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Abstract During tumorigenesis, genetic aberrations arise and may deeply affect
the tumoral cell physiology. It has been partially demonstrated that an increase of
genes copy numbers induces higher expression; but this effect is less clear for small
genetic modifications. To study it, we propose a systems biology approach that en-
ables the integration of CGH and expression data together with an influence graph
derived from biological knowledge. This work is based on 3 key ideas. 1) Inter-
individual variations in gene copy number and in expression allow to attack tumor
varability and ultimately adresses the problem of individual-centered therapeutics.
2) Confronting post-genomic data to known regulations is a good way to check the
soundness and limits of current knowledge. 3) The abstraction level of qualitative
modeling allows integration of heterogeneous data sources. We tested this approach
on Ewing tumor data. It allowed the definition of new biological hypotheses that
were assessed by random permutation of the initial data sets.
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Abreviations : GCNv = Gene Copy Number Variation ; ELv = Expression Level
Variation; ES = Ewing Sarcoma

1 Introduction

Relating genomic instabilities to gene expression is a difficult challenge which is
not yet completely resolved. The biological hypothesis is that a gene amplified ge-
nomically (in tumor cells for example) induces a higher expression.

Relating gene expression profiles to gene copy numbers was mostly performed
using correlation analyzes, in order to find candidate genes serving as markers or as
potential targets for therapy [12].

However, these correlation analyzes cannot explain all gene behaviours : in the
best case, 50% of them can be explained [7, 10]. This proportion is much weaker for
tumors that have less instabilities (like Ewing sarcoma) than more common tumors,
like breast cancers. Hence, on those tumors, it appears difficult to extract relevant
global properties to relate CGH data to tumor outcomes [8, 16, 11, 1] or to gene
expression [3, 15].

We proposed new method for the study of genomic instabilities in tumors, based
on the systems biology approach. In this approach, we include the biological pro-
cesses that regulate transcription through the dynamics of one or several networks of
interacting molecules. In such a model genes, transcripts and proteins are network
components. The simple process one-gene-one-transcript-one-protein is replaced by
a more global point of view involving all the connections among the network com-
ponents.

In order to deal with small genetic modification, we adopt a more mechanis-
tic approach to genetic variability via a network model. Genetic variability, having
nowadays interesting perspectives in personalized medicine, has been addressed by
various biologists since Darwin. The idea that interaction between genes can mod-
ulate the effects of this variability can be traced back to Conrad Waddington, whose
chreods can be interpreted as representations of the “elastic” response of gene net-
works. Here, gene-gene interactions can stabilize the effect of genetic variability.
However, this can be done only up to a certain extent, as some variability is neces-
sarily persistent. The persistent variation is not entirely random, it bares information
on the network.

Based on these ideas, a framework was conceived to address the following ques-
tions :

• how are gene copy number (GCN) and expression level (EL) variations related?
• is a (theoretical) gene regulation model consistent with (real life) observed vari-

ations in patient pairs? If so, what is the GCN contribution to consistency?

This framework is based on qualitative reasoning which formalizes biological
interactions [13] and is efficient 1 on large scale regulatory networks [5, 17].

1 see also the web interface : http://www.irisa.fr/symbiose/bioquali
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We applied our methods to Ewing sarcoma: it is a pediatric bone tumors that
originate from a translocation t(11;22)(q24;q12), producing a chimeric gene : EWS-
FLI1 [2]. This chimeric gene is thought to act as an aberant transcription factor. A set
of target genes that can be either activated or repressed has been already discovered
[14].

2 Available data and model for Ewing sarcoma

2.1 Data description and preprocessing

A home made Comparative Genomic Hybridization (CGH) array was built in-house
at Institut Curie (3920 probes 60 bp long covering all the chromosomes). CGH data
were produced on a set of 47 tumors, including 7 cell lines.

Among the 39 remaining tumors 2, 12 were diagnosed as metastatic tumors be-
fore analysis and therapy. After analysis and therapy, on the 27 remaining tumors,
10 evolved in metastasis while 17 remained localized tumors.

An Affymetrix U133A chip was used to measure expression levels on the biop-
sies of patient tumors. Microarray data were normalized by the GC-RMA technique.

