Using and Interfacing Background
Knowledge in Story Understanding

Nemecio R. Chavez, Jr.!, Heather D. Pfeiffer?, Roger T. Hartley'

'Department of Computer Science,
2Klipsch School of Electrical and Computer Engineering,
New Mexico State University
Box 30001, MSC CS/3-0, Las Cruces, NM, 88003-8001 USA
{nchavez,hdp,rth}@cs.nmsu.edu

Abstract. This paper details the use of background knowledge within a story understanding
system. The story understanding system is based upon a multi-agent system (MAS). The MAS
combines different forms of knowledge into a meaningful structure from which understanding
can be demonstrated, i.e., question answering. The system uses two forms of knowledge to
accomplish this task: 1) knowledge about objects in the world; and 2) prototypes. The latter
represents higher-order knowledge or experience such as repeating a process and forms of
thinking like abduction and deduction. The former stores knowledge about objects in the real
world and their relationship to each other. The two forms are viewed as two distinct forms of
data that might be used in our own understanding process, thus, they are treated separately
by the system.

Keywords

Knowledge, knowledge bases, databases, communication, story understanding.

1 INTRODUCTION

Described are two forms of knowledge used to help understand a simple children’s story. The bottom
layer of knowledge provides basic knowledge needed for story understanding. The basic knowledge
is information about the world that a 6 or 7 year old child might know and use. The story under-
standing system also provides an added layer of knowledge that will be referred to as prototypes.
The prototype knowledge is similar to meta-data or meta-level knowledge and require concepts to
be combined together therefore relaying a story as a group of ezperiences. The complete knowledge
needed for understanding a story comes in two forms: 1) knowledge about objects in the world, and
2) higher-order knowledge or experience of objects and their relationships in the world. The story
understanding system uses agents to combine this knowledge into a meaningful structure from which
understanding can be demonstrated.

Consider the following text [1] taken from a children’s book:

Down at the very bottom of the pitcher there was a little water and the thirsty crow tried
every way to reach it with her beak. But the pitcher was much too tall. The crow got thirstier
and thirstier. At last she thought of a clever plan. One by one she dropped pebbles into the
pitcher. Every pebble made the water rise a little higher. When the water reached the brim,
the thirsty crow was able to drink with ease.



This text describes everyday objects and the relationships between those objects that most readers
can understand very easily. In fact, a reader can demonstrate their understanding in a variety of
ways. They can summarize the story, paraphrase it, retell it, or answer questions like the following:

— Why does the crow want the water?

— Why is the crow thirsty?

— How did the crow drop the pebbles into the water?

— What was the plan the crow thought of?

— Why did putting the pebbles in the pitcher make the water rise?

In the case of the latter, none of the questions can be answered from the text alone. They require the
understanding of the text to be grounded in knowledge of the world; or rather they require in-depth
understanding [16] to have occurred to be answered properly. The use of background knowledge and
its importance to story understanding was recognized immediately [3].

Perhaps, one of the most studied avenues of story understanding is that of conceptual dependency
[24] and scripts [25]. The idea is simple in that commonly encountered situations in our lives are
broken up and stored as scripts. For example, each of us may have a Restaurant script in memory
that provides us with all the information we have gained through our lives about restaurants. Thus,
the meaning or understanding of a story becomes a series of scripts chained together in some form.

Script-based story understanding has had some success [26,2,8], but has been criticized for several
points [13]. The most damaging being that scripts are based on data that appears tailor-made for
the story at hand.

The purpose of this paper is to investigate the integration of knowledge used in a story understanding
system and how using different levels of knowledge can create flexibility for storage and retrieval of
information and which might shed light on some of the criticisms of story understanding systems
(i.e., such as the data being tailor-made for the story or text at hand). Hobbs [9] uses a single
intelligent agent to handle all the knowledge management, where we propose dividing the knowledge
base into multiple agents (i.e., the basic and prototype knowledge). This paper also discusses the
issue of interfacing between the understanding system and knowledge base .

