing in a systematic and automated way, relying on the ESPM me-
thod (hereafter called “Y&M”) suggested by Yates and Malevris [4]. Through this 
approach a set of linearly independent candidate paths is produced, while all can-
didate paths have a high probability of being feasible. Here, these two attributes of 
the Y&M method are exploited in order to refine the initial population set of the 
EA. In order to reduce the search space when targeting to a particular branch [4], 
the assumption of the Y&M method is utilized which suggests that a feasible path 
has higher probability to be contained in a set of the first k-shortest paths. Based 
on this assumption, which was substantiated in [4], some irrelevant variables are 
pruned away and domain reduction is performed by using the DDR procedure 
proposed in [5], over the common constraints that constitute a subset of the con-
straints derived from the selected path set. The reduced domain space then forms 
the search space of the EA.  

Our approach has been empirically investigated with reference: a) the impact of 
the initial population enhancement; b) the impact of the input domain reduction 
procedure; and c) the overall improvement of the proposed approach, clearly 
showing a dramatic improvement of the evolutionary approaches when guided by 
path testing. 

2 Incorporated methods  

Symbolic Execution: The symbolic evaluation process [1] of a program con-
sists of assigning symbolic values to variables in order to deduce an abstract alge-
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 Input: Program P, Target Coverage, Time_Limit 
 Output: A set of test Inputs 
 Graph ← GenerateGraph(P); 
 Tests ← RandomInputs(); 
 K = 1; 
 repeat 
1     Paths ← GenerateY&M_Paths(Graph, k); 
2     Tests ← Symbolic Execution ( Paths ); 
3     Targs ← GenTargets(Graph, Tests, Targs); 
4     Tests ← EvolutionaryTesting(Targs); 
5     for all ( Targs not covered ) 
           DomainReduction (Targs); 
     K =  K + 1; 
until (Coverage==Target OR Time<Time_Limit) 
return;.  

Fig. 1. Proposed Algorithm 

 

braic representation of the program’s computations and representation. This tech-
nique is based on the selection of paths from its control flow graph and the com-
putation of symbolic states. The symbolic state of a path forms a mapping from 
input variables to symbolic values and a set of constraints called path conditions 
over those symbolic values. Path conditions represent a set of constraints called 
symbolic expressions that form the computations performed over the selected path. 
Solving the path conditions results in test data which if input to the selected path, 
this will be executed. If the path condition has no solution the path is infeasible. 

In this paper, the Y&M method [4] was chosen because of its flexibility and its 
ability to generate likely to be feasible paths. The method can be detailed as: 
Step1: Generate a set of program paths, whose constituent paths each involve a 
minimum number of predicates, and cover the target elements of code unit under 
test. Step2: Symbolically execute the current path set and determine the achieved 
coverage. Step3: Select uncovered elements and generate alternative path sets giv-
ing priority to those containing a lower number of predicates. Steps 3 and 2 are re-
peated k times or until the target coverage is achieved. 

Evolutionary Algorithms: A GA test data generator employs a genetic algo-
rithm as its primary search engine in seeking suitable test data according to a tar-
get test adequacy criterion. The basic steps of a GA are the following [7, 13]: 
Step1. Create an initial population of candidate solutions. Step2. Compute the fit-
ness values of each of these candidates. Step3. Select all the candidates that have 
the fitness values on or above a threshold. Step4. Perturbate each of these selected 
candidates using genetic operators. 

These steps, except the initializa-
tion step, are repeated until the cover-
age goal is met or until the time limit 
has been reached. Before the use of a 
GA we need to define the following: 
Some domain-dependent attributes, a 
representation of the problem solution 
in terms of genetic inputs (chromo-
somes), the fitness function, the can-
didate selection methods (chromo-
somes reproduction) and the genetic 
operators. 

