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Abstract. This paper presents a new concept-based approach to extract lexico-semantic knowledge. 

Genitive constructions of Russian language are derived from parsed corpora. Formal Concept 

Analysis is employed to build lexicon structure on the basis of genitive constructions. Next, we 

propose similarity measure and special algorithm to derive lexical classes from concept lattice. This 

class hierarchy forms lexical database which can be used in various natural language applications, the 

example of Question Answering systems is given. In the end we compare concept-oriented lexicon 

with other lexical database and give the implementation details. 

1. Introduction 

Most of the state-of-the-art Natural Language Processing (NLP) systems employ lexical databases at their 

work. This article focuses on the needs of Question Answering (QA) systems. QA-systems process 

questions of a variable degree of complexity and find short and precise answers. Modern QA-systems 

focus on open-domain questions and use real world documents, especially the World Wide Web, to find 

answers. In spite of decades of researches and considerable progress QA-systems still have room for 

improvement of response time and accuracy rates. 

 

The following QA tasks usually need lexical resources: definition of the question type, detecting the 

hypernyms of key words for WH-questions, question expansion, and the redundancy removal in answers. 

 

Nowadays WordNet-like lexical resources [5] are most popular in NLP but still the coverage problem 

remains for languages other than English. For example the current version of RussNet (v1.3.35) [1] 

includes only 15000 word-meaning pairs organized in 5500 synsets. In addition QA-systems need proper 

names which are typically not a part of WordNet-like resources. According to [8] there were only 9% of 

proper names in one hundred of the accidental synsets in WordNet. 

 

In that way lexico-semantic knowledge should be derived automatically from corpora to avoid an 

acquisition bottleneck  and to include proper names and subject-oriented terms. Lexicon items should be 

organized in a hierarchical structure and form classes of different levels of granularity. To achieve these 

tasks we use methods of Formal Concept Analysis (FCA) [7]. In [13] Priss proved the application of FCA 

to computational linguistics problems. In [4] FCA was used in a way similar to our purpose – concept 

hierarchy acquisition for ontology construction but its methods are different from ours. We suggest using 

Genitive Constructions of the Russian language as a source of the lexicon and show how formal concepts 

form lexical classes.  

 

The remainder of this paper is organized as follows. In Section 2 we compare different methods of 

corpora processing and give the formalization of the semantic of the Genitive Construction. In Section 3 

we develop the concept-oriented lexicon model on the basis of FCA methods. In Section 4 the concept’s 

clustering method of forming lexical classes is described. In Section 5 we give an example of the usage of 

a concept-oriented lexicon in QA-systems. The results evaluation is given in Section 6. Section 7 contains 

our conclusions and suggestions for future research. 



  

2. The source of the lexicon 

2.1 Text processing method 
 

First of all the text corpora processing method is needed to derive new lexical knowledge. There are two 

widespread text processing methods regarding the target word’s context definition:  

• word context viewed as unstructured text on the left and right of the target word (n-word window); 

• context is a set of word which are connected with target word by syntactical relations. 

 

First approach has low precision. The solid numbers of manually defined syntactical patterns are needed 

for the second approach. In [15] Yarowsky describes word collocation as a precise and simple method of 

the word sense extraction from a text. In [16] the unity of the sense of the word in collocation is proved 

(one sense per collocation approach). We suggest using the Genitive Construction (GC) of the Russian 

language as a basis of the text processing in relation to the target word. GC helps to avoid lacks of two 

standard approaches and manual definition of the Russian collocations is not needed. 

 

Lexical knowledge can be derived from GC and then it can be inserted into lexicon. We argue that in the 

similar GСs their parts have a common meaning and this meaning can be extracted using FCA.  In the 

next two subsections we’ll give the formalization of GC’s semantics to prove the common meaning 

availability. We suggest using the Intensional Logic (IL) [10] to formalize GC’s semantics. 

 

2.2 Intensional Logic 
 

Now we give short introduction into the IL. IL has a rich system of types. There are two basic types: e – 

entities and t – truth values. All other types are function types. Lambda-abstraction operator (λ) is a main 

instrument for the expression’s building. In the IL the semantic expressions are close to syntactic 

structures of the natural language. To apply IL to the description of the lexical semantic we are using 

Partee approach [11] based on meaning postulates.  

