
DL-Lite without UNA

A. Artale,1 D. Calvanese,1 R. Kontchakov,2 and M. Zakharyaschev2

1 KRDB Research Centre
Free University of Bozen-Bolzano

I-39100 Bolzano, Italy
lastname @inf.unibz.it

2 School of Comp. Science and Inf. Sys.
Birkbeck College

London WC1E 7HX, UK
{roman,michael}@dcs.bbk.ac.uk

1 Introduction

Description logics (DLs) have recently been used to provide access to large
amounts of data through a high-level conceptual interface, which is of relevance
to both data integration and ontology-based data access. The fundamental infer-
ence service in this case is answering queries by taking into account the axioms
in the TBox and the data stored in the ABox. The key property for such an ap-
proach to be viable in practice is the efficiency of query evaluation. To address
these needs a series of description logics has been proposed and investigated
in [6–8, 16] (the so-called DL-Lite family) and in [1, 2]. The significance of the
DL-Lite logics is testified by the fact that they form the basis of OWL 2 QL,
one of the three profiles of the web ontology language OWL 2.1 According to the
current version of the official W3C profiles document, the purpose of OWL 2 QL
is to be the language of choice for applications that use very large amounts of
data and where query answering is the most important reasoning task.

A very important difference between description logics and OWL is the status
of the unique name assumption (UNA), which is commonly made in DL but not
adopted in OWL. Instead, the OWL syntax provides explicit means for stating
which object names are supposed to denote the same individual and which of
them should be interpreted differently (in OWL, these constructs are called
sameAs and differentFrom).

Until recently, it had been assumed that the DL-Lite logics are interpreted
under the UNA. The role of the UNA (for DL-LiteA) is discussed in [4, 5], where
it is shown that if the UNA is dropped, instance checking becomes NLogSpace-
hard for data complexity. The aim of this paper is to investigate in depth the
impact of dropping the UNA on both the combined and data complexity of rea-
soning in the DL-Lite family and extensions, classified according to the following
features:

(1) the presence or absence of role inclusion assertions;
(2) the form of the allowed concept inclusions, where we consider four classes

core, Krom, Horn, and Bool exhibiting different computational properties;
(3) the form of the allowed numeric constraints, ranging from none, to global

functionality constraints only, and to arbitrary number restrictions.
1 http://www.w3.org/TR/owl2-profiles/

In a nutshell, the obtained results can be summarized as follows. Without
any kind of number restrictions, the above logics do not ‘feel’ the UNA. However,
equality between object names increases the data complexity for core and Horn
logics, DL-LiteRcore and DL-LiteRhorn, from AC0 to LogSpace. (The inequality
constraints do not affect the complexity.) In the presence of functionality con-
straints, dropping the UNA increases the combined complexity of satisfiability
for DL-LiteFcore and DL-LiteFkrom from NLogSpace to P, and the data complex-
ity of query answering (or instance checking) for DL-LiteFcore and DL-LiteFhorn
from AC0 to P. With arbitrary number restrictions the price is even higher: e.g.,
the data complexity of query answering (or instance checking) for DL-LiteNcore
increases from AC0 to coNP if the UNA is not adopted.

Needless to say that in all these cases we loose the important property of
first-order rewritability of (positive existential) queries, and so cannot use the
standard database query engines in a straightforward manner. Since the OWL 2
profiles are defined as syntactic restrictions without changing the basic semantic
assumptions, it was chosen not to include in the OWL 2 QL profile any construct
that interferes with the UNA and which, in the absence of the UNA, would cause
higher complexity. That is why OWL 2 QL does not include any form of number
restrictions and the sameAs constructor.

As for the matching upper complexity bounds, we show that, without UNA,
the logics of the form DL-Lite(RF)

α and DL-Lite(RN)
α with restricted interaction

between number restrictions and role inclusions (similar to that in DL-LiteA
[16]) behave precisely in the same way as DL-LiteFα and DL-LiteNα , respectively.
(If this interaction is not restricted then even the logic DL-LiteR,Fcore is ExpTime-
hard for combined complexity and P-hard for data complexity [13].)