3 Approach Description 

The motivation behind our work is the combination of static and dynamic ap-
proaches namely symbolic execution and evolutionary testing, in order to improve 
their performance. Our framework tries to guide the search along two directions. 
First by enhancing the initial population with results from established testing tech-
niques such as [4] and second, by using the same method to dynamically and ap-
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proximately reduce the input search space. Our approach uses k paths from the 
path set of the Y&M method [4] in order to prune away all the irrelevant input va-
riables and uses the common parts of those paths to define a common set of con-
straints. The algorithm in Figure 1 outlines the proposed test data generation 
scheme. Given a program P, the algorithm iteratively computes sets of inputs 
based on both symbolic execution and evolutionary testing in order to achieve the 
targeting coverage. The algorithm loop as in figure 1 contains three basic steps 
(lines 1-5 of fig. 1). (a) Starts by generating and executing symbolically the cur-
rent set of paths according to the Y&M method. The resulting test data enhance 
the randomly generated initial population of the evolutionary algorithm. (b) The 
test generation process continues with the evolutionary algorithm phase, where 
newly test inputs are constructed. (c) The final step of the loop is the domain re-
duction process according to uncovered branches. The algorithm terminates when 
the time limit is exceeded or the coverage goal is met. 

Symbolic execution: The Symbolic execution process phase is carried out 
based on the Y&M method for a given parameter value k see [4] for details. Here 
we use some approximations in order to overcome, abstract away, unhandled ex-
pressions and generate test data. Note that solutions will be refined from the evo-
lutionary algorithm so we only need to generate solutions close to the target ones. 
Unhandled expressions such as non linear constraints are ignored or replaced with 
new symbolic values. Constructs such as pointer values will be approximated 
through simple expressions containing only (in)equality constraints. The resulting 
path conditions are then passed to the constraint solver for feasibility check. If the 
considered path condition is found infeasible, the path is marked as infeasible. 
Otherwise, test data will be produced which enhance the current population of the 
evolutionary algorithms.  

Evolutionary testing: The evolutionary algorithm phase takes the instru-
mented version of the program under test, the program’s CFG and evolutionary 
parameters, and produces tests according to the evolutionary method used. In the 
present study we use the SGA&D2

Standard GA (approach 1) setup: Representation: A chromosome as a bit 
string representing test cases. Evaluation function: Each chromosome is eva-
luated simply by using the program’s CFG and accounting the number of deci-
sions covered. Selection: A new population is formed by selecting the best chro-
mosomes in terms of coverage and Recombination: Performing mutation and 
crossover operations. 

 as used in [7, 16]. In our study we evaluate, 
based on symbolic execution, the improvement made over these two algorithms by 
considering two approaches (approach 1, 2) and a third which combines previous 
two (approach 3). 

Differential GA (approach 2) setup: Representation: A chromosome as a bit 
string representing test cases. Evaluation function: Each chromosome is eva-
luated according to its percentage coverage contribution. Selection: New popula-
tion is formed by selecting the best chromosomes in terms of coverage and Re-

2 Standard Genetic Algorithm and Differential 
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combination: For each test case A={a1, a2, … an} the algorithm selects randomly 
two different mates B={b1, b2, … bn} and C={c1, c2, … cn} from the population. 
Then according to probability (Change Factor) it selects input values (ai) for alte-
ration. For all selected values (ai) the algorithm calculates new ones based on the 
formula: ai΄=ai + α (bi-ci) according to α (Factor). If the resulting A΄={ a1΄, a2΄, … 
an΄} solution performs better based on the objective function, the solution A is re-
placed by A΄.  

Hybrid approach of Standard and Differential GA (approach 3) setup: 
This algorithm forms the combination of the two preceding ones by applying the 
standard one first and then the differential one by using the final population of the 
standard algorithm as the initial population to the differential one.  

Domain reduction

Our approach reduces the search space using binary search on input domain 
space based on the concerned constraints. For each constraint in the set, the algo-
rithm reduces appropriately the domain space based on the variables, their com-
parison use in the constraint set and their assigned domain space. The domains of 
input variables are split in half (binary search) based on the constraint compari-
son.  