 

Meaning postulate is the notion that lexeme can be defined in terms of relations with other lexemes. For 

formalization purpose let’s consider meaning postulate as axiom (formula) which associates word with 

other words of the language. Words are just labels in the IL. For the each set Σ of closed formulas there is 

corresponding class Σ
*
 of all models in which all formulas from Σ are true. The class Σ

*
 is called an 

axiomatizable class of models, and the set Σ is called the set of its axioms. But in Σ
*
, not only the axioms 

of Σ may be true. The set Σ
**

 of all closed formulas which are true in Σ
*
 is called a theory, and the 

formulas of Σ** are called the theorems of the theory Σ**. The axioms are a subset of the theorems. For 

each word wi let form(wi) be a form and mng(wi) -  a meaning. 

 

Sorts [2, 12] are elements of the ‘naive ontology’ [3] of the language. It is a way to semantically classify 

nominal predicates. In [12] Partee showed how sorts can be used to form restrictions to GC accuracy. 

Therefore GC restricts and specifies lexical meaning of GС’s components. The word meaning defined by 

the theory includes meaning postulates from the theories of all sorts the word belongs to and additional 

postulates which are specific only to this word. 

 

2.3 Semantic of Genitive Construction 
 

We adapted the Partee approach from [12] for the GC’s formalization. The GC (for example John’s 

brother) consists of three components: Head Noun (HN) (for example, brother), Genitive Phrase (GP) 

(for example, John’s) and genitive relation. Outside the GC the HN can be defined by expression 

)]([ xSxλ  (for non-relational nouns) or )])(([ yxSxyλ  (for relational nouns). A noun phrase has a type of 

<<e, t>, t> and is defined by )]([ cPPλ  function, where с is individual constant of type <e>. These 

predicate set described by function can be interpreted as a set of properties of the individual constant of 

the type <e>. The formula )]([ xPPw
i

i
i

∨→ λ  defines the set of meaning postulates of the non-relational 

HN (word w), where w has a type of <e>, Pi – predicate of a type of <e, t>. The word has always the 



same type as the sort this word belongs to. The theory of a sort (Ts) consists of properties related by the 

logical operators. If word the w ( )]([)( xPPwmng λ= ) belongs to the sort s then the following expression 

is true: 

))))]))(()((()(([( xzTxPxzPzPT ss →∀∧∃∃ λ . 
(1) 

 

Let fss(w) be a set of properties of the word w which belongs to the sort s. According to [12] the GP is 

always defined by the following expression:  

)]])(([[ xyRxRyGg λλλ= , (2) 

where y – the meaning of the GP, x – argument variable, R – predicative variable. 

 

If the HN is the non-relational noun of type <e, t>  then inside the GC’s special modifier makes a type-

shift from the type <e, t> to the relational type <e, <e,t>>. In addition the modifier connects the HN 

with GP to form the accurate GC. Sorts s1 and s2 satisfy the selective restrictions of the same modifier Sft 

if Ts1↔ Ts2 or there is a sort s which is also acceptable for the modifier Sft and 
ssss

TTTT →∧→
21

 (where 

Ts1, Ts2, Ts, are the theories of the sorts s1, s2, s). According to compositional approach we use, the word 

meaning cannot be decomposed into the elementary primitives. So that we can not demand that sorts s1 

and s2 have the common elementary property. The common property P has to follow from the sort’s 

theories Ts1 and Ts2: 

))))]2()2((2))1()1((1))()(()((([
21

xPxTxxPxTxxPxTxzPzTP
ss

→∀∧→∀∧→∀∧∃∃λ . (3) 

 

The genitive relation connects HN and GP. The genitive relation is also defined by the meaning 

postulates. The sort of the genitive relation is always equal to the sort of the GC. The genitive relation has 

a type of <e, <e,t>>. 

 

The modifier consists of the HN’s theory and the theory of the genitive relation. The modifier has a type 

of <e,<e,t>>:  

))](())(([ wfsbaRbaSft sgen ∧= λλ
, 

(4) 

where w  – the word which belongs to the sort s (
sSortw∈ ), Rgen – the theory of the genitive relation.  