2 DL-Lite Logics

We begin by defining the description logic DL-LiteR,Nbool , which can be regarded as
the supremum of the original DL-Lite family [6–8] in the lattice of description
logics. The language of DL-LiteR,Nbool contains object names a0, a1, . . . , concept
names A0, A1, . . . , and role names P0, P1, Complex roles R and concepts C
are defined as follows:

R ::= Pi | P−i ,

B ::= ⊥ | Ai | ≥ q R,
C ::= B | ¬C | C1 u C2,

where q is a positive integer. The concepts of the form B are called basic.
A DL-LiteR,Nbool TBox, T , is a finite set of concept and role inclusions of

the form C1 v C2 and R1 v R2, respectively. An ABox, A, is a finite set of
assertions of the form Ak(ai),¬Ak(ai), Pk(ai, aj),¬Pk(ai, aj). Taken together,
T and A constitute the DL-LiteR,Nbool knowledge base (KB) K = (T ,A). In the
following, we denote by role(K) the set of role names occurring in T and A, by

2

role±(K) the set {Pk, P−k | Pk ∈ role(K)}, and by ob(A) the set of object names
in A. For a role R, we set inv(R) = P−k if R = Pk, and inv(R) = Pk if R = P−k .

As usual, an interpretation, I = (∆I , ·I), consists of a domain ∆I 6= ∅ and
an interpretation function ·I that assigns to each ai an element aIi ∈ ∆I , to Ai a
subset AIi ⊆ ∆I of the domain, and to each Pi a binary relation P Ii ⊆ ∆I×∆I .
The interpretation of the concept constructs, the concept and role inclusions,
and the ABox assertions is also standard. For example,

(≥q R)I =
{
x ∈ ∆I |]{y ∈ ∆I | (x, y) ∈ RI} ≥ q

}
.

A KB K = (T ,A) is satisfiable if there is an interpretation I satisfying all the
members of T and A, in which case we write I |= K and say that I is a model
of K.

The unique name assumption (UNA) is the following requirement imposed
on interpretations I: aIi 6= aIj for all i 6= j. As was mentioned in the introduction,
in this paper we do not make this assumption.

The languages we consider here are obtained by imposing various syntactic
restrictions on DL-LiteR,Nbool . A DL-LiteR,Nbool TBox T is called a Krom TBox if its
concept inclusions are of the form

B1 v B2, B1 v ¬B2 or ¬B1 v B2 (Krom)

(here and below all the Bi and B are basic concepts). T is called a Horn TBox
if its concept inclusions are of the form

l

k

Bk v B (Horn)

(by definition, the empty conjunction is just >). Finally, T is a core TBox if its
concept inclusions are restricted to

B1 v B2 or B1 v ¬B2. (core)

AsB1 v ¬B2 is equivalent toB1uB2 v ⊥, core TBoxes can be regarded as sitting
in the intersection of Krom and Horn TBoxes. The fragments of DL-LiteR,Nbool

with Krom, Horn and core TBoxes are denoted by DL-LiteR,Nkrom, DL-LiteR,Nhorn

and DL-LiteR,Ncore , respectively.
For α ∈ {core, krom, horn, bool}, we denote by DL-LiteR,Fα the fragment of

DL-LiteR,Nα in which, out of all number restrictions ≥q R, we are allowed to
use existential concepts (i.e., ∃R ::= ≥1R) and only those ≥2R that occur in
concept inclusions of the form ≥ 2R v ⊥ (known as global functionality con-
straints). If no number restrictions ≥q R with q ≥ 2 are allowed, then we obtain
the fragments denoted by DL-LiteRα . And if role inclusions are excluded from the
language then the resulting fragments are denoted by DL-LiteNα (with arbitrary
number restrictions), DL-LiteFα (with functionality constraints and existential
concepts ∃R), and DL-Liteα (without number restrictions different from ∃R).

As shown in [13], the logics DL-LiteR,Fcore , DL-LiteR,Ncore and their extensions
turn out to be computationally rather costly, with satisfiability being ExpTime-
hard for combined complexity and instance checking P-hard or even NP-hard

3

for data complexity. On the other hand, for the purpose of conceptual modeling
one may need both concept and role inclusions. A compromise can be found by
artificially limiting the interplay between role inclusions and number restrictions
in a way similar to the logic DL-LiteA [16].

For a TBox T , let v∗T be the reflexive and transitive closure of the relation{
(R,R′), (inv(R), inv(R′)) | R v R′ ∈ T

}
. Say that R′ is a proper sub-role of R

in T if R′ v∗T R and R′ 6v∗T R.
Consider now the language DL-Lite

(RN)
bool obtained from DL-LiteR,Nbool by im-

posing the following syntactic restriction on its TBoxes T :

(inter) if R has a proper sub-role in T then T contains no negative occurrences2

of number restrictions ≥ q R or ≥ q inv(R) with q ≥ 2.