: The goal of the proposed approach is to guide the search 
by reducing the search space and thus improve its application as stated in [9]. The 
main idea behind the reduction algorithm is to use the set of paths of Y&M me-
thod in order to dynamically define a domain approximation of the targeting 
branch. Through our research in path testing we have observed that many paths 
that covering particular branch share many parts. This observation helps as to re-
duce the search space by using domain reduction approaches as in [5] only for the 
common parts of the Y&M path set. We are interested about the common parts of 
the paths and so we eliminate all non common conditions. Additionally we detect 
irrelevant variables as those not used in any path condition of our set. The com-
mon set of constraints forms the targeting reduced domain approximated by using 
a similar to the Dynamic Domain Reduction method [5], alternative to the con-
straint propagation as used in [14]. The main assumption behind the approach is 
the same with the Y&M method: at least one feasible path is contained in a set of 
selected k-shortest paths and so reducing the search space based on them directs 
the search to the contained feasible paths.  

4 Empirical Setup and Results 

In order to evaluate the proposed approach we have implemented a semi auto-
mated prototype tool. Our tool consists of the symbolic execution module, the do-
main reduction module and the evolutionary testing module.  

Test Subjects. We used a set of thirteen java and C programs for our experi-
ment. This set of test objectives contains some common programs used in test data 
generation studies [5, 7, 16] such as the Triangle classification, the Quadratic for-
mula, the Euclidian algorithm, Binary Search, Bubble sort and the Calendar. The  
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other programs were taken from study [10].  Table 1 shows details of the pro 
grams.  

Evaluation Procedure. The 
equipment and standards used in our 
experiments include: 

1. Adopt the GA parameters for: 
Approach 1: (Standard GA) infi-
nite MaxGens, MaxTime 30 Sec 
and MaxPopulation  = 1000. Ap-
proach 2: (Differential GA) Infi-
nite MaxGens, MaxTime 30 Sec 
and MaxPopulation  = 1000, fac-
tor="0.5" changefactor="0.5". 
Approach 3: (Both Standard and 
Differential GA) same setting 
with MaxTime 20 Sec for each of 
the two approaches. 

2. Run the prototype tool on a Core 
2 Duo 1.66GHz with 2 GB Ram 
computer running the Windows 
Vista operating system.   

 

3. For every approach and in order to avoid any form of bias from random effects 
we introduced 3 experimental cases under which we ran every experiment 10 
times and compared their average values. For case 1: First run the EA in isola-
tion and then the algorithm for parameter k = 1 (i.e. include steps 1, 2, 3, 4 of 
the proposed algorithm, fig. 1).For case 2: First run the EA in isolation and 
then the domain reduction procedure followed by the evolutionary algorithm 
(i.e. include steps 4, 5 of the proposed algorithm fig. 1). For case 3: Run the 
proposed algorithm for k = 60 and for MaxTime = 30s. (i.e. include all algo-
rithm steps from 1-5, fig. 1) 

Case 1

Table 2 records the average coverage achieved within the same time limit for 
both the original evolutionary algorithm (Before) and the proposed approach (Af-
ter) which uses randomly generated initial population (Before) and the proposed 
approach which enhance the initial population (After). The results of this experi-
ment show that, for the programs used, the initial population enhancement im-
proved the evolutionary algorithm effectiveness by on average 9.82% for Standard 
GA, 8.49% for Differential and 7.83% for their combination. 

. In the current case we tried to examine the impact of population initia-
lization through path testing on evolutionary based test data generation. In order to 
simulate and observe the behavior of GAs through the guidance from the symbolic 
execution process we initialized the population using random testing and symbolic 
execution based only on the basic path set produced from the use of the Y&M me-
thod (parameter value k=1).  

