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Abstract. The heterogeneity and scale of the data generated by high throughput 
genotyping association studies calls for seamless access to respective distributed 
data sources. Toward this end the utilization of state of the art data resource man-
agement and integration methodologies such as Grid and Web Services is of pa-
ramount importance for the realization of efficient and secure knowledge discov-
ery scenarios. In this paper we present a Grid-enabled Genotype to Phenotype 
scenario (GG2P) realized by a respective scientific workflow. GG2P supports 
seamless integration of clinico-genetic heterogeneous data sources, and the dis-
covery of indicative and predictive clinico-genetic models. GG2P integrates dis-
tributed (publicly available) genotyping databases (ArrayExpress) and utilizes 
specific data-mining techniques for feature selection – all wrapped around custom-
made Web Services. GG2P was applied on a whole-genome SNP-genotyping ex-
periment (breast cancer vs. normal/control phenotypes). A set of about 100 dis-
criminant SNPs were induced, and classification performance was very high. The 
biological relevance of the findings is strongly supported by the relevant literature. 

1 Introduction 

Scientific community experiences an increasing need for efficient data manage-
ment and analysis tools and there is an unprecedented demand for extraction and 
processing of knowledge. This is more than evident in the domain of bioinformat-
ics since the beginning of the “genomic revolution”. After the completion of the 
Human Genome Project and the emergence of high throughput technologies 
(DNA microarrays, high-density SNP genotyping, mass spectrometry etc) a vast 
amount of biological data are being produced on a daily basis. This has raised the 
expectation of extracting valuable knowledge for post-genomic personalized dis-
ease treatment. Therefore new challenges for the data analysis and knowledge dis-
covery processes are introduced. 
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Knowledge Discovery and Data Mining are the most prominent methods and 
tools for the state of the art scientific discovery. Requirements for biological data 
management are very demanding due to size and complexity, quality properties 
(missing values or noisy data are frequent), and inherent domain heterogeneity. 
These new requirements have given rise to modern software engineering metho-
dologies and tools, such as Grid (Foster 2003) and Web Services (Curbera et al 
2002). These new technologies aim to provide the means for building sound data 
integration, management and processing frameworks. 

This paper presents an integrated scenario to support seamless access and anal-
ysis of Single Nucleotide Polymorphisms (SNP) genotype data, as produced by 
relative SNP genotyping platforms. Effort is cast toward the discovery of reliable 
and predictive multi-SNP profiles being able to distinguish between different phe-
notypes. The employed data-mining technique is founded on a novel feature selec-
tion algorithm. The whole approach is realized in a Grid-enabled scientific 
(BPEL-compliant – BPEL stands for Business Process Execution Language) 
workflow editor and enactment environment, and presents an integrated scenario 
aiming to support Grid-enabled Genotype-to-Phenotype (GG2P) association stu-
dies. In particular, GG2P seamlessly accesses and gets phenotypic and genotypic 
SNP data; analyzes them; and presents results (e.g, the most discriminant and de-
scriptive SNPs) in an appropriately devised html file with links to the Ensembl 
genome browser. 

2 Enabling Technology 

With the completion of the human genome and the entrance into the post-genomic 
era the large amount of data produced makes difficult to extract and evaluate the 
hidden information without the aid of advanced data analysis techniques. Data 
mining has successfully provided solutions for finding information from data in 
many fields including bioinformatics. Many problems in science and industry 
have been addressed by data mining methods and algorithms such as clustering, 
classification, association rules and feature selection. In particular, feature selec-
tion is a common technique for gene/SNP feature reduction and selection in bioin-
formatics. It is based on data mining technique for selecting a subset of relevant 
features and building robust predictive models. The main idea is to choose a sub-
set of input features by eliminating those that exhibit limited predictive perfor-
mance. Feature selection can significantly improve the comprehensibility of the 
resulted classifier models and support the development of models that generalizes 
better to unseen cases. 

The heterogeneity and scale of clinico-genetic data raises the demand for: (a) 
seamless access and integration of relevant information and data sources, and (b) 
availability of powerful and reliable data analysis operations, tools and services. 
The challenge calls for the utilization and appropriate customization of high per-
forming Grid-enabled infrastructures and Web technology - as presented by Web 
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Services, and Scientific Workflows environments. Smooth harmonization of these 
technologies and flexible orchestration of services present a promising approach 
for the support of integrated genotype-to-phenotype association studies. 