Without spoiling its computational properties, we can allow in this language pos-
itive occurrences of qualified number restrictions ≥ q R.C in TBoxes T provided
that the following condition is satisfied:

(exists) if ≥ q R.C occurs in T then T does not contain negative occurrences
of ≥ q′R or ≥ q′ inv(R), for q′ ≥ 2.

Moreover, we can also allow in DL-Lite
(RN)
bool role disjointness, reflexivity, ir-

reflexivity, symmetry and asymmetry constraints. The languages DL-Lite
(RN)
horn ,

DL-Lite
(RN)
krom and DL-Lite(RN)

core are defined as the corresponding fragments of
DL-Lite

(RN)
bool (we only note that a concept C occurring in some ≥ q R.C can be

any concept allowed on the right-hand side of concept inclusions in the respective
language or a conjunction thereof).

We also define the languages DL-Lite(RF)
α as sub-languages of DL-Lite(RN)

α

in which only number restrictions of the form ∃R, ∃R.C and functionality con-
straints ≥ 2R v ⊥ are allowed—provided, of course, that they satisfy (inter)
and (exists); in particular, ∃R.C is not allowed if R is functional.

Finally, if the UNA is not adopted, it is standard to include in the language
equality and inequality constraints of the form ai ≈ aj and ai 6≈ aj (which are
supposed to belong to the ABox part of a KB) with their obvious semantics.

We will concentrate on three fundamental reasoning tasks for the logics L of
the resulting family: satisfiability, instance checking and query answering. The
KB satisfiability problem is to check, given an L-KB K, whether there is a model
of K. The instance checking problem is to decide, given an object name a, an
L-concept C and an L-KB K = (T ,A), whether K |= C(a), that is, aI ∈ CI , for
every model I of K. Instance checking and satisfiability are (AC0-) reducible to
the complement of each other.

Finally, we remind the reader that a positive existential query q is any first-
order formula constructed by means of ∧, ∨ and ∃y starting from atoms of the
form A(t) and P (t1, t2), where A is a concept name, P a role name, and t, t1, t2
2 An occurrence of a concept on the right-hand (resp., left-hand) side of a concept

inclusion is called negative if it is in the scope of an odd (resp., even) number of
negations ¬; otherwise the occurrence is called positive.

4

Complexity

Languages Combined complexity Data complexity

Satisfiability Instance checking Query answering

DL-Lite
[|R]
core NLogSpace LogSpace a) LogSpace a)

DL-Lite
[|R]
krom NLogSpace [2] LogSpace a) coNP [18]

DL-Lite
[|R]
horn P [2] LogSpace a) LogSpace a) ≤ [Th.5]

DL-Lite
[|R]
bool NP [2] LogSpace a) ≤ [Th.1] coNP

DL-Lite
[F|(RF)]

core/horn P ≤ [Cor.1] ≥ [Th.4] P ≥ [Th.4] P

DL-Lite
[F|(RF)]
krom P ≤ [Cor.1] P coNP

DL-Lite
[F|(RF)]
bool NP P ≤ [Cor.1] coNP

DL-Lite
[N|(RN)]

core/horn NP ≥ [Th.2] coNP ≥ [Th.2] coNP

DL-Lite
[N|(RN)]

krom/bool NP ≤ [Th.3] coNP coNP

a) in AC0 for KBs without equality constraints.

Table 1. Tight complexity results for DL-Lite logics without the UNA.

DL-Lite
[β1|β2]
α means DL-Liteβ1

α or DL-Liteβ2
α

DL-Liteβcore/horn means DL-Liteβcore or DL-Liteβhorn (likewise for DL-Liteβkrom/bool)

are terms taken from the list of variables y0, y1, . . . and the list of object names
a0, a1, The free variables of q are called distinguished variables; we write
q(x1, . . . , xn) for a query with distinguished variables x1, . . . , xn. Given a query
q(x) with x = x1, . . . , xn and an n-tuple a of object names, we write q(a)
for the result of replacing every occurrence of xi in q(x) with the ith member
of a. Queries containing no distinguished variables will be called ground. The
satisfaction relation I |=a q(a) between an interpretation I and a query q under
an assignment a for the variables yi in ∆I is defined in the usual way (e.g.,
I |=a ∃yi ϕ iff I |=b ϕ, for some assignment b in ∆I that may differ from a only
on yi). For a ground query q(a), the relation |=a does not depend on a, and so
we write I |= q(a) instead of I |=a q(a). The answer to such a query is either
‘yes’ or ‘no.’

For a KB K = (T ,A), we say that a tuple a of object names from A is
a certain answer to q(x) w.r.t. K and write K |= q(a), if I |= q(a) whenever
I |= K. The query answering problem is to decide, given a tuple a, whether
K |= q(a). Note that instance checking is a special case of query answering.