Breakpoint detection on CGH data was performed using GLAD algorithm[6].
GLAD allows CGH level smoothing in a given genomic region flanked by two
breakpoints.

2.2 Model description

A gene regulation model involving 130 genes, including EWS−FLI1, was designed
within SITCON project [4]. The genes/pathways included in this network model
were indentified by analysis of transcriptome time series on Ewing cell lines. The
logical connections between genes are based on 1) scientific literature and 2) man-
ually curation of TRANSPATH [9] database. Main tumor phetnypes are included in
this network: cell cycle regulation, apoptosis and cell migration.

3 Systems biology method for analyzing genetic and expression
variations

Our methodology aims at confronting pairwise variations with the (EWS−FLI1)
gene network model described above.

2 One was too noisy and was discarded from the analysis
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In order to cope with genetic variability in gene networks, we represent differ-
ences between individuals as perturbations of the network. Biologically, the hypoth-
esis is that data obtained on a cell population coming from a tumor biopsie reflect
a molecular steady state. For a patient pair, the whole set of observed variations
describes the qualitative differences between the two steady states. This can be co-
herently done in a framework that was first introduced in [13], based on interaction
graphs and qualitative equations.

3.1 Qualitative equations

Consider a network of n interacting components. The interaction model is the di-
graph G = (V,E), V = {1, . . . ,n}. There is an edge j → i ∈ E if j influences the
production of i. Edges are labelled by a sign {+,−} which indicates whether j ac-
tivates or represses the production of i. Let us denote by sign(δXi) ∈ {+, –, ?} the
sign of the variation of i between two conditions, and by sign( j → i) ∈ {+,–} the
sign of the edge j → i in the interaction graph.

For every predecessor j of i, sign( j→ i)∗ sign(X j) provides the sign of the influ-
ence variation of j on the species i. Notice that this can be either positive (increased
activation or decreased repression) or negative (decreased activation or increased
repression). Then, the constraints that the network imposes on the variations can be
expressed as qualitative equations:

sign(δXi)≈ ∑
j→i

sign( j → i)sign(δX j). (1)

The sign algebra is summarized in the following table.
++– = ? +++ = + +×– = – +×+ = +
–+– = – –×– = + ?+? = ? ?×? = ?
?+– = ? ?++ = ? ?×– = ? ?×+ = ?

+ 6≈ – ?≈ + ?≈ –

3.2 Taking into account genetic variations

In order to take into account the genetic variability of the patients we introduced new
qualitative variables representing, for a given pair of patients, the GCN variations.
The corresponding nodes in the interaction digraph will be called “gene nodes”.
There is one gene node for each gene considered and in our analysis we kept a set
of 126 genes. The remaining nodes are either mRNA or protein nodes occurring in
the (EWS−FLI1) network.
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The central hypothesis here is that gene nodes act directly and positively on the
mRNA nodes in the network.

To summarize, the interaction model contains:

1. gene nodes : the sign stems from GCN variation between two patients,
2. mRNA nodes : the sign stems from EL variation between two patients,
3. proteins : the sign stems from protein activity variation between two patients.

GCN variations and EL variations come from CGH and microarray data. The
protein activity variations remain unknown but can be predicted thanks to our for-
malism.

3.3 Encoding variations

For each gene k, we define GCNvk
i, j = CGH(i,k)−CGH( j,k), where CGH(i,k) is

the CGH level of the gene k in the patient i smoothed by GLAD algorithm. When
| GCNvk

i, j |> 0,2 the variation is considered as significant [6].
Similarly, for gene expression variation ELvk

i, j = EL(i,k)− EL( j,k), where
EL(i,k) is the mean expression level measured by Affymetrix probes corresponding
to the gene k in the patient i. To evaluate the significance of the variation, a Student
test was used on the set of probesets measuring EL(i,k) with an alpha risk of 5%.

Both for gene and mRNA nodes, significant variations are encoded + or –. The ?
sign is used for nodes that are undetermined at various steps of our calculations.

3.4 Consistency analysis

For each pair of patients, we solve the system of qualitative equations (1), aug-
mented by the information on signs coming from data. If there are solutions, the
system is declared compatible. In case of compatibility some nodes have the same
unique sign in each one of the many possible solutions. The unique signs of these
nodes (called hard components) are predictions of the model. By this, the signs on
protein nodes are predicted.