 

Applying the modifier function to the definition of the GP (2) we’ll get the GC definition: 

)])())(([))(()]]()(([[
ssgengg

wfsbaRbawmngxyRxRyGc ∧= λλλλλ , (5) 

where wgg – GP, ws – HN. Applying lambda conversion rules we’ll get the final GC definition: 

)]))(())]((())(([[ xwmngwfsbaRbaxGc ggssgen ∧= λλλ
 

(6) 

 

According to (6) the GC always includes at least one axiom from the theory of the HN and meaning 

postulates from the genitive relation. The GP is included into the GC’s expression as the individual 

constant. 

 

The meaning of the GC’s components can be derived from the GC if for each GC found in corpora we 

have an expression according to (6). To get this expression for each GC’s sort the modifier expression 

according to (4) is needed. The modifier expression needs meaning postulates which can be constructed 

manually by lexicographers. Our purpose is different; we want to derive lexical knowledge automatically 

from the corpora and the manual expressions cannot be used. From the corpora’s parsing results we get 

only the individual genitive constructions and know where HN and GP are. Thus the meaning 

(property )]([ xPPλ ) of HN and GP cannot be directly derived from corpora automatically and the 

additional steps are needed. 

 

Let Gc1 and Gc2 be GCs which belong to the same sort (
kSortGc ∈1  and 

k
SortGc ∈2 ). So the 

corresponding genitive relations (R1gen and R2gen) are completely defined by the GC’s sorts. Therefore 

R1gen=R2gen and the same selective restrictions are applied to the GC’s components (Gc1s/ Gc1gg and 

Gc2s/Gc2gg). In this case according to (3) the theories of HN or GP include the common property P. Let 



  

w1 and w2 be the definitions for the appropriate HNs of Gc1 and Gc2 which belong to the sorts s1 and s2 

(
11 sSortw ∈   and

2
2

s
Sortw ∈ ). The property set P1 is the w1 word’s theory ( )](1[1)( 1 xPPwmng λ= ) and P2 

is the w2 word’s theory ( )](2[2)( 2 xPPwmng λ= ). The theories P1 and P2 are not completely the same in 

the general case but they must include the common property P according to (3). If we consider w1’s and 

w2’s theories only as a common property P then from (1) we get expression for two head nouns used in 

the genitive constructions of the same sort: 
∧→∀∧∃ ))))]1)(1()1(1(1()1(1(1[1 xzPxPxzPzPλ  

))))]2)(2()2(2(2()2(2(2[2 xzPxPxzPzP →∀∧∃λ  (7) 

 

Inside the genitive constructions of the same sort derived from the corpora according to (7) the HNs have 

the common property. The common property P can be acquired by comparing these HNs’ meanings. The 

same is true for the GPs.  

 

We suggest the following approximation to recognize if GCs obtained from the corpora belong to the 

same sort. With the certain probability two GCs belong to the same sort if their HNs or GPs are the same.  

To acquire common property P we can not use meaning postulates directly so we are using forms of the 

HNs and GPs. 

3. Concept-oriented lexicon model 

3.1 Formal Concept Analysis 
 

In this subsection basic FCA definitions are given according to [7] to clarify further reasoning.  Let G and 

M  be sets called object’s and attribute’s sets respectively and MGI ×⊆ is a binary relation. If Gg ∈  

and Mm ∈ then gIm is interpreted as “the object g has the attribute m”. A triple (G, M, I) is called a 

formal context. For GA ⊆ and MB ⊆ the prime-operator is defined as  

A′  = {m ∈ M | ∀ g ∈ A : gIm}, B′  = {g ∈ G | ∀ m ∈ B : gIm}. (8) 

 

A pair (A,B) is formal concept of context (G, M, I) if and only if MBGA ⊆⊆ ,  и ABBA =′=′ , . A is 

called the extent and B the intent of the concept (A, B). The concepts (A1, B1) and (A2, B2) of a given 

context are ordered by the subconcept-superconcept relation if 
21

AA ⊆ (
12

BB ⊆ ) and we write (A1, 

B1) ≤ (A2, B2). The ordered set of all formal concepts of (G, M, I) is denoted by B(G, M, I) and is called 

the concept lattice of (G, M, I). A set of formal concepts is called chain if any two of its elements are 

comparable (
21 CC ≤  or 

21 CC > ).  

 