Grid technology. Grid computing (Foster 2003) is a general term used to de-
scribe both hardware and software infrastructure that provides dependable, consis-
tent, pervasive, and inexpensive access to high-end computational capabilities. 
Grid has emerged as the response to the need for coordinated resource sharing and 
problem solving in dynamic, multi-institutional virtual organizations. Sharing of 
computers, software, data, and other resources is the primary concern of Grid ar-
chitectures. In a modern service oriented architecture the Grid defines the general 
security framework (e.g. the authentication of the users and services), the virtual 
organization abstraction, the user management mechanisms, authorization defini-
tion and enforcement, etc. It provides both the computational and the data storage 
infrastructure, which is required for the seamless management and processing of 
large data sets. 

Semantic and Knowledge Grids. Semantic Grid presents a Grid computing ap-
proach in which information, resources and data processing services are employed 
with the use of semantics and respective data models. It facilitates the discovery, 
automated linkage and smooth harmonization of services. In a Semantic Web 
analogy, Semantic Grids can be defined as “extensions of current Grids in which 
information and services are given well-defined meaning, better enabling comput-
ers and people to work in cooperation” (De Route et al 2005). Encapsulation of 
Web Science and knowledge-oriented technologies in Grid-enabled infrastructures 
represents a flexible knowledge-driven environment referred as the Knowledge 
Grid (Zhuge 2004). In their layered architecture organization, Knowledge Grids 
define and form an additional layer, which supports implementation of higher lev-
el and distributed knowledge discovery services on a virtual interconnected envi-
ronment of shared computational and data analysis resources. This setting permits 
and enables: automated discovery of resources; representation, creation and man-
agement of statistical and data mining processes; and composition of existing data 
and processing resources in ‘compound services packages’ (Cannataro and Talia 
2003). 

Web services. The Web Services suite of standards presents the most popular 
and successful integration methodology approach. Based on Web Services stan-
dards the machine-machine communication is performed via XML programmatic 
interfaces over web transport protocols (e.g., SOAP), which are specified using 
the Web Service Definition Language (WSDL) (Curbera et al 2002). These com-
mon data representation and service specification formats, when properly dep-
loyed, enable the integration of heterogeneous and geographically disparate soft-
ware systems. Web Services enhance and support the development of distributed, 
multi-participant, and interoperable systems that can be utilized in the combina-
tion of services and their reuse as processing steps into more complex high level 
scenarios, commonly referred as workflows. 
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Scientific workflows. The Workflow Management Coalition (WFMC, 
www.wfmc.org) defines a workflow as “the automation of a business process, in 
whole or part, during which documents, information or tasks are passed from one 
participant to another for action, according to a set of procedural rules”. A 
workflow consists of all the steps and the orchestration of a set of activities that 
should be executed in order to deliver an output or achieve a larger and sophisti-
cated goal. In essence a workflow can be abstracted as a composite service, e.g. a 
service that is composed by other services that are orchestrated in order to perform 
some higher level functionality. The (potentially parallel) steps (tasks) that a 
workflow follows may exhibit different degrees of complexity, and are usually 
connected in a non-linear way, formulating a directed acyclic graph (DAG). A 
Workflow Management System defines, manages and executes workflows 
through the execution of software that is driven by a computer representation of 
the workflow logic (Deelman et al 2006, Fox and Gannon 2006).  

In addition to the business oriented use cases, workflows have a lot of potential 
in scientific areas as well. In a lot of scientific sectors, the demand is put not only 
on the computational power but on the complex structure of the inter-dependable 
tasks to be performed. Sophisticated problem-solving engages a variety of inter-
depended data analysis tasks and analytical tools, e.g., pre-processing and re-
formatting of heterogeneous datasets into formats suitable as input to other analyt-
ic process. Moreover, large-scale scientific computations involve much of inter-
vention, as in the case of the interpretation of intermediate results by domain ex-
perts. But, at some stage of the process just normal personnel could be engaged. 
So, the rights and roles of involved persons should be explicitly defined. In addi-
tion, the computational environment itself is heterogeneous, ranging from super-
computers to clusters of personal computers. So, there is a need to model and ex-
plicitly define the engaged computational nodes and networks. Scientific 
workflows are introduced as an amalgamation of scientific problem-solving and 
traditional workflow techniques. They have been proposed as a mechanism for 
coordinating processes, tools, and people for scientific problem solving purposes 
and aim to support “coarse-granularity, long-lived, complex, heterogeneous, scien-
tific computations” (Singh and Vouk 1997). 