If no solution can be found, a localization of the source of conflict is attempted by
subsystem analysis. First, all local violations (meaning that at least one equation (1)
is violated by data information) are declared “local inconsistencies”. All locally in-
consistent patterns have the same structure : one node together with its predecessors.
All the other situations are declared “global inconsistencies”. Globally inconsistent
patterns are more complex (they contain at least two nodes with their respective
predecessors).

Notice that testing the consistency and looking for sources of conflicts is ac-
tually a NP-hard question. It appears that the topology of the network allows to
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handle these questions. We used decision diagrams, a data structure meant to repre-
sent functions on finite domains; it is widely used for the verification of circuits or
network protocols. Using such a compact representation of the set of solutions, we
proposed efficient algorithms for computing solutions of the systems, predictions,
and other properties of a qualitative system [17].

3.5 Monte Carlo estimates for statistical significance of consistency

Consistency could occur also by chance. In order to estimate the significance of
consistency results, we used random perturbations and Monte Carlo estimates of
the mean numbers of pairs of patients for which random data is consistent with the
network.

For a pair of patients (i,j), let us note:

1. C+
i, j and C−i, j the set of genes for which the gene copy numbers vary positively,

resp. negatively, between the patients i and j.
2. E+

i, j and E−i, j the set of genes for which the gene expressions vary positively, resp.
negatively, between the patients i and j.

Straightforwardly, C+
i, j ∩C−i, j =® and E+

i, j ∩E−i, j =®
The qualitative equations (1) were solved with N = 1000 data sets (each data

set contains P(P− 1)/2 patient comparisons, where P is the number of patients)
produced by randomly permuting the elements contained in C+

i, j, C−i, j, E+
i, j and E−i, j.

For each random dataset, consistency was tested. In case of consistency, predic-
tions on network nodes were computed. Each random dataset r is consistent NC

r
times, locally inconsistent NLI

r times and globally inconsistent NGI
r times. Note that

NC
r +NLI

r +NGI
r = P(P−1)/2.

The distributions of NC, NLI and NGI provide the estimates for the number of
consistent and inconsistent pairs with random data we are looking for.

4 Results

In this section, we apply our method to Ewing sarcoma data. We show results for a
couple of questions - the first concerning the relation between GCNv and ELv ; the
second concerning the model consistency tests and the impact of GCNv on them.
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Fig. 1 Repartition of the CGHv+ and CGHv− cardinals in the 741 patient pairs. Each point
represents at least one patient pair - the number of patient pair is color-coded according to the
palette on the right. Observe that a lot of patient pairs have few CGHv. The higher peak is the point
(0,0) on which 164 patient pairs aggregate.

4.1 Discovering links between gene copy number variations and
expression level variations

How are Gene Copy Number variations (GCNv) and Expression Level variations
(ELv) related ?

GCNv and ELv were evaluated for each gene and each patient pair. There are 39
patients, thus 741 patient pairs.

First, the Figure 1 and Figure 2 show the repartition of the variation numbers in
the patient pairs.

It is striking to see the difference in variation repartitions. GCNv are less frequent
but also mainly distributed along the x and y axis. This is coherent with the relative
genome stability of ES.

In spite of this general trend, some ES can exhibit a high number of GCNAs.
When these unstable tumors are compared to rather stable tumors, imbalances are
favored in one sense rather than the other, giving this picture with most of the pairs
around the 0,0 point and distributed along the x and y axis.

A different picture can be observed with expression data. Variations are more
frequent and distributed in a larger area, showing a rather homogeneous variability
of ELv among the patient pairs.

From these figures, one can imagine that GCNv and ELv are independent vari-
ables.
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Fig. 2 Repartition of the ELv+ and ELv− cardinals in the 741 patient pairs. Each point rep-
resents at least one patient pair - the number of patient pair is color-coded according to the palette
on the right. The distribution is much different than the vCGH one.

To verify this, a Pearson χ2 independence test was performed under the null
hypothesis that GCNv and ELv are two independent variables. The repartitions and
contributions to the χ2 score are shown in Table 1.

χ2
PPPPPPELv

GCNv 0 + - ?