3.2 Lexicon structure 
 

Let Vs be the set of HNs (
ss Vv ∈ ) and Vgg is the set of GPs (

gggg Vv ∈ ). The pair (vgg, vs) is the accurate 

GC if there exists the modifier function Sft and sorts of vs and vgg  satisfy the selective restrictions of the 

Sft. The binary relation I is the set of pairs (vgg,vs) of the accurate GCs and 
sgg

xVVI ⊆ . If vggIvs then the 

GC was derived from corpora with vs as HN and vgg as GP and the substitution of vs and vgg to the (6) 

gives the accurate GC. 

 

The relation I can be presented as the formal context K=(Vgg,Vs,I). Head nouns are the attributes of 

objects (GPs) which mean that objects have the common properties. The formal context can be also 

defined as K=(Vs, Vgg, I) then the common properties of the HNs are derived by common attributes (GPs). 

The complete lattice B(Vgg,Vs,I) can be build upon formal context K with order relation. 

 



The example of the formal lattice for the set of genitive constructions derived from Moshkov’s library 

(www.lib.ru) [17] is given in the Figure 2 according to the formal context in the Figure 1. 

 

 

Fig. 1. The genitive constructions and the formal context. 

 

Fig. 2. The formal lattice of genitive constructions. 

The formal concept ),( AA ′  has extent and intent. For example the formal concept marked as ‘ФП1’ at 

the Figure 2 has extent A={Пиво, Вода} and intent A′ ={Банка, Бутылка, Стакан}. 

 

All objects at the extent of the formal concept have the same set of common properties defined as formal 

concept intent A′ . The set of attributes can be viewed as the gloss of the objects and presents the lexical 

knowledge acquired from the text. 

  

Using the concept lexicon (lattice) the accurate genitive constructions can be read.  The order relation ( ≤ ) 

in the lexicon defines the word hierarchy. Thus the formal lattice is the lexicon that can be used for 

question answering. 

 

The longer the highest possible chain in the lattice is the better the lexicon satisfies the NLP needs. So we 

enlarge the formal context Kg=(Vgg, VgVs ∪ ,I), where Vg – is the set of verbs which use  

corresponding GC as verb’s argument in corpora. For example, drink glass of water, =gv drink and 

gg Vv ∈ . 

4. Concept’s classes acquisition 

In the Section 3 we present the lexicon based on the lattice. The lexicon includes sorts (lexeme classes) 

identical to formal concepts. The number of formal concepts in the lattice is usually bigger than number 

of input events. So the method to get classes of formal concepts is needed. The class of formal concept 



  

(sort) is a higher level of abstraction than a separate formal concept from initial concept lattice L. In this 

section we present the lattice segmentation algorithm to extract classes from initial lexicon (concept 

lattice).  

 

Any subset of the formal concepts always has the Least Common Superconcept (LCS). Let area of the 

concept lattice be a set of formal concepts which are related with one LCS. The segmentation algorithm 

for the initial formal lattice L produces a set of formal lattices {L
’
} that the following is true: 

• each lattice }{LL
i

′∈  partly corresponds to one of the area of initial lattice L; 

• each formal concept (except top and bottom concepts) from the initial lattice belongs to one and only 

one lattice from {L
’
}. 

 

The areas in the initial lattice can overlap. Thus we require only partial correspondence between the 

lattices from {L
’
} and areas of the initial lattice L. The ambiguous formal concept is the formal concept C 

of the initial lattice L that belongs to the different areas of the lattice L and LCSs of these areas are 

incomparable. 

 

We require the resulted classes to include maximum number of the formal concepts. Hence the algorithm 

has to use immediate subconcepts of the top concept of lattice L as LCS of the areas to form the 

lattices }{LL
i

′∈ . 