2 KNOWLEDGE BASE

The knowledge base is broken up into two categories. In either case, the knowledge is at the level of
a 6 or 7 years old child. The first describes knowledge about objects and their relationship to other
objects. The second describes prototypes (higher-order knowledge or abstract knowledge) such as
what it means to do something repeatedly, to drop something, or to like something, for example. The
hope is that by separating the two, knowledge independent of the story understanding process can
be isolated from knowledge the process is dependent on. Each category is discussed in the following
subsections.

2.1 Knowledge about Objects

This part of the knowledge base is not tied to a particular domain. It is meant to be general knowledge
about objects in the world that a child of 6 or 7 years old might know. As an example, consider
the domain of the story from the introduction. A reader would need to know about crows, pitchers,
pebbles, etc. to understand the text. In an English version of a knowledge base would need to be
stored the following;:



Water is a liquid.

Liquid is a thing.

All pitchers have a brim, bottom, and top.

Containers are things that hold things.

Pebbles are thing.

Crows are birds.

Birds are animals that have beaks.

Animals are living things.

Living things are things that need air, food, water, and shelter.

Note that while this knowledge is needed to understand the story, it is not necessarily specific to the
story and can be used for other reasoning tasks. In fact, if some of this knowledge were missing, it is
likely the reader would not fail to understand the whole story. They just would not understand the
part that is missing or they might still be able to make correct inferences without it. For example, if
pebbles were unknown, the reader still might be able to infer that putting them (whatever they are)
in the pitcher caused the water level to rise and, thus, the crow was able to drink. Ideally, a story
understanding system would be independent on this type of knowledge. Thus, it could be stored in
any knowledge base with any format.

There are, essentially, three knowledge bases currently available about objects: Cyc, OpenMind, and
ThoughtTreasure [6,17,27]. These knowledge bases (databases holding commonsense knowledge) are
intended to capture the commonsense knowledge that we have of the world such as “A bird flies,
unless it is a penguin.” These knowledge bases are an attempt at building a single knowledge base
of all known commonsense. Thus, researchers working at opposite ends of the world will be able to
use them and expect the same level of consistency when commonsense knowledge is needed [9].

Although the ultimate goal is to capture the commonsense knowledge a human would have about
the world, that goal is large. Thus, the focus of the knowledge has been on defining objects such as
cars, liquids, animals, etc. and their relationships which include but are not limited to AKO (short
for also known as), ISA (the inheritance relationship), PART-OF, etc. [16].

There is a major difference in philosophy in how the data is obtained within each base. OpenMind and
ThoughtTreasure derive their knowledge by controlled interaction with the general public [16,17,27].
While on the other hand, Cyc comes from a corporation that employees people to engineer the
knowledge [6]. Using engineered knowledge has the benefit that time was spent deciding on how the
knowledge would be represented. However, using knowledge entered by the public has the benefit
that the knowledge came from many independent minds. It is too soon to determine the overall
impact of one philosophy over the other, but one would hope, regardless of which, eventually each
database would cover the similar commonsense knowledge.

The story understanding system described here is not tied to any particular structure of data and,
thus, is not tied to any particular commonsense database. However, for the initial prototype and
because their source code was easily available and the ease with which they were to work with,
the Conceptual Programming Environment (CPE) and the Knowledge Machine (KM) were used
[19,5]. General everyday knowledge about the world was put into them and only knowledge about
their query interface was held within the story understanding system. As an example of one of these
systems, the CPE knowledge base is described in the following section.

CPE

The Conceptual Programming Environment, CPE, is a semantic network system built using concep-
tual structures [19]. Any knowledge base can be used with the story understanding system; however,
this environment was chosen because 1) it has just been redesigned in order to be more flexible and



to inter-operate with other systems [20], 2) the author is currently working on an internal module to
allow reading and writing the new Common Logic CGIF format, and 3) it can incorporate knowledge
from other large factual knowledge such as Cyc [6]. The knowledge is stored using the knowledge
representation known as Conceptual Graphs, CGs, developed by John Sowa [28] using the ideas from
C.S. Peirce’s Existential Graphs [18]. There is also an interchange format, CGIF!, which is available
for exchanging conceptual knowledge.

The following is a translation of the English knowledge base above into CGIF notation.