To assist the bioinformatics community in building complex scientific 
workflows, and in the context of the EU FP6 integrated project (www.eu-
acgt.org), the ACGT Workflow Editor and Enactment Environment (WEEE) have 
been designed and developed (Sfakianakis et al 2009). WEEE is a Web-based 
graphical tool that allows users to combine different Web Services into complex 
workflows, and it is accessible through the ACGT Portal. It supports searching 
and browsing of a Web Services repository and of respective data sources, as well 
as their orchestration and composition through an intuitive and user friendly 
graphical interface. Created workflows can be stored in user spaces and can be lat-
er retrieved and edited. So, new versions of them can be easily produced. De-
signed workflows can be executed in a remote machine or even in a cluster of ma-
chines in the Grid. In this way there is no burden imposed on the user’s local 
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machine since the majority of computation and data transfer of the intermediate 
results are take place in the Grid where the services are executed. Publication and 
sharing of the workflows are also supported so that the user community can ex-
change information and users benefit from each other’s research. WEEE is based 
on the BPEL (Arkin et al 2005) workflow standard and supports the BPEL repre-
sentation of complex bioinformatics workflows. 

The ACGT Grid environment is supported by the Gridge toolkit (www.gridge. 
org/) – an open source software platform, compatible with the Globus toolkit 
(www.globus.org) aimed to help users to deploy ready-to-use grid middleware 
services and create productive Grid infrastructures. All Gridge Toolkit software 
components have been integrated together and form a consistent distributed sys-
tem following the same interface specification rules, license, and quality assurance 
and testing (Pukacki et al 2006). 

The GG2P scenario presented in this paper is enabled by the smooth integration 
of components from the aforementioned technologies. GG2P aims to seamlessly 
integrate and mine distributed and heterogeneous clinical and genotype data 
sources using: (i) existing public-domain and custom-made Web Services for ac-
cessing remote and distributed genotype and phenotype data sources, and for 
downloading the targeted experiments and the respective data annotation (XML) 
files; (ii) specially devised Web Services to extract relevant information and raw 
data, including appropriate data pre-processing and re-formatting operations; and 
(iii) specially suited for G2P association studies data mining processes wrapped as 
Web Services. In addition, the results (profiles of specific SNPs) are automatically 
linked with state-of-the-art genome browsers (e.g., Ensembl), and are appropriate-
ly visualized. 

3 The GG2P scenario 

An SNP is a single base substitution of one nucleotide with another. With high-
throughput SNP genotyping platforms massive genotyping data may be produced 
for individual samples (i.e., diseased, treated or, control). It is known that a cate-
gory of diseases are associated to a single SNP or gene (also known as monogenic 
diseases). In general, a single SNP or gene is not informative because a disease 
may be caused by completely different modifications of alternative pathways in 
which each SNP makes only a small contribution. Most of the complex diseases, 
including cancer, are characterized by groups of genes with a number of suscepti-
ble genes interacting with each other. It’s important to search for multiple SNP 
profiles - among a huge number of them, that not only associate with a disease but 
exhibit a high discrimination power between different phenotypic classes. The 
GG2P scenario aims exactly towards this direction with the relevant literature 
started to include similar approaches (Nunkesser et al 2007, Zhou and Wang 2007, 
Schwender et al 2008). The steps followed by the corresponding scientific 
workflow are presented and described in the sequel. 
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Data access and retrieval. Using Web Services from the European Bioinfor-
matics Institute’s (EBI) repository (http://www.ebi.ac.uk/Tools/webservices/) we 
access and extract phenotypic and genotypic data from public experiments. Spe-
cifically, using specific ArrayExpress (http://www.ebi.ac.uk/microarray-as/ae/) 
Web Services we may get information about a specific experiment or, get infor-
mation about relevant experiments using keywords. The complete SNP array data-
set used in this study is available on the NCBI GEO database under accession no. 
GSE3743. The dataset refers to a genotyping experiment of 78 sample hybridiza-
tions performed on the Affymetrix GeneChip Human Mapping 10K Array Xba 
131 (Mapping10K_Xba131) array design. The raw data file includes 78 trans-
formed and/or normalized data files. The hybridized samples concern breast can-
cer (BRCA) and normal (CTRL) cases. More information about the dataset can be 
found at (Richardson et al 2006). Note that GG2P could be easily customized to 
work with other experiments and respective datasets. 