 

The proposed algorithm uses the following criteria to derive lattices }{LL
i

′∈  from the lattice L: each 

formal concept 
i

LC ∈  has to be more similar to the formal concepts from the area corresponding to the 

lattice Li than to the formal concepts from the other areas. We suggest calculating the similarity measure 

between the formal concepts as: 

|||\||\|

||
)1log(),(

BBBBB

B

path

D
CCspc

jic

c

ji
++

×−−=
, (9) 

where formal concept C=(A,B) is the LCS of the formal concepts Ci and Cj; Dc is the number of formal 

concepts in the chain in which top concept and formal concept C are maximal and minimal formal 

concepts; pathC is the minimal number of formal concepts in the chain which includes top and bottom 

concepts and also formal concept C. The similarity measure take into account the volume of common 

information for two concepts (|B|), the volume of the information specific for each individual concept  Ci 

and Cj (|Bi| and |Bj|), the specificity of the common information (Dc), and the different length of the 

lattice hierarchies (pathC). The similarity measure is only calculated for ambiguous concept and it’s 

immediate superconcepts. 

 

The segmentation algorithm includes each immediate subconcept Ci of the top concept of lattice L into 

the corresponding resulted lattice Li. Further all subconcepts of the formal concept Ci in the lattice L are 

included into lattice Li if for the subconcept Cj each its immediate superconcept is also subconcept of the 

formal concept Ci and Cj does not have other superconcepts which are incomparable with Ci or coincides 

with Ci. Otherwise the formal concept Cj is the ambiguous formal concept. It has to be placed into the 

same classes with its immediate superconcept with which it has the maximal similarity measure value 

according to (9). If the maximal similarity measure value is the same for several superconcepts then Cj is 

included into the class with the biggest number of items. 

 

In the Figure 3 the example of concept classes’ acquisition is given. Figure on the left is the initial lattice 

L. In the right figure there are three classes L1, L2, L3. Concepts from the class L1 are more similar to each 

other than to the concepts from L2 and L3 classes. The same is true for concepts of L2 and L3 classes. Why 

does, for example, C3 concept belong to L1 class, instead of L2 class? C3 concept has two super-concepts – 

C2 and C5. C3 concept is more similar to C2 concept than to C5 concept because 

5527,0
301

3
)

5

2
1log(),( 23 =

++
×−−=CCspc

 and 
2500,0

103

1
)

4

2
1log(),( 53 =

++
×−−=CCspc

 and ),(),( 5323 CCspcCCspc < . 



 

Fig. 3. Concept classes’ acquisition. 

5. QA tasks and concept-oriented lexicon 

The standard QA process is described in the Figure 4.  The question type recognition process is the first 

step in the QA. We use three basic question types: simple Yes/No questions, definition question, WH-

questions, and also its subtypes. The lexicon is used to distinguish between different types of definition 

questions (function, type, etc.) and WH-questions (for example “Which county … ?” asks for country 

name). The question is parsed and key question words are recognized using syntactic patterns. To detect 

question subtype we first find the concept which has main key word in its extent. Next we look for its 

super-concepts. Objects from its extent define question subtype. Key words form query. The lexicon also 

helps to make query expansion by adding objects from the sibling concepts. 

 

Fig. 4. Question answering process. 

The answer can be found in the local answers database or using the information retrieval engine. 

Information retrieval engine returns text paragraphs with potential answers. Each paragraph is parsed and 

key answer words are recognized using syntactic patterns. 

 

Next the concept lexicon is used to evaluate found paragraphs. We suggest semantic score metric to 

compare query and answers from the paragraphs: 
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where q – key question word, a – key answer word from a paragraph, ),( qqC
q

′′′= , ),( aaC
a

′′′= , Lv – 

lexicon lattice, ),(
yxL

CCSpc
v  

– similarity measure between Cx and Cy concepts normalized to maximum 

similarity measure of the lattice Lv, C – LCS for Cq and Ca concepts.  

The final answer is formed from the paragraph with the highest semantic score. 

6. Evaluation 

6.1 Implementation 

To evaluate proposed approach we use text collection from [17] of 85 millions words. From parsed 

corpora objects (GPs) and attributes (HNs) are derived. The context parameters are given in the Table 1. 