The complexity results obtained in this paper for the three reasoning prob-
lems and both combined and data complexity are summarized in Table 1. Some
of them will be proved in the remaining part of the paper.

3 Satisfiability: Combined and Data Complexity

As shown in [2], under the UNA, the satisfiability problem for combined com-
plexity is NLogSpace-complete for the logics of the form DL-Lite(RN)

core and

5

DL-Lite
(RN)
krom , P-complete for DL-Lite

(RN)
horn and NP-complete for DL-Lite

(RN)
bool .

For data complexity, satisfiability (as well as instance checking) is in AC0 for all
of the above logics and their fragments.

Logics of the form DL-LiteRα , for α ∈ {core, krom, horn, bool}, without equal-
ity constraints do not feel whether the UNA is adopted or not: for combined com-
plexity, satisfiability is NLogSpace-complete for DL-LiteRcore and DL-LiteRkrom,
P-complete for DL-LiteRhorn and NP-complete for DL-LiteRbool [2].

However, for data complexity, dropping the UNA results in a slightly higher
complexity because of the equality constraints. More precisely, we have:

Theorem 1. Without the UNA and with equality constraints, the satisfiability
and instance checking problems for DL-Liteα and DL-LiteRα , with α ∈ {core, krom,
horn, bool}, are LogSpace-complete for data complexity.

The proof of this theorem is based on the following reduction:

Lemma 1. For every KB K = (T ,A), one can construct in LogSpace in the
size of A a KB K′ = (T ,A′) without equality constraints such that I |= K iff
I |= K′, for every interpretation I.

Proof. Let G = (V,E) be the symmetric graph with

V = ob(A), E =
{

(ai, aj) | ai ≈ aj ∈ A or aj ≈ ai ∈ A
}
,

and [ai] the set of all vertices of G that are reachable from ai. DefineA′ by remov-
ing all the equality constraints from A and replacing every ai with aj ∈ [ai] with
minimal j. Note that this minimal j can be computed in LogSpace: just enumer-
ate the object names aj w.r.t. the order of their indices j and check whether the
current aj is reachable from ai in G. It remains to recall that reachability in undi-
rected graphs is SLogSpace-complete and that SLogSpace = LogSpace [17].

In view of the reduction in the proof of Lemma 1 and the fact that AC0 is a
proper subclass of LogSpace, the upper bound in Theorem 1 cannot be lowered
to AC0. However, the AC0 data complexity can be regained if we refrain from
using the equality constraints; see Section 4.

Let us consider now the logics of the form DL-Lite(RN)
α and DL-Lite(RF)

α ,
together with their fragments.

3.1 DL-Lite(RN)
α : Arbitrary Number Restrictions

In this section, we show that the interaction between number restrictions and
the possibility of identifying objects in the ABox results in a higher complex-
ity. Indeed, it turns out that, for both combined complexity and data com-
plexity, the satisfiability problem for the logics DL-LiteNα and DL-Lite(RN)

α ,
α ∈ {core, krom, horn, bool}, without the UNA is NP-complete. This is quite
different from the case when the UNA is adopted, where satisfiability is in AC0

for any of the logics DL-Lite(RN)
α for data complexity, and is tractable for the

logics DL-Lite
(RN)
horn , DL-Lite

(RN)
krom and DL-Lite(RN)

core under combined complex-
ity [2].

6

Theorem 2. Without the UNA, satisfiability of DL-LiteNcore KBs (even with-
out equality and inequality constraints) is NP-hard for both combined and data
complexity.

Proof. The proof is by reduction of the following variant of the 3SAT problem—
called monotone one-in-three 3SAT—which is known to be NP-complete [10]:
given a positive 3CNF formula

ϕ =
n∧
k=1

(
ak,1 ∨ ak,2 ∨ ak,3

)
,

where each ak,j is one of the propositional variables a1, . . . , am, decide whether
there is an assignment for the variables aj such that exactly one variable is
true in each of the clauses in ϕ. To encode this problem in the language of
DL-LiteNcore, we need object names aki , for 1 ≤ k ≤ n, 1 ≤ i ≤ m, and ck and tk,
for 1 ≤ k ≤ n, role names S and P , and concept names A1, A2, A3. Let Aϕ be
the ABox containing the following assertions:

S(a1
i , a

2
i), . . . , S(an−1

i , ani), S(ani , a
1
i), for 1 ≤ i ≤ m,

S(t1, t2), . . . , S(tn−1, tn), S(tn, t1),

P (ck, tk), for 1 ≤ k ≤ n,
P (ck, akk,j), Aj(akk,j), for 1 ≤ k ≤ n, 1 ≤ j ≤ 3,

and let T be the TBox with the axioms:

A1 v ¬A2, A2 v ¬A3, A3 v ¬A1, ≥ 2S v ⊥, ≥ 4P v ⊥.

Clearly, (T ,Aϕ) is a DL-LiteNcore KB and T does not depend on ϕ (so that
we cover both combined and data complexity). We claim that the answer to the
monotone one-in-three 3SAT problem is positive iff (T ,Aϕ) is satisfiable without
the UNA.

(⇒) Let a be an assignment satisfying the requirements of the problem. Take
some ai0 with a(ai0) = t (clearly, such an i0 exists, for otherwise a(ϕ) = f) and
construct an interpretation I = (∆I , ·I) by taking:

– ∆I =
{
yk, z

k | 1 ≤ k ≤ n
}
∪
{
xki | a(ai) = f, 1 ≤ i ≤ m, 1 ≤ k ≤ n

}
,

– cIk = yk and (tk)I = zk, for 1 ≤ k ≤ n,

– (aki)I =

{
xki , if a(ai) = f,
zk, if a(ai) = t,

for 1 ≤ i ≤ m, 1 ≤ k ≤ n,

– SI =
{

((a1
i)
I , (a2

i)
I), . . . , ((an−1

i)I , (ani)I), ((ani)I , (a1
i)
I) | 1 ≤ i ≤ m

}
,

– P I =
{

(cIk , (t
k)I) | 1 ≤ k ≤ n

}
∪
{

(cIk , (a
k
k,j)
I) | 1 ≤ k ≤ n, 1 ≤ j ≤ 3

}
.

It is readily checked that I |= (T ,Aϕ).
(⇐) Suppose I |= K. Define an assignment a by taking a(ai) = t iff (a1

i)
I =

(t1)I . Our aim is to show that a(ak,j) = t for exactly one j ∈ {1, 2, 3}, for each k,
1 ≤ k ≤ n. We have P I(cIk , (a

k
k,j)
I) for all j = 1, 2, 3. Moreover, (akk,i)

I 6= (akk,j)
I

7

for i 6= j. As cIk ∈ (≤ 3P)I and P I(cIk , (t
k)I), we then must have (akk,j)

I = (tk)I

for some unique j ∈ {1, 2, 3}. It follows from functionality of S that, for each
1 ≤ k ≤ n, we have (a1

k,j)
I = (t1)I for exactly one j ∈ {1, 2, 3}. ut

The next theorem establishes a matching upper bound:

Theorem 3. Without the UNA, satisfiability of DL-LiteNα and DL-Lite(RN)
α

KBs with equality and inequality constraints is NP-complete for both combined
complexity and data complexity and any α ∈ {core, krom, horn, bool}.

Proof. The upper bound can proved using the following non-deterministic algo-
rithm. Given a DL-Lite

(RN)
bool KB K = (T ,A), we

– guess an equivalence relation ∼ over ob(A);
– select in each equivalence class ai/∼ a representative, say ai, and replace

every occurrence of ai′ ∈ ai/∼ in A with ai;
– fail if the equalities and inequalities are violated in the resulting ABox—i.e.,

if it contains ai 6≈ ai or ai ≈ aj , for i 6= j;
– otherwise, remove the equality and inequality constraints from the ABox

and denote the result by A′;
– use an NP satisfiability checking algorithm for DL-LiteNbool to decide whether

the KB K′ = (T ,A′) is consistent under the UNA.

Clearly, if the algorithm returns ‘yes,’ then I ′ |= K′, for some I ′ respecting
the UNA, and we can construct a model I of K (not necessarily respecting
the UNA) by extending I ′ with the following interpretation of object names:
aI = aI

′

i , whenever ai is the representative of a/∼ (I coincides with I ′ on all
other symbols). Conversely, if I |= K then we take the equivalence relation ∼
defined by ai ∼ aj iff aIi = aIj . Let I ′ be constructed from I by removing the
interpretations of all object names that are not representatives of the equivalence
classes for ∼. It follows that I ′ respects the UNA and is a model of K′, so the
algorithm returns ‘yes.’ ut

3.2 DL-Lite(RF)
α : Functionality Constraints

Let us consider now DL-Lite
(RF)
bool and its fragments. In the absence of the UNA,

the necessity to identify pairs of objects due to functionality constraints also
causes an increase in complexity. However, this increase is less dramatic as
the procedure of identifying objects is deterministic: without the UNA, the
satisfiability problem for the logics of the form DL-LiteFα and DL-Lite(RF)

α ,
α ∈ {core, krom, horn, bool}, is P-complete for data complexity (under the UNA,
it is in AC0 [2]). For the combined complexity, satisfiability in DL-LiteFα and
DL-Lite(RF)

α , α ∈ {core, krom}, becomes P-complete rather than NLogSpace-
complete as it is under the UNA (and remains the same for α ∈ {horn, bool}).