Data mediation. The response of ArrayExpress web service is an XML file 
with links to phenotypic (via the ‘sdrf’ tag) and genotype (via the ‘fgem’ or ‘raw’ 
tags) experimental data (see Fig 3.1 for a sample of the XML response file). We 
utilized a special parser to extract the needed information from the XML file.  
 

 

<experiment total-assays="78" total-samples="78" total="1" revision="080925" ver-
sion="1.1"> 
<experiment> 
<id>1627324147</id> 
<accession>E-GEOD-3743</accession> 
<name>Genotyping of human breast tumors</name> 
<samples>78</samples> 
… 
<files> 
<raw celcount="78" count="78" name="E-GEOD-3743.raw.zip"/> 
<fgem count="78" name="E-GEOD-3743.processed.zip"/> 
<idf name="E-GEOD-3743.idf.txt"/> 
<sdrf name="E-GEOD-3743.sdrf.txt"/> 
<biosamples> 
<png name="E-GEOD-3743.biosamples.png"/> 
<svg name="E-GEOD-3743.biosamples.svg"/> 
</biosamples> 
</files> 
</experiment> 
</experiments> 

Fig. 3.1. Part of Web Service XML response file (from ArrayExpress) 
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The parser locates the ‘samples’, ‘sdrf’ and ‘fgem’ tags. The ‘samples’ tag 
identifies the number of included samples/hybridizations, and the ‘sdrf’ tag points 
to the respective file with description of each hybridization. From the ‘fgem’ tag 
we may identify and download the SNP profiles of the respective experiment’s 
samples. It is essential to align phenotypic classes with the respective sam-
ples’/hybridizations’ genotype data, and form a unified dataset to be analyzed. We 
employ a natural-language mechanism, enabled by specific ontologies and con-
trolled vocabularies (Potamias et al 2005). The result is a homogenized and ap-
propriately formatted file (with phenotype class annotations and respective geno-
type data), which serves as input to a specific analytical process. 

Data preprocessing. Depending on the data and the data mining algorithm, the 
formed data file may need extra processing. For example, many algorithms can 
handle only nominal values. In such a case, and if the data comes with continuous 
feature values, we have to discretize them. Furthermore, as genotype profiling 
platforms (like Affymetrix) produce too many ‘NoCalls’, one may be also inter-
ested to reduce these ‘missing values’ utilizing an appropriate data pre-processing 
process. After the needed pre-processing are performed, the ‘filtered’ dataset is 
transformed into the ARFF format - a de facto standard for machine learning. 
ARFF supported by the Weka machine learning package (http://www.cs.waikato. 
ac.nz/ml/weka/) (Witten and Frank 2005). 

Data analysis. A variety of existing data mining algorithms exists in the public 
domain (e.g., Weka, R-package/Bioconductor, BioMoby). Here we rely on a fea-
ture reduction and selection approach. Dimensionality reduction and feature selec-
tion is a well-known and addressed issue in machine learning and data mining (Guyon 
and Elisseeff 2003). We are interested on the identification of SNP-phenotypic 
class associations, and on respective discrimination/classification models. The 
profiles of these SNPs are able to distinguish between particular pre-classified pa-
tient samples. Core operations of this process are implemented in the MineGene 
gene selection system, and their Web Services deployment (Potamias et al 2004, 
Potamias et al 2006). 