;The first relations set up the type hierarchy for the concepts found in the knowledge base;

(GT [TypeLabel: ‘Entity’] [TypeLabel: ‘Thing’])

(GT [TypeLabel: ‘Thing’| [TypeLabel: ‘Liquid’])

(GT [TypeLabel: ‘Thing’] [TypeLabel: ‘Container’])

(GT [TypeLabel: ‘Thing’| [TypeLabel: ‘Pebble’])

(GT [TypeLabel: ‘Thing’| [TypeLabel: ‘LiveThing’])

(GT [TypeLabel: ‘Liquid’] [TypeLabel: "Water’])

(GT [TypeLabel: ‘Container’] [TypeLabel: ‘Pitcher’])

(GT [TypeLabel: ‘LiveThing’][TypeLabel: ‘Animal’])

(GT [TypeLabel: ‘Animal’|[TypeLabel: ‘Bird’])

(GT [TypeLabel: ‘Bird’|[TypeLabel: ‘Crow’])

;The next set of Conceptual Graphs are definitional for giving structure to some of the concepts in
the type hierarchy just defined;

[Pitcher*pl:@every ;all pitchers;)

(ATTR 7pl [Bottom)])

(ATTR 7pl [Top])

(ATTR ?7pl [Brim|)

(HOLD [Container*cl| [Thing:Q{}]

(PART [Bird] [Beak])

(NEED [PROPOSITION:

(BREATHE |[LiveThing*1t1] [Air])

(EAT 71t1 [Food])
(DRINK 71t1 [Water])
(LIVEIN ?1t1 [Shelter])])

A Conceptual Graph is a bipartite, connected, directed graph where all nodes are partitioned into
two disjoint sets, concepts and conceptual relations. The edges are directed arcs between concepts
and conceptual relations [22]. Because these are true graphs as defined through graph theory, the
last CGIF defined graph above, LiveThing, can be viewed in its display format in Figure 1.

Associated along with the concepts in the definitional graphs is where a concept lies in its context.
The type hierarchy gives this contextual information. Conceptual graphs can represent not only
definitional information, but also factual data that would be seen as the content data of a database.
Lastly, content data can be assumed until it is known to be factual.

The reasoning algorithms within CPE use the projection and maximal join operations with the
context of the type hierarchy over the definitional, factual, and assumption data graphs to build
models within a query-answering system [19,22]. When the story understanding agent makes a query
to the CPE system, then an instance of any appropriate CPE graph will be returned when there is
a valid answer. The instance is a Java object that can be stored or more structural information can
be retrieved from it.

The first object returned is the most probable result; then other probable objects will also be sent to
the story understanding agent. However, CPE can do non-monotonic reasoning; that is, the objects

! The current benchmark copy of CGIF from the ICCS2001 workshop can be located at the web site:
http://www.cs.nmsu.edu/~hdp/CGTools/cgstand/cgstandnmsu.html#Header 44.



Proposition

LiveThing

Fig. 1. Display format for a LiveThing Graph.

returned do not always hold with the concept that the hypotheses of any derived fact may be freely
extended with additional assumptions. In fact, a true statement within the environment may not
continue to be true when new added axioms or facts are introduced into the environment [14]. In
this way, as knowledge is added to the knowledge base, a query from the story understanding agent
may get different results or even just the same object in a different order of probability. In CPE
all the knowledge is totally independent of the story understanding system and can be used by any
application, or even enhanced by other running systems to give more correct information.

2.2 Prototype Knowledge

Prototypes represent abstract or general knowledge. For example, all users have some notion of what
it means to repeat or to drop something. In fact, there is a notion of the meaning based on context.
In the context of the everyday world, repeating something may simply mean to do something over
and over, such as asking a question more than once. Thus, if we ask someone for a quarter repeatedly,
the meaning might be akin to the following:

Do you have a quarter I can borrow?
Do you have a quarter I can borrow?

However, in the context of a programming language, it might be said that repeating something means
to perform those statements within a loop. It would not be unusual for a programming instructor
to say, “Then we repeat these statements for the length of the array.”” Our understanding of this
statement might be in terms of a specific looping structure, or perhaps a generic one akin to the one
below.

Loop from 1 to length of array
// repeat statements
End loop



Aside from the obvious, each of these understandings have a different meaning because they could
potential conjure up new ideas or things that we know about what was said. This is important in
that we might be able to answer a wider variety of questions about what we read.

It might seem like prototypes are simply templates that we fill in with other prototypes and knowl-
edge of the world. However, they are much more than that because they not only help expand or
constrain our understanding (such as with repeating something like above), but they help guide our
thinking or act as a train of thought for our thinking. For example, when we read something, we
often times know in advance the genre of the material. If we were reading a comic strip, we might
not take it as seriously as we would a scientific paper. A prototype could be used for the genre and,
thus, guide our thinking as something is being comprehended.

Other examples of these prototypes include scripts. Recall that scripts provide a general recipe for
doing everyday things in our lives. Going to a restaurant, scheduling a trip, purchasing tickets, are
all general guides of what is involved in when we normal do these things. Thus, any script is a
prototype.

Prototype knowledge seems difficult to store in a traditional knowledge base (albeit a concept de-
noting the knowledge could be easily stored), but could certainly benefit from some of the reasoning
capabilities most knowledge bases provide. Recently, there was the suggestion that scripts could
make use of being stored in a hierarchical fashion [10]. Thus, object-oriented techniques show some
promise in working with prototypes.

3 THE STORY UNDERSTANDING SYSTEM

The story understanding system described here is in the process of being developed. A prototype
is currently working and the next evolution is currently being built. This system is an attempt at
satisfying the following metrics:

It should be capable of performing in-depth story understanding [16];

— Revisions to the system or knowledge should be isolated to manageable, well-defined areas or
domains [16,23];

— Knowledge, in general, should be independent of the text at hand [12];

— It should have a high-level of elaboration tolerance [15];

Semantic problems or errors should be detectable and if possible recoverable [21].

These metrics were built from the goals and criticism of previous work (suggestions or actual systems)
[4]. The system tries to satisfy these metrics in a variety of ways.

To perform in-depth story understanding, the system uses knowledge about the world and prototypes
to build understanding that goes beyond the given text. To help with the system or knowledge being
isolated to manageable, well-defined areas the system uses agents based on each proposition to help
bind the knowledge about objects with the prototype knowledge. This system is also broken up
into five components based upon the five levels of representation psychologists generally believe we
use when comprehending written text [7], which helps make the system manageable and provides a
method for dealing with semantic errors between the components. The system works one sentence
at a time, so it tries to make adjustments to understanding already in place instead of discarding
what is already known. Thus, the system is elaboration tolerant [15].

To simplify things, the system takes input sentences at the text-base level. That is, sentences that
have their meaning preserved, but which have lost their exact wording or syntax. These sentences
would be composed of propositions. A sentence at this level would map directly to known propositions
in memory. For example, the following sentence:



One by one she dropped pebbles into the pitcher.
Would be converted to the following form ahead of time:

repeat|[dropped[AGENT=she, OBJECT=pebble,
ACTION=into, TARGET=pitcher]]

Pebble and pitcher would need to exist in the object knowledge base and the rest would need to exist
in the prototype knowledge base. In fact, it can be assumed they exist because to convert a sentence
to its text-base form would require knowledge of objects and prototypes existing in the knowledge
base.

3.1 The Understanding Process

There is a special section of prototype memory where a multi-agent system lives. The agents are the
binding force between the prototypes and the objects. Processing or understanding occurs through
the agents. A story is processed sentence by sentence. As each proposition is encountered agents are
fired. Each agent knows what prototypes and what objects are necessary to build the understanding
of the given proposition. This processing is recursive, thus, implying the meaning of a proposition
is defined in terms of other propositions as well as itself.

Another way to think of the agents is that they are merely data themselves. This algorithm is
processing the propositions, but it is processing them in terms of the agents. Thus, the process
forces the form or the structure of the data, or rather agents, to be shared.

A simple pseudo-code version of the top-level understanding agent (i.e., algorithm) is given below:

understanding = null
while there are propositions
fire agent for current proposition
process sub-propositions for given proposition
update understanding
get next proposition
end

Once processing of the text is finished, a structure containing a binding of prototypes and knowledge
about objects is created. The prototypes of course handle the high-level knowledge while the objects
simply handle basic properties about themselves and their relationship to other objects. This finished
structure can be used for questions answering, summarizing, outlining, etc.

It should be noted that this processing may be recursive because the meaning of a proposition may
be defined in terms of other propositions as well as itself. Semantic error detection would also be
part of the processing. For example, consider the following sentence:

The water rose before each pebble was placed in the pitcher.

This would cause an error because the water would only rise after each pebble was placed in the
pitcher.



3.2 Interfacing between Story System and Knowledge Base

Part of the work in designing this story understanding system, is to consider what would be needed
to define a generic interface between the system and knowledge bases. This is a very difficult task
because most knowledge bases provide access to their knowledge via a query language specific to the
knowledge base. Thus, a generic interface between an application and knowledge base would have to
define some mapping between queries going through the interface and those going to the knowledge
base. The queries from the generic interface would stay consistent across all applications interfacing
with it. However, the query from the interface to the knowledge base would be specific to whatever
knowledge base is being used. This provides a challenging and time-consuming task.

Another interesting aspect is that story understanding systems would benefit from certain queries
being intrinsic to the generic interface. For example, when converting a sentence from English to the
text-base level (i.e., to propositional form), knowledge of what concepts and related concepts are
stored in the knowledge base would be helpful. Any English sentence would need to be converted
to propositional form at some point. Thus, verifying or having access to known concepts is essential
to this process. Likewise, knowing aliases or related concepts and when they should be used would
beneficial.

Some very preliminary work has been done with respect to this idea [21]. This work only considered
the problem of automatically translating knowledge between knowledge bases so the same knowledge
was contained with in each. It is limited to very small well-defined domains because as the size of
the domain grows it becomes more and more difficult to ensure all consequences of the knowledge
base or maintained.

4 CONCLUSIONS

The CPE environment and story understanding system described in this paper provide only a small
step towards an ideal system. This collaboration shows that communication between a story un-
derstanding system and a knowledge base can be done transparently. This also allows the under-
standing system to use multiple sources and categories of knowledge, which improves understanding,
and allows the knowledge base and system to be loosely coupled [11]. Thus, reducing or potentially
eliminating the amount of hand-tailored data [12]. Also, knowledge does not have to be transferred
between the different knowledge systems to give current and up to date content data, but can
continue to be stored within the current system and just shared as needed,

Knowledge like prototypes could benefit from being stored in a lower level knowledge base as a single
intelligent agent, but would not be as flexible as leveling the knowledge and having multiple agents.
By using a standardized interface to the low level knowledge base, perhaps, the story understanding
agents could be achieved without any specific knowledge dependencies. The story understanding
agents could, thus, only query for object information when needed for a prototype they are working
on. This allows the basic knowledge base to hold more factual information (such as they loaded from
a standard knowledge base like Cyc) and just “service” the understanding agents.

References

[1] Aesop, Aesop’s fables, Doubleday & Company, Garden City Books (1954).

[2] Alvarado, S.J., Understanding Editorial Text: A Computer Model for Argument Comprehension, Kluwer
Academic, Boston, Mass (1990).

[3] Charniak, E., “Toward a model of children’s story comprehension”, AI Laboratory Technical Report 266,
Artificial Intelligence Laboratory, Massachusetts Institute of Technology (1972).



[4] Chavez, Jr., N.R. and Hartley, R.T., “The Role of Object-Oriented Techniques and Multi-Agents in
Story Understanding”, Proceedings of the International Conference on Integration of Knowledge Intensive
Multi-Agent Systems (KIMAS 2005), Waltham, Mass (2005).

[6] Clark, P. and Porter, B., “Using Access Paths to Guide Inference with Conceptual Graphs”, in D. Lukose,
H. Delugach, M. Keeler, L. Searle, J. Sowa (Eds): Proc Int Conf on Conceptual Structures - ICCS’97
(Lecture Notes in AI vol 1257), pages 521-535, Berlin:Springer (1997).

[6] Cycorp, OpenCyc, http://www.opencyc.org.

[7] Graesser, A.C., Millis, K.K., and Zwaan, R.A., “Discourse Comprehension”, Annual Review of Psychol-
ogy, Volume 48, pages 163-190 (1997).