Observed

0 53117 2197 2598 14447
+ 6969 294 573 1948
- 6781 550 283 2127
? 1194 38 32 218

Expected

0 52547 2386 2701 14523
+ 7132 323 365 1964
- 7101 321 364 1955
? 1080 49 55 297

Contribution to Chi2
0 2,59 15,0 3,98 0,40
+ 3,74 2,54 118,09 0,13

- 14,4 162,91 17,9 15,10
? 11,96 2,42 9,84 21,23

Table 1 Pearson χ2 Independence test. χ2 = 402,2À 27,88, the χ2 value for 9 freedom degrees
with an alpha risk of 0,001. The major contribution is given by situations where a gene changes in
an anti-correlated way in GCN and in EL. The “?” sign corresponds to cases when a probe signal
in at least one experiment is too noisy to assess the variation sign.

AIAI-2009 Workshops Proceedings [79]



The χ2 statistics equals 402, much greater than the value for an alpha risk of
0,1%., with 9 freedom degrees. The null hypothesis can be confidently rejected.
This confirms that GCNAs can affect transcription in ways that can be investigated
by comparing pairs of patients.

Moreover, the major contribution occurs when GCNv and ELv have opposite
signs. This is even more striking on the whole gene set (χ2 = 88761 ; contribution
of GCNv and ELv having opposite sign = 83,7%). This was clearly unexpected and
it is highly counter-intuitive.

We will show that our qualitative reasoning method allows to find explanations
to this surprising phenomenon.

4.2 Checking the EWS-FLI1 regulation model

To address this issue, we used a systems biology approach based on the qualitative
analysis to confront an interaction model with CGH and expression data.

The consistency analysis raw results are shown on Figure 3.
We were concerned with two main questions:

• In which proportion is the EWS-FLI1 network model consistent with real data?
In cases of inconsistency, what does this tell about the model?

• Is information contained in CGH data useful to uncover regulations ?

4.2.1 Explaining inconsistencies

On real data including GCNv influences, the model is consistent with the data in 317
patient pairs (42,8% of the 741). Additionally, 314 (42,4%) local inconsistencies and
110 (14,8%) global inconsistencies were found.

Understanding the incompatibility sources may help to focus on the model weak-
nesses. First, it is necessary to analyze the sources of local inconsistencies, the most
numerous ones.

All the local inconsistencies have the same origin : a patient pair (i, j) where
there is at least one gene k for which : GCNv(i, j,k) =−ELv(i, j,k). We call this an
anticorrelated variation.

This is not a rare case: from the Table 1, there are 1123 cases in the 741 patient
pairs. They are spread in 367 patient pairs and involve 67 genes.

Hence, 367 local inconsistencies were expected. This means that 50 pairs that
were expected to be locally inconsistent were explained by the model.

More precisely, on the 67 genes that are involved in anticorrelated variations,
23 are never involved in local consistencies This is due to the presence in the net-
work model of at least one transcription regulation on those genes. Those explained
locally inconsistent influences appear 414 (36,9%).

In other words, local inconsistencies point to the lack of transcription regulations
in the model. Adding them can potentially remove all local inconsistencies.
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Fig. 3 Consistency global results on patient data and randomized data. real+CGH means that
the model was confronted to patient data including all GCNv influences. rand +CGH means that
the model was confronted to randomized data including all random GCNv influences. real−CGH
means that the model was confronted to ELv observed on patient data without GCNv influences.
realcurCGH means that the model was confronted to patient data without the unexplained anti-
correlated vCGH / ELv. rand−CGH means that the model was confronted to randomized data
without random GCNv influences.

The global inconsistencies point to other model weaknesses. Unfortunately, our
solver is not able to localize the whole set of inconsistent subgraphs (see section 2)3.

Only 33 influences are involved in the inconsistent set we obtained. All of
themare implied in transcription regulation, including: T P53, E2F1 and EWS−
FLI1.Therefore, our method allows to focus on subgraphs of a complex model that
need refinement to become consistent with observations.

4.2.2 CGH data increase the consistency between the data and the model

To assess what relevant information is contained in CGH data, it can be useful to :

• reproduce the consistency analysis without taking into account the anticorrelated
variations that remain unexplained by the model ;

• compare the result to the consistency analysis when GCN influences are removed
(by taking into account only ELv, hence discarding CGH information).