Parameter Value 

Number of objects, (|G|) 5974 

Number of attributes, (|M|) 193580 

Context size, (|I|=|G|× |M|) 1156446920 

Average number of attributes per object 32,4037 

Maximum number of attributes per object 6473 

Table 1. Formal context parameters. 

Before giving the results we will describe the lattice generation method. We have to choose the best 

algorithm for lexicon lattice generation in term of performance because number of objects and attributes 

is big (see Table 1). In addition it should be an incremental algorithm because new GCs appear 

constantly. The choice of algorithm depends on formal context type. Table 2 gives the distribution 

analysis of the number of attributes per object. 

Number of attributes per object Number of objects Number of objects, % 

> 1000  18 0,30 

500 .. 999 49 0,82 

100 .. 499 280 4,69 

50 .. 99 345 5,78 

40 .. 49 126 2,11 

30 .. 39 199 3,33 

20.. 29 331 5,54 

< 20 4626 77,44 

Table 2. Distribution of the number of attributes per object. 

Most of the objects (77%) have less than 20 attributes. According to [14] and [6] Ferre algorithm shows 

the best performance in this situation. But in practice for our context the performance was very pure. The 

reason of it is that other 23% of objects have huge number of attributes. According to [14] the Norris [9] 

algorithm shows the best performance on the context with huge number of attributes per object. So we 

suggest combining Ferre and Norris algorithm: use Ferre for objects with small number of attributes and 

Norris for objects with huge number of attributes. To choose the switching threshold we analyze the time 

for adding new object for Ferre (11) and Norris (12) algorithms. 

 

)( 2
lknO ⋅⋅ , (11) 

)( lmnO ⋅⋅ , (12) 

where n – number of objects, m – number of attributes, k – maximum number of atributes per one object, l 

– number of concepts in the lattice. 

 



So from (11) and (12) follows that if (13) is true 

mk <
2 , (13) 

than Ferre algorithm should be used, otherwise Norris algorithm. 

 

k n m l O, Ferre O, Norris 

Generation 

time, sec 

120 12 1 619 514 88 819 200 9 985 992 112 

100 23 2 085 2 303 529 690 000 110 440 365 106 

80 36 2 451 5 186 1 194 854 400 457 591 896 96 

70 52 2 783 9 097 2 317 915 600 1 316 481 452 89 

60 70 3 108 13 679 3 447 108 000 2 976 003 240 83 

50 111 3 621 23 009 6 384 997 500 9 248 030 379 81 

40 149 3 964 29 660 7 070 944 000 17 518 263 760 89 

30 206 4 306 36 683 6 801 028 200 32 539 141 588 111 

Table 3. Switching threshold’s test. 

 

The results of experiments are given in the Table 3 for the text of 4 millions words. Objects were sorted 

by number of attributes in the descending order. One by one each object was added into formal context. 

Switching threshold (k) was changing from 120 to 30. Each row in the table corresponds to the particular 

switching threshold (k) and n, m, l parameters correspond to the lattice in the moment of switching 

between Norris and Ferre. Generation time is given for the complete lattice building process. The 

threshold equal to 50 corresponds to the best generation time – 81seconds. It proves the condition in (13). 

 

6.2 Comparison 
In order to evaluate our approach we compared concept-oriented lexicon with Abramov’s Dictionary of 

Synonyms (ADS). We used this dictionary as a “gold standard” because it is freely available and for 

Russian language it has largest coverage area (19108 articles). Recall and Precision are calculated 

according (14) and (15): 

Recall 
||||

||

BA

A

+
=

, (14) 

Precision 
||||

||

CA

A

+
=

, (15) 

where A – set of lexemes recognized as synonyms in ADS and concept-oriented lexicon, B - set of 

lexemes recognized as synonyms in ADS but not in concept-oriented lexicon, C - set of lexemes 

recognized as synonyms in concept-oriented lexicon but not in ADS. 

 

In the experiment the concept-oriented lexicon was built upon the corpora of about 17 millions words. 

The experiment was conducted for the 50 most frequent lexemes of the Russian language. The results 

were the following: Recall=24,36% and Precision=9,78%. Low Precision is explained by the fact that 

concept-oriented lexicon has much bigger coverage than ADS. Also ADS includes very specific 

synonyms that decrease Recall. So the better “gold standard” is needed. 