[8] Grishman, R., and Sundheim, B., “Message Understanding Conference - 6: A brief history”, 6th Inter-
national Conference on Computational Linguistics, pages 466-471 (1996).

[9] Hobbs, J.R., and Gordon, A.S., “Encoding Knowledge of Commonsense Psychology”, 7th International
Symposium on Logical Formalizations of Commonsense Reasoning, Corfu, Greece, pages 107-114 (2005).

[10] Kalantzis, G.D., “SOPHIA: An Integrated Model for Story Understanding”, Proceedings of the 3rd
Annual CLUK Research Collogquium, Brighton (2000).

[11] Keeler, M. and Pfeiffer, H.D., “Collaboratory testbed partnerships as a knowledge capture challenge”,
in P. Clark and G. Schreiber, (Eds): Proceedings of the Third International Conference on Knowledge
Capture, pages 203-204, KCAP’05, ACM Press (2005).

[12] Keeler, M.A. and Pfeiffer, H.D., “Building a Pragmatic Methodology for KR Tool Research and De-
velopment”, in H. Scharfe, P. Hitzler, and P. Ohrstrom, (Eds): Conceptual Structures: Inspiration and
Application, LNAI, Proceedings of ICCS 2006, Aalborg, Denmark, pp. 314-330, Berlin:Springer (2006).

[13] Mallery, J.C., “Thinking About Foreign Policy: Finding an Appropriate Role for Artificially Intelligent
Computers”, Cambridge: Master’s Thesis, M.I.T. Political Science Department, (1988).

[14] Marek,W. and M. Truszczynski , Nonmonotonic Logics: Context-Dependent Reasoning. Springer Verlag,
(1993).

[15] McCarthy, J., “Elaboration tolerance”, The 1998 Symposium on Logical Formalizations of Commonsense
Reasoning, London (1998).

[16] Mueller, E.T., “Story understanding”, Encyclopedia of Cognitive Science, London: Nature Publishing
Group (2002).

[17] Mueller, E.T., ThoughtTreasure, http://www.signiform.com/tt/htm/tt.htm.

[18] Peirce, C.S.. Manuscripts on existential graphs. Peirce, 4:320-410, (1960).

[19] Pfeiffer, H.D., and Hartley, R.T., “Temporal, spatial, and constraint handling in the conceptual pro-
gramming environment, CP”, Journal for Experimental and Theoretical AI, 4(2):167-182, (1992).

[20] Pfeiffer, H.D., “An Exportable CGIF Module from the CP Environment: A Pragmatic Approach”, in
K.E. Wolff, H.D. Pfeiffer, and H.S. Delugach (Eds.): Lecture Notes in Artificial Intelligence, Vol. 3127,
pp. 319-332, Springer-Verlag, (2004).

[21] Pfeiffer, H.D, Chavez, Jr., N.R., and Hartley, R.T,” A Generic Interface for Communication between
Story Understanding Systems and Knowledge Bases”, Richard Tapia Celebration of Diversity in Com-
puting Conference, (2005).

[22] Pfeiffer, H.D. and Hartley, R.T., “A Comparison of Different Conceptual Structures Projection Algo-
rithms”, in the 15th International Conference on Conceptual Structures, Sheffield Hallam University,
Sheffield, UK, July (2007).

[23] Riloff, E., “Information Extraction as a Stepping Stone toward Story Understanding”, Computational
Models of Reading and Understanding, MIT Press, 435-460, (1999).

[24] Schank, R.C., Conceptual Information Processing, American Elsevier, (1975).

[25] Schank, R.C., and Abelson, R., Scripts, Plans, Goals and Understanding, Lawrence Erlbaum, Hillsdale,
N.J, (1977).

[26] Schank, R.C., and Riesbeck, C.K., Inside Computer Understanding, Lawrence Erlbaum, Hillsadale, N.J.,
(1981).

[27] Singh, P., OpenMind,.http://www.openmind.org.

[28] Sowa, J.F., Conceptual Structures: Information Processing in Mind and Machine, Addison-Wesley,
Reading, Mass, (1984).