This analysis gave the results shown in Figure 3. Without CGH information,
the model is consistent with ELv alone in 525 (70,9%) patient pairs. Using CGH

3 Notice that a more powerful implementation of constraints solver, with Answer Set Programming,
will be soon available to overcome this technical problem.
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Fig. 4 Inconsistent subgraph without GCNv influences on the patient pair (EW57,EW58).
Observed signs of gene expression variation are circled. The star points to the inconsistency local-
ization, here the mRNA IGFBP3 node.

information on the genes having transcription regulators, the model is consistent
with ELv and GCNv in 528 (71,3%) patient pairs.

In 3 cases, the model becomes consistent thanks to information from CGH data.
To understand better the impact of GCNv influences, the 3 inconsistent subgraphs

were represented using Cytoscape software. The Figures 4 and 5 show an example
of this analysis.

On this example, the inconsistency is localized on the mRNA IGFBP3 node.
IGFBP3 is positively targeted by a set of regulators, except EWS−FLI1 that was
shown to inhibit IGFBP3. However, between the two patients, given the observa-
tions, mRNA IGFBP3 should be activated. This is not the case, producing the in-
consistency.

The IGFBP3GCNv proposes an explanation to this phenomenon : due to its neg-
ative variation between the two patients, the negative IGFBP3ELv can be under-
stood. A biological interpretation for such a pattern can be: despite the positive sig-
nals arising from various regulators, the difference in gene copy number is sufficient
to decrease IGFBP3EL.

Obviously, this hypothesis must be confirmed by experimental validation.
To conclude, CGH data bring information on local variations that have an influ-

ence on the EWS−FLI1 network model.

4.2.3 Assessing the statistical quality of consistency frequencies

In order to assess the quality of consistency tests, a randomization of input data was
performed using 1000 random permutation on GCNv and ELv for each patient pair.
The 741000 data sets with GCNv were confronted to the EWS-FLI1 model; the same
analysis was repeated on the same datasets without considering GCN influences.
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Consistency analyzes with and without GCN influences were performed to be
compared to results on real datasets. Results are exposed in Figure 3. This shows
that there are less consistencies and proportionally more inconsistencies on random
data than on real data.

The distribution of consistency frequency distribution obtained for the 1000
datasets including GCN influences follows a normal distribution (µ = 279, σ = 10,1
- Kolmogorov-Smirnov normality test value = 0,0289 < 0,0386 , the bilateral value
for an alpha risk of 5%).

Given such a distribution, the probability to obtain a consistency frequency equal
to or greater than 3174 equals 3,79%.

Similarly, the distribution of the consistency frequency distribution obtained on
the 1000 datasets without GCN influences (see Figure 6). The distribution follows a
normal distribution (µ = 446, σ = 12,5 - Kolmogorov-Smirnov normality test value
= 0,0251 < 0,0386 , the bilateral value for an alpha risk of 5%).

Given such a distribution, the probability to obtain a consistency frequency equal
to or greater than 525 5 equals 1,31.10−10. This probability is even lower for the
real data set using GCN explained by the model6.

This proves that one can trust the consistency frequency obtained on real data
sets.

However, it is surprising to observe such a high number of consistent cases on
randomized data sets. We are currently investigating the reasons. Two hypotheses
motivate us :

+

+

+

-

-

-
+

+

++

+++

gene_IGFBP3

-

gene_CDKN2A

-

Fig. 5 Subgraph with GCN influences on patient pair (EW57,EW58). Observed signs of gene
expression variation are circled. The IGFBP3GCN varies negatively between the two patients and
resolves what was previously an inconsistency between the model and ELv alone.

4 the consistency frequency obtained on real data set without GCN.
5 The consistency frequency obtained on real data set without GCN.
6 The consistency frequency obtained on real data set with the GCN influences explained by the
model equals 528.
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Fig. 6 Consistency frequency distribution for randomized data without vCGH influences. The
distribution follows a normal distribution (µ = 446, σ = 12,5). It must be compared to the consis-
tency number obtained on real data without GCNv influences (525) and with GCNv explained by
the model (528).

• the network topology may be robust to random variations;
• there is an effect of the number of constraints imposed by observations - as there

is a variability in | GCNv | and | ELv | as shown on Figure 1 and 2.