7. Conclusions and further work 

In this paper we have proposed the novel approach to lexical resources to boost the QA-system 

performance. Our approach is based on the lattice theory and the genitive constructions. It derives new 

lexical information automatically from corpora and adds lexemes into the lexicon. The lexicon has 

hierarchical structure and is presented by a lattice. A formal concept is the basic item of the lexicon. The 

formal concept joins objects from its extent with interpretation (gloss) from its intent. This paper presents 

similarity measure and segmentation algorithm to derive classes with the several formal concepts from 

the initial lexicon. These classes correspond to the lexical sorts of different degree of granularity. 

  



  

The suggested lexicon is applied to the several problems of the question answering. It has been shown 

how to use concept-oriented lexicon in the question type detection, and the answers finding. In the further 

researches we would like to apply our approach to the languages other than Russian language and 

integrate concept-oriented lexicon with the industrial QA-system. 

References 

1. И. В. Азарова, О. А. Митрофанова, А. А. Синопальникова. Компьютерный тезаурус русского 

языка типа WORDNET. Труды международной конференции Диалог'2003, Протвино, 2003. 

2. Борщев В.Б., Кнорина Л.В. Типы реалий и их языковое восприятие. В сб. "Вопросы 

кибернетики. Язык логики и логика языка". М.: 1990. C.106-134. 

3. Борщев В.Б. Естественный язык - наивная математика для описания наивной картины мира.  

Московский лингвистический альманах, вып. 1, 1996. С.203-225. 

4. Cimiano P., Hotho A., Staab S. Learning Concept Hierarchies from Text Corpora using Formal 

Concept Anaylsis. Journal of Artificial Intelligence Research. Volume 24, pages 305-339 August 2005. 

5. Fellbaum C. WordNet: An Electronic Lexical Database. Cambridge, 1998. 

6. Ferré S. The Use of Associative Concepts for Fast Incremental Concept Formation in Sparse Contexts. 

In B. Ganter and A. de Moor editors, Using Conceptual Structures, Contributions to ICCS 2003, 2003. 

7. Ganter B. and Wille R., Formal Concept Analysis – Mathematical Foundations. Berlin: Springer-

Verlag, 1999. 

8. Mann G.S., Fine-Grained Proper Noun Ontologies for Question Answering,     SemaNet'02: Building 

and Using Semantic Networks, 2002. 

9. Norris E. M., An algorithm for computing the maximal rectangles in a binary relation // Revue 

Roumaine de Matheґmatiques Pures et Appliqueґes, 23 (2), 1978. – pp. 243-250. 

10.Gerasimova I. A.. Formal grammar and intensional logic. – Moscow, 2000. 

11.Partee B.H. Formal Semantics, Lectures. RGGU, February 14, 2003. 

12.Partee B.H., Borschev V.B. Genitives, types, and sorts. In Possessives and Beyond: Semantics and 

Syntax, eds. Ji-yung Kim, Yury A. Lander and Barbara H. Partee. Amherst, MA: GLSA Publications, 

2004. - PP  29-43. 

13.Priss, Uta. Linguistic Applications of Formal Concept Analysis. In: Ganter; Stumme; Wille (eds.), 

Formal Concept Analysis, Foundations and Applications. Springer Verlag. LNAI 3626, 2005, p. 149-

160. 

14.Kuznetsov S.O., Obiedkov S.A. Comparing performance of algorithms for generating concept lattices 

// Journal of Experimental & Theoretical Artificial Intelligence, Volume 14, Issue 2 & 3, 2002. – pp. 

189-216. 

15.Yarowsky D. Unsupervised word sense disambiguation rivaling supervised methods. Proceedings of 

the 33rd annual meeting on Association for Computational Linguistics, Association for Computational 

Linguistics,  Morristown, NJ, USA, 1995, P.189 - 196.  

16.Yarowsky D. One sense per collocation. In the Proceedings of ARPA Human Language Technology 

Workshop, Association for Computational Linguistics, Morristown, NJ, USA, 1993. P.266 - 271. 

17.www.lib.ru 

 