3.1 GG2P in action 

For the realization of GG2P scenario we used part of the ACGT Grid infrastruc-
ture – the Data Management System, the service repository and the workflow edit-
ing and execution environment. The Data Management System (DMS) is a se-
cured and distributed file system over the Grid. The service repository gives 
access rights as well as metadata information about the available services. The 
workflow editor is a Web2 application and, as already mentioned, the workflow 
enactor is a BPEL-compliant application installed in a Grid node. Fig. 3.2 intro-
duces the GG2P knowledge discovery scenario as implemented in the context of 
the ACGT WEEE workflow editing and execution environment. The Web Servic-
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es (not shaded shapes in the workflow area of Fig. 3.2) are registered in the ACGT 
services repository. 

The ACGT environment requires authorization from the DMS and the services re-
pository. DMS grand permissions to user’s account in the Grid and services repo-
sitory give access to available services. Then the user composes and draws he de-
sired workflow. At the next step the editor translates (or compile) the graphical 
workflow into BPEL. Finally, the enactment of the workflow may start. The first 
web service takes as input a query (first, from left, shaded shape of Fig. 3.2) and 
returns an XML file with information about all the related to the query experi-
ments in the EBI ArrayExpress repository. For the specific scenario we used a 
query with the keywords “homo sapiens” & “breast cancer” & “genotype” & “af-
fymetrix” & “Mapping10K_Xba131”.  

 
Fig. 3.2. The GG2P scientific workflow as implemented in ACGT’s Workflow Editor and 
Enactment Environment (WEEE). Web services include: ArrayExpress, Mediator, Discretiza-
tion, and Data Mining. Services are activated by a Query (top part). Deployment of Data Mining 
also needs specification of parameters (‘Param 1’ and ‘Param 2’) 

The second service (Mediator) takes as input the repository’s XML response 
file and creates the homogenized file with the clinical and genotype data. The gen-
erated file is stored in DMS at the user’s account. The next service (Discretization) 
discretizes and transforms the experiment data to arff format. Discretization ser-
vice retrieves the data from DMS and stores the arff-formatted data back to the 
DMS. The final service implements the (two-valued) SNP feature selection algo-
rithm. The service again retrieves data from DMS and stores the results in the 
DMS. Then, after the editor requests the results from the DMS, SNP annotations 
and links to the Ensembl genome browser are automatically assigned to the se-
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lected SNPs. Finally, an html file is formed and is used for the visualization of re-
sults (see Fig. 4.1). 

4 Results and Discussion 

The Affymetrix SNP genotyping platforms produce processed data files where, 
each SNP receives three different values: AA and BB that represent paternal or 
maternal homozygosity statuses, respectively, and AB for heterozygosity ones. 
The ‘0’ and ‘1’ nominal values are assigned to the AA/BB and AB SNP feature 
values, respectively. This results into a two-valued feature representation space. In 
this setting a set of SNPs could be considered as an ideal discriminator between 
two different phenotypic classes if it displays the ‘0’ value for all sample cases in 
one class and the ‘1’ value for all sample cases in the other class. From the total of 
the 78 sample cases included in the target SNP genotyping experiment we ex-
cluded the ones that have more than 10% of missing ‘NoCall’ values, resulting in-
to a dataset of 36 BRCA and 36 CTRL cases. 

For the target BRCA vs. CTRL study, the execution of the GG2P scientific 
workflow resulted into a set of about 100 most discriminant SNPs. With these 
SNPs the following highly performing figures are achieved: 96.2% accuracy, 
92.2% sensitivity, 96.2% specificity, and 0.979 ROC/AUC. 

Fig. 4.1 visualizes just the top 24 of them with the highest ranks (for those 
sample cases with no ‘NoCall’ SNP values) sorted by their chromosomal location. 
The first column shows the discrimination power (the rank) for each SNP (as cal-
culated by MineGenes’ core feature selection process). The second column shows 
the Affymetrix code name for the probe that represents the respective SNP. The 
third column displays the corresponding code, namely: dbSNP (http://www. 
ncbi.nlm.nih.gov/projects/SNP/). The dbSNP - SNP databases, represent a widely 
used public-domain archive for a broad collection of SNPs as well as small ge-
nomic insertion/deletions (indels) and is hosted at the National Center for Bio-
technology Information (NCBI). The next three columns display information 
about the genomic region of the respective SNP: column four the chromosomal 
location; column five the cytoband, and columns five and six the nucleotide allele 
variations for the two (paternal/maternal) alleles. The last column shows the near-
est gene present in the corresponding SNP’s genomic physical position.  