A simple way is to test wether a significant correlation exists between |GCNv(i, j) |
and of | GCNv(i, j) | and the consistency for each patient pair (i, j).

5 Discussion

Given the difficulties to analyze CGH data on ES tumors, we propose to change
of paradigm and propose a systems biology approach dedicated to invesitgate the
inter-patient variability simultaneously at genomic and transcriptomic levels and
their compatibility with a EWS-FLI1 gene regulation network.

This study addresses two main issues: 1) the link between CGH and expression
pairwise variations in 39 ES; 2) the consistency between a EWS−FLI1 model and
these variations.

To handle the first question, interesting representations of patient pairs as func-
tions of GCNv and of ELv cardinalities were produced. It appears that the patient
pair distribution following GCNv is highly different from its counterpart following
ELv. This shows that patient pairwise comparisons exhibit different transcriptomic

AIAI-2009 Workshops Proceedings [84]



and genomic variability patterns. One could be mistaken in interpreting this as the
result of an independence between the variables GCNv and ELv.

The χ2 independence test states that these two variables are undoubtely related.
This agrees with biological intuition: when a gene copy number increases, the gene
expression level is expected to increase - and vice versa.

However, surprisingly, the major dependency contribution comes from anticor-
related variations. This is true for the whole set of measured genes. This suggests
the existence of a feedback regulation of genes present in altered regions that coun-
teracts GCN imbalances.

The EWS−FLI1 network model is able to deal in part with these anticorrelated
variations : no gene having at least one transcriptional regulation appears in local
inconsistencies. On the contrary, if a “deficient gene” does not have a transcription
regulation, it will be involved in a local inconsistency if its GCNv and ELv appear
anticorrelated. Thus, our method points to the model incompleteness. Adding miss-
ing transcription regulations can potentially remove all local inconsistencies.

To answer the second question, the compatibility of the EWS-FLI1 model with
the pairwise genomic and transcriptomic variations was verified. It appears that the
model is consistent with expression data in more than 70% of the cases after having
silenced the “deficient gene” GCNv influence.

3 cases that were inconsistent using ELv alone become consistent. The analysis
of these inconsistent subgraphs shows that some ELv that were unexplained by the
model could be explained by local GCN variations. This suggests that local GCN
variations carry valuable information that can propagate through the interactions.
This result validates the capacity to investigate such local effects of GCNv by our
approach.

Finally, we compared our results to 1000 randomized datasets. It appears that the
consistency frequencies obtained on real datasets cannot be obtained by chance.

Another intriguing phenomenon appeared during this latter analysis: we did not
expect so high consistency frequencies on randomized datasets. We are currently
studying wether this is related to the genomic and transcriptomic variation number
or whether this is a consequence of the intrinsic network robustness.

Biological system robustness may be the key to understand apparent contradic-
tions in experimental data on ES. Let us consider the following paradox: the exis-
tence of a general trend that relates genetic instabilities to worst prognosis is op-
posed to the difficulty of finding repeated and specific genetic disorders linked to
tumor outcomes.

If we consider that genetic instability acquisition is a stochastic process, stem-
ming from a disturbed DNA repair machinery, it is likely that the largest part of
genetic disorders have no individual effect on the cell physiology. This may result
from a negative feedback control.

In the same time, it is also possible that, in exceptional cases, a specific gene
disorder manages to overcome feedback and have visible effects on cell physiology.
EWS−FLI1 itself is an extreme example.
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As future work, we intend to use our method to detect these exceptional cases.
We already proved that in a very limited number of cases (3 on 216 inconsistencies)
the information on GCNv carried by specific genes can explain an unusual network
behavior.

The novel hypothesis that outcomes from this work is that genetic disorder accu-
mulation can have a global impact by increasing the probability that a specific gene
disorder has consequences on a stabilized network. We expect that such events will
be found more frequently in metastatic tumors than in non metastatic ones.
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la Ligue Nationale Contre le Cancer. We thank Philippe Hupé and Philippe La Rosa
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6. Philippe Hupé, Nicolas Stransky, Jean-Paul Thiery, François Radvanyi, and Emmanuel Baril-
lot. Analysis of array cgh data: from signal ratio to gain and loss of dna regions. Bioinformat-
ics, 20(18):3413–22, Dec 2004.
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