Table 1. Subject programs 

Test Object Lines of Code 
No. of 

Branches 

Triangle 40 46 

Quadratic 12 6 

Triangle2 38 35 

Euclidian 9 10 

Binary search 20 17 

Bubble sort 14 11 

Calendar 22 12 

Insert 26 20 

Dbll 86 78 

C prog One 45 23 

C prog Two 32 17 

C prog Three 64 31 

C prog Four 28 30 
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Table 2: Branch Coverage achievement before and after initial population enhancement. 

Test 

Object 

Cov. Before/After 

(Approach1) 

Cov. Before/After 

(Approach2) 

Cov. Before/After 

(Approach3) 

Triangle 61.06% / 82.33% 57.87% / 86.59% 62.55%/ 87.74% 

Quadratic 100% /100% 100% /100% 100% /100% 

Triangle2 63.06%  / 97.22% 60.83% / 98.89% 65.56 / 97.78% 

Euclidian 100% /100% 100% /100% 100% /100% 

Binary search 71.655% /100% 98.647%/100% 98.647%/100% 

Bubble sort 100% /100% 100% /100% 100% /100% 

Calendar 100% /100% 100% /100% 100% /100% 

Insert 100% /100% 100% /100% 100% /100% 

Dbll 79.23% / 81.54% 84.74 % / 88.52% 88.52% / 96% 

C prog One 72.17% / 73.91% 70.87% / 73.91% 73.91%/ 73.91% 

C prog Two 52.94% / 88.24% 52.94% / 86.47% 52.94%/ 85.29% 

C prog Three 84.52% / 89.03% 90.32% / 92.26% 89.03%/ 92.26% 

C prog Four 76.67% / 76.67% 76.67% / 76.67% 76.67%/ 76.67% 

Average 
81.64%/91.46% 

(+9.82%) 

84.07%/92.56% 

(+8.49%) 

85.22%/93.05% 

(+7.83%) 

 
 
Case 2. 

Table 3: Branch Coverage improvement achieved through domain reduction. 

In the current case we tried to examine the impact of domain reduction 
on the performance of GA by considering the domain reduction process described 
in section 3. We used k-value: 60 (number of selected paths). In order to simulate 
and observe the behavior of GAs through the guidance of the reduced domain we 
concentrated only on those branches that were left uncovered from the evolutio-
nary algorithm on the initial search space. Table 3 records the average coverage 
improvement in the same time limit over the initial approach. 

Test Object Cov. Improvement (Ap-
proach1) 

Cov. Improvement 

(Approach2) 

Cov. Improvement 

(Approach3) 

Triangle 4.3% 11.2% 12.1% 

Triangle2 1.2% 5.2% 5.6% 

Binary search 0% 0% 0% 

Dbll 0% 0% 0% 

C prog One 1.8% 2.9% 0% 

C prog Two 1.4% 2.3% 2.3% 

C prog Three 3.2% -1.2% 1.7% 

C prog Four 5.2% 6.8% 5.8% 

Average 1.55% 2.47% 2.50% 
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The results of this experiment show that, the domain reduction procedure im-
proves the evolutionary algorithm effectiveness by on average 1.55% for Standard 
GA, 2.47% for Differential and 2.50% for their combination. 

Case 3

Table 4: Branch Coverage achievement within the same time limit. 

. In the current case we tried to examine the overall improvement in 
terms of coverage of the proposed approach (proposed algorithm figure 1) over the 
evolutionary testing. The experiments where conducted within the same time limit 
(30s) for all approaches. Table 4 records the average coverage achieved in the 
same time limit for the evolutionary methods (Approaches 1, 2 and 3). Based on 
the positive findings of cases 1 and 2, case 3 incorporates these results as they are 
reflected by the algorithm in Figure 1.  