All hyperlinks are automatically assigned to the respective items by consulting 
the annotation files provided by Affymetrix. When clicking on a specific cytoband 
one is transferred to the respective visualization screen of the Ensembl genome 
browser (www.ensembl.org). So, inspection of results and further investigation is 
enabled and supported. In Fig 4.1 one may also observe and contrast the SNP cha-
racteristic profile patterns between BRCA and CTRL cases, respectively - gray 
and dark shaded cells represent homozygosity (‘AA/BB’) and heterozygosity 
(‘AB’) statuses, respectively.  
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The main observation is that the homozygosity patterns are dominant in the 
BRCA cases - a finding which is consistent with the Loss of Heterozygosity 
(LOH) situation in pathogenic situations. LOH in a cell represents the loss of regu-
lar function of one of the gene’s alleles when the other allele is inactive. In oncol-
ogy, LOH refers to somatic mutations and occurs when the offsping’s functional 
allele is inactivated by the mutation. In such situations, normal tumor suppressor 
functionality is inactivated and tumorigenesis events are almost certain. 

 

 
Fig. 4.1. The induced most discriminant and highest ranked BRCA vs. CTRL SNPs (for the Ar-
rayExpress E-GEOD-3743 genotyping experiment) – gray shaded and dark shaded cells indicate 
homozygosity and heterozygocity statuses, respectively. It can be easily observed that LOH 
(Loss Of Heterozygosity) patterns dominate the BRCA cases 

We further examined the biological relevance of the findings, i.e., does the 
identified and most discriminant SNPs relate to LOH and breast cancer situations. 
Literature search provide us with strong evidence for that. We refer to just two in-
dicative SNPs in cytobands 17p13.2 1nd 17p12 (both highly ranked). Chromo-
some 17p is among the most frequently deleted regions in a variety of human ma-
lignancies including breast cancer. In (Seitz et al 2001) the localization of a 
putative tumour suppressor gene (TSG) at 17p13, distal to the TP53 (the most in-
dicative tumor suppressor) gene, was further refined for breast carcinomas. It was 
found that 73% (37 of 51) of the breast tumors exhibited loss of heterozygosity 
(LOH) at one or more loci at 17p13. The allelic loss patterns of these tumours 
suggest the presence of at least seven commonly deleted regions on 17p13. The 
three most frequently deleted regions were mapped at chromosomal location 
17p13.3 - 17p13.2. Furthermore, the data suggest that different subsets of LOH in 
this region are associated with more aggressive tumor behavior. Additional evi-
dence for the association between the 17p13 genomic region and breast cancer are 
also reported in (Mao et al 2005) and (Ellsworth 2003). Similar findings are re-
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ported for the 17p12 region. In (Shen et al 2000) sixty-three markers are reported 
that display ≥25% LOH, with the highest values being observed on 17p12 (48.4% 
for the well, and ~87% for the poorly differentiated breast tumor cases). 

5 Conclusions and Future Work 

We presented an integrated methodology that enables the discovery of genotype-
to-phenotype associations and predictive models, and supports G2P association 
studies. The methodology is realized in the context of the GG2P scenario being 
implemented with the aid of Web Services and Scientific Workflows and operat-
ing in a grid environment. In particular the ACGT (EU FP6 integrated project) 
Grid infrastructure and its WEEE workflow editing and enactment environment 
were utilized. 

The GG2P workflow was executed on an indicative SNP genotyping experi-
ment (from the ArrayExpress repository) that concerns the hybridization breast 
cancer and normal/control tissue samples. We were able to identify about 100 in-
dicative SNPs that exhibit contrasted homozygosity / heterozygosity profiles, and 
achieve highly discriminant performance figures for the respective phenotypic 
classes. The most highly ranked SNPs exhibit clear loss of heterozigosity patterns, 
a common situation in tumorgenesis. Literature searches provide strong evidence 
about the biological relevance of the findings – the respective SNP’s genomic re-
gions are strongly association with characteristic breast cancer phenotypes. 

Our immediate R&D plans, among other, include: experimentation with other 
public-domain genotyping experiments, and enrichment of GG2P and its 
workflow realization with other data-mining techniques (e.g., clustering, associa-
tion rules mining etc). 
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