The following lemma shows that for all these logics reasoning without the
UNA can be reduced in polynomial time in the size of the ABox to reasoning
under the UNA.

8

Lemma 2. For every DL-Lite
(RF)
bool KB K = (T ,A) with equality and inequality

constraints, one can construct in polynomial time in |A| a DL-Lite
(RF)
bool KB

K′ = (T ,A′) such that A′ contains neither equalities nor inequalities, and K is
satisfiable without the UNA iff K′ is satisfiable under the UNA.

Proof. In what follows by identifying aj with ak in A we mean replacing each
occurrence of ak in A with aj . We construct A′ by first identifying aj with ak,
for each aj ≈ ak ∈ A, and removing the equality from A, and then exhaustively
applying the following procedure to A:

– if ≥ 2R v ⊥ ∈ T , R1 v∗T R, R2 v∗T R, and R1(ai, aj), R2(ai, ak) ∈ A, for
distinct aj and ak, then identify aj with ak.

If the resulting ABox contains ai 6≈ ai, for some ai, then, clearly, K is not
satisfiable, so we add A(ai) and ¬A(ai) to the ABox, for some concept name
A. Finally, we remove all inequalities from the ABox and denote the result by
A′. It should be clear that A′ is computed from A in polynomial time and that,
without the UNA, K is satisfiable iff K′ is satisfiable. So it suffices to show
that K′ is satisfiable without the UNA iff it is satisfiable under the UNA. The
implication (⇐) is trivial. To prove (⇒), observe that every model I for K′ not
respecting the UNA can be transformed into a model I of K′ respecting the UNA
by starting from the set of all object names, which are interpreted as distinct
domain elements, and applying the unraveling procedure to cure the defects in
the interpretation (for details see Lemmas 8.4 and 5.14 in [2]). ut

The reduction above cannot be done better than in P, as shown by the next
theorem.

Theorem 4. Without the UNA, satisfiability of DL-LiteFcore KBs (even with-
out equality and inequality constraints) is P-hard for both combined and data
complexity.

Proof. The proof is by reduction of the entailment problem for Horn-CNF, which
is known to be P-complete (see, e.g., [3, Exercise 2.2.4]). Let

ϕ =
n∧
k=1

(
ak,1 ∧ ak,2 → ak,3

)
∧

p∧
l=1

al,0

be a Horn-CNF formula, where each ak,j and each al,0 is one of the propositional
variables a1, . . . , am and ak,1, ak,2, ak,3 are all distinct, for each k, 1 ≤ k ≤ n.
To encode the P-complete problem ‘ϕ |= ai?’ in the language of DL-LiteFcore we
need object names aki , for 1 ≤ k ≤ n, 1 ≤ i ≤ m, fk and gk, for 1 ≤ k ≤ n and t
and role names P , Q, S and T . The ABox A contains the following assertions

S(a1
i , a

2
i), . . . , S(an−1

i , ani), S(ani , a
1
i), for 1 ≤ i ≤ m,

P (akk,1, fk), P (akk,2, gk), Q(gk, akk,3), Q(fk, akk,1), for 1 ≤ k ≤ n,
T (t, a1

l,0), for 1 ≤ l ≤ p,

9

and the TBox T asserts that all of the roles are functional:

≥ 2P v ⊥, ≥ 2Q v ⊥, ≥ 2S v ⊥ and ≥ 2T v ⊥.

Clearly, K = (T ,A) is a DL-LiteFcore KB and T does not depend on ϕ. We claim
that ϕ |= aj iff K′ = (T ,A∪ {¬T (t, a1

j)}) is not satisfiable without the UNA. It
suffices to prove that ϕ |= aj iff I |= T (t, a1

j) in every model I of K.
(⇒) Let I |= K and suppose ϕ |= aj . Then we can derive aj from ϕ using

the following inference rules:

– ϕ |= al,0 for each l, 1 ≤ l ≤ p;
– if ϕ |= ak,1 and ϕ |= ak,2, for some k, 1 ≤ k ≤ n, then ϕ |= ak,3.

We show the claim by induction on the length of the derivation of aj from ϕ.
The basis of induction is trivial. So assume that aj = ak,3, ϕ |= ak,1, ϕ |= ak,2,
for some k, 1 ≤ k ≤ n, and that I |= T (t, a1

k,1)∧T (t, a1
k,2). Since T is functional,

we have (a1
k,1)I = (a1

k,2)I . Since S is functional, (ak
′

k,1)I = (ak
′

k,2)I , for all k′,
1 ≤ k′ ≤ n, and in particular, for k′ = k. Then, since P is functional, fIk = gIk ,
from which, by functionality ofQ, (akk,3)I = (akk,1)I . Finally, since S is functional,
(ak

′

k,3)I = (ak
′

k,1)I , for all k′, 1 ≤ k′ ≤ n, and in particular, for k′ = 1. Thus,
I |= T (t, a1

j).
(⇐) Suppose that ϕ 6|= aj . Then there is an assignment a such that a(ϕ) = t

and a(aj) = f. Construct an interpretation I by taking

– ∆I =
{
xki | a(ai) = f, 1 ≤ k ≤ n, 1 ≤ i ≤ m

}
∪{

zk, uk, vk | 1 ≤ k ≤ n
}
∪
{
w
}

,

– (aki)I =

{
xki , if a(ai) = f,
zk, if a(ai) = t,

for 1 ≤ k ≤ n and 1 ≤ i ≤ m,

– tI = w, T I =
{

(w, z1)
}

,
– SI =

{
((a1

i)
I , (a2

i)
I), . . . , ((an−1

i)I , (ani)I), ((ani)I , (a1
i)
I) | 1 ≤ i ≤ m

}
,

– fIk = uk and gIk =

{
vk, if a(ak,2) = f,
uk, if a(ak,2) = t,

for 1 ≤ k ≤ n,

– P I =
{

((akk,1)I , fIk), ((akk,2)I , gIk) | 1 ≤ k ≤ n
}

,
– QI =

{
(gIk , (a

k
k,3)I), (fIk , (a

k
k,1)I) | 1 ≤ k ≤ n

}
.

It is readily checked that I |= K and I 6|= T (t, a1
j). ut

The above result strengthens the NLogSpace lower bound for instance
checking in DL-LiteFcore given in [5].

Corollary 1. Without the UNA, the satisfiability problems for DL-LiteFα and
DL-Lite(RF)

α KBs, α ∈ {core, krom, horn}, with equalities and inequalities are
P-complete for both combined complexity and data complexity.

Without the UNA, satisfiability of DL-LiteFbool and DL-Lite
(RF)
bool KBs with

equalities and inequalities is NP-complete for combined complexity and P-com-
plete for data complexity.

10

Proof. The upper bounds follow from Lemma 2 and the corresponding upper
bounds for the UNA case. The NP lower bound for combined complexity is
obvious and the P lower bounds follow from Theorem 4. ut

4 Query Answering: Data Complexity

The P and coNP upper bounds for data complexity of query answering in
DL-LiteR,Fhorn and DL-LiteR,Nbool without the UNA follow immediately from the
results for Horn-SHIQ [12, 9] and SHIQ [14, 15, 11], respectively. We show now
that the maximal DL-Lite logic for which query answering remains in AC0

without the UNA is the logic DL-LiteRhorn extended with role constraints as
specified in the following theorem:
Theorem 5. Without the UNA, the positive existential query answering prob-
lem for DL-LiteRhorn KBs with disjointness, (a)symmetry, (ir)reflexivity role con-
straints and inequalities (but without equalities) is in AC0 for data complexity.
It is LogSpace-complete for data complexity and KBs with equality constraints.

Proof. The proof follows the lines of the proof of [2, Theorem 7.1] given for
the UNA case and uses the observation that models without the UNA produce
no more answers than their unravelled counterparts. More precisely, let K′ =
(T ′,A′) be a consistent DL-LiteRhorn KB, and q(x) a positive existential query.
Then [2, Lemma 5.17] provides a DL-LiteRhorn KB K that has no role constraints
but may still have inequality constraints. The following lemma shows that one
can simply ignore the inequality constraints in K′ and thus reduces the query
answering problem without the UNA to query answering under the UNA:
Lemma 3. For every tuple a of object names in K′, we have K′ |= q(a) (in
models without the UNA) iff I |= q(a) for all models I of K respecting the
UNA.

Proof. (⇒) Suppose that K′ |= q(a) and I is a model of K respecting the UNA.
In view of satisfiability of K′, we have I |= K′, and thus I |= q(a).

(⇐) Take any I ′ with I ′ |= K′. We construct an interpretation J ′ respecting
the UNA as follows. Let ∆J

′
be the disjoint union of ∆I

′
and ob(A). Define a

function h : ∆J
′ → ∆I

′
by taking h(a) = aI

′
, for each a ∈ ob(A), and h(w) = w,

for each w ∈ ∆I′
, and let

aJ
′

= a, AJ
′

=
{
u | h(u) ∈ AI

′}
and PJ

′
=
{

(u, v) | (h(x), h(v)) ∈ P I
′}
,

for all object, concept and role names a, A, P . Clearly, J ′ respects the UNA
and J ′ |= K′. It also follows that h is a homomorphism. By [2, Lemma 5.17],
there is a model I of K with the same domain as J ′ that coincides with J ′ on
all symbols in K′. As I |= q(a), we must then have J ′ |= q(a), and since h is a
homomorphism, I ′ |= q(a). Therefore, K′ |= q(a) in models without the UNA,
as required. ut

The remaining part of the proof of the theorem is exactly as in [2, Theo-
rem 7.1], as now we may assume that K is a DL-LiteRhorn KB containing neither
inequality nor role constraints. ut

11

References

1. A. Artale, D. Calvanese, R. Kontchakov, and M. Zakharyaschev. DL-Lite in the
light of first-order logic. In Proc. of the 22nd Nat. Conf. on Artificial Intelligence
(AAAI 2007), pages 361–366, 2007.

2. A. Artale, D. Calvanese, R. Kontchakov, and M. Zakharyaschev. The DL-Lite
family and relations. Technical Report BBKCS-09-03, School of Computer Science
and Information Systems, Birbeck College, London, 2009. Available at http://

www.dcs.bbk.ac.uk/research/techreps/2009/bbkcs-09-03.pdf.
3. E. Börger, E. Grädel, and Y. Gurevich. The Classical Decision Problem. Perspec-

tives in Mathematical Logic. Springer, 1997.
4. D. Calvanese, G. De Giacomo, D. Lembo, M. Lenzerini, A. Poggi, and R. Rosati.

Mastro-i: Efficient integration of relational data through DL ontologies. In Proc.
of the 2007 Description Logic Workshop (DL 2007), volume 250 of CEUR Elec-
tronic Workshop Proceedings, http://ceur-ws.org/, pages 227–234, 2007.

5. D. Calvanese, G. De Giacomo, D. Lembo, M. Lenzerini, A. Poggi, R. Rosati, and
M. Ruzzi. Data integration through DL-LiteA ontologies. In Revised Selected
Papers of the 3rd Int. Workshop on Semantics in Data and Knowledge Bases
(SDKB 2008), volume 4925 of Lecture Notes in Computer Science, pages 26–47.
Springer, 2008.

6. D. Calvanese, G. De Giacomo, D. Lembo, M. Lenzerini, and R. Rosati. DL-Lite:
Tractable description logics for ontologies. In Proc. of the 20th Nat. Conf. on
Artificial Intelligence (AAAI 2005), pages 602–607, 2005.

7. D. Calvanese, G. De Giacomo, D. Lembo, M. Lenzerini, and R. Rosati. Data
complexity of query answering in description logics. In Proc. of the 10th Int. Conf.
on the Principles of Knowledge Representation and Reasoning (KR 2006), pages
260–270, 2006.

8. D. Calvanese, G. De Giacomo, D. Lembo, M. Lenzerini, and R. Rosati. Tractable
reasoning and efficient query answering in description logics: The DL-Lite family.
J. of Automated Reasoning, 39(3):385–429, 2007.

9. T. Eiter, G. Gottlob, M. Ortiz, and M. Šimkus. Query answering in the description
logic Horn-SHIQ. In Proc. of the 11th Eur. Conference on Logics in Artificial
Intelligence (JELIA 2008), pages 166–179, 2008.

10. M. Garey and D. Johnson. Computers and Intractability: A Guide to the Theory
of NP-Completeness. W. H. Freeman, 1979.

11. B. Glimm, I. Horrocks, C. Lutz, and U. Sattler. Conjunctive query answering for
the description logic SHIQ. In Proc. of the 20th Int. Joint Conf. on Artificial
Intelligence (IJCAI 2007), pages 399–404, 2007.

12. U. Hustadt, B. Motik, and U. Sattler. Data complexity of reasoning in very expres-
sive description logics. In Proc. of the 19th Int. Joint Conf. on Artificial Intelligence
(IJCAI 2005), pages 466–471, 2005.

13. R. Kontchakov and M. Zakharyaschev. DL-Lite and