Test Object 
Cov. GA/proposed 

(Approach1) 

Cov. GA/ proposed 

(Approach2) 
Cov. GA/ proposed 

(Approach3) 

Triangle 61.06% / 100% 57.87% / 100% 62.55% / 100% 

Quadratic 100% /100% 100% /100% 100% /100% 

Triangle2 63.06%  / 100% 60.83% / 100% 65.56 / 100% 

Euclidian 100% /100% 100% /100% 100% /100% 

Binary search 71.655% /100% 98.647%/100% 98.647%/100% 

Bubble sort 100% /100% 100% /100% 100% /100% 

Calendar 100% /100% 100% /100% 100% /100% 

Insert 100% /100% 100% /100% 100% /100% 

Dbll 79.23% / 100% 84.74 % / 100% 88.52% / 100% 

C prog One 72.17%/76.27% 70.87%/76.27% 73.91%/76.27% 

C prog Two 52.94% / 100% 52.94% / 100% 52.94% / 100% 

C prog Three 84.52% / 100% 90.32% / 100% 89.03% / 100% 

C prog Four 76.67% / 97% 76.67% / 97% 76.67% / 97% 

Average 
81.64%/98%  

(+16.36%) 

84.07%/98%  

(+13.93%) 

85.22%/98% 

(+12.78%) 

 
The results of this experiment show that, for the test programs considered, the 

proposed algorithm in figure 1 outperforms the EA by on average 16.36% for 
Standard GA, 13.93% for Differential and 12.78% for their combination. 

5 Related Work 

Generally there has been a considerable amount of work in the area of automat-
ic test generation based on both symbolic execution [1, 3, 5] and evolutionary 
techniques [2, 7, 8, 11, 13, 15, 16, 17]. Closest to our research is the work by Xie 
[6] where two automated tools, one for evolutionary testing and one for symbolic 
execution have been integrated in order to improve the structural testing of object-
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oriented programs. They propose a framework that attempts to improve the cover-
age by targeting to sequences of method calls through evolutionary testing and to 
their coverage improvement by symbolic execution. The integration is based only 
on static input initialization from one tool to the other and not by simultaneously 
and dynamically completing one another as in our approach. In [12], another simi-
lar to [6] approach that combines static analysis and search based methods is pro-
posed. The main objective of this work is a theoretical and empirical evaluation of 
the effects of domain reduction through irrelevant variable removal. In their em-
pirical study the authors used static analysis based on program slicing in order to 
identify and discard the irrelevant variables. In [2] a search reduction was made 
considering the path coverage criterion. Each input variable was ranked according 
to influence graph constructed using dynamic data flow information. The variable 
value would remain unchanged if it was likely to impact segments that were cur-
rently being traversed correctly or if it did not affect the path. In [16], a framework 
that utilizes two optimization algorithms, the Batch-Optimistic and the Close-Up 
is proposed. This approach uses a domain control mechanism witch starts with 
small domain spaces and modifies its boundaries to larger ones at subsequent 
phases. Nevertheless, they did not guide the domain reduction through symbolic 
execution. In [11] Andreou et al, propose a specially designed genetic algorithm 
for data flow criteria which relies on the data flow graph. 

6 Conclusions and Future work  

This paper presented a test data generation technique that integrates symbolic 
execution and GAs in an effective and complementary way. The motivation be-
hind our proposal is to combine both static and dynamic analysis techniques in or-
der to complement each other and result in an improved generation process. This 
technique tries to guide the search of EA through symbolic execution and domain 
reduction, via two main directions. First by using symbolic execution on a limited 
set of paths and second by identifying common constraints that form a reduced 
domain. We also described the results obtained for evaluating the effectiveness of 
our approach, by using both guidance directions in isolation and in combination.  

Here, the attempt has been to investigate whether symbolic evaluation can as-
sist an existing genetic algorithmic approach rather than to be compared against it. 
Under such circumstances the feeling of the authors is that the amelioration in the 
results presented here will hold with different GAs. The choice of the most effec-
tive genetic algorithm to be used as a basis in the enhancement process, is howev-
er a matter of future research.  

In all three experiments with a set of programs, three different GAs were used 
(basically two as the third is a combination of the other two). In all experiments, 
the support offered by symbolic execution via path generation, improved the cov-
erage ability on two counts. First by increasing the achieved coverage by 8.7% on 
average as in case 1, while for cases 2 and 3 the improvement was on average 
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again 2.17 and 14.4%  respectively and second by improving on the run time as it 
provided a reduction in the domain from which sample values ought to be gener-
ated. These two activities do highlight the strength of the proposed method i.e. of 
combining symbolic execution with the employment of a search based technique 
in an attempt to evaluate a coverage criterion when structurally testing a piece of 
software. Future work is directed towards conducting more experiments in order 
to statistically validate the claims of the present findings. Series of experiments 
are also planned to determine the optimal use of symbolic execution and the do-
main reduction process.  

References 

1. King, J. C. (1976). Symbolic execution and program testing. Commun ACM 19(7), 385-394. 
2. Korel, B. (1990). Automated Software Test Data Generation. IEEE Trans. Softw. Eng. 16(8), 

870-879. 
3.  Koutsikas, C., Malevris, N. (2001). A Unified Symbolic Execution System. AICCSA 466-469. 
4. Yates, D. F., Malevris, N. (1989). Reducing the Effects of Infeasible Paths in Branch Testing, 

in proc of Symposium on Testing, Analysis, and Verification, 48-54. 
5. Offutt, A. J., Jin, Z., Pan, J. (1999). The Dynamic Domain Reduction Procedure for Test Data 

Generation. Softw., Pract. Exper. 29(2), 167-193. 
6. Inkumsah, K., Xie, T. (2008). Improving structural testing of object-oriented programs via in-

tegrating evolutionary testing and symbolic execution. In Proc. ASE, 297–306. 
7. McGraw, G., Michael, C., Schatz, M. (2001). Generating software test data by evolution. 

IEEE Trans. Softw. Eng, 27(12), 1085-1110. 
8. Pargas R., Harrold M., Peck R. (1999). Test-data generation using genetic algorithms. Soft-

ware Testing, Verification and Reliability, 9(4), 263-282. 
9. Chen, S., Smith, S. (1999). Improving genetic algorithms by search space reductions. GECCO, 

135-140. 
10. Malevris, N., Yates, D. F. (2006). The collateral coverage of data flow criteria when branch 

testing. Information & Software Technology 48(8),  676-686.  
11. Andreou, A. S., Economides, K. A., Sofokleous, A. A. (2007). An Automatic Software Test-

Data Generation Scheme Based on Data Flow Criteria and Genetic Algorithms. CIT 867-872 
12. Harman, M., Hassoun, Y., Lakhotia, K., McMinn, P., Wegener, J. (2007). The impact of in-

put domain reduction on searchbased test data generation. ACM FSE, 155-164. 
13. McMinn, P. (2004). Search-based software test data generation: A survey. Software Testing, 

Verification and Reliability, 14(2), 105-156. 
14. Hentenryck, P., Saraswat, V., Deville, Y., (1998). Design, implementation and evaluation of 

the constraint language cc(fd) . Journal of Logic Programming, 37, 139-164. 
15. Xanthakis, S., Ellis, C., Skourlas, C., Gall, A. L., Katsikas, S., Karapoulios, K. (1992). Ap-

plication of genetic algorithms to software testing ICSEA, 625-636. 
16. Sofokleous, A. A., Andreou, A. S., (2008). Automatic, evolutionary test data generation for 

dynamic software testing. Journal of Systems and Software 81(11), 1883-1898. 
17. Ferguson, R., Korel, B. (1996). The chaining approach for software test data generation. 

IEEE Trans. Softw. Eng, 5(1), 63-86. 
18. Girgis, M. R., (2005). Automatic Test Data Generation for Data Flow Testing Using a Ge-

netic Algorithm, Jucs, 11(6), 898-915. 
19. Ahmed, M. A., Hermadi, I. (2008). GA-based multiple paths test data generator, Computers  

and Operations Research 35(10), 3107-3124. 

AIAI-2009 Workshops Proceedings [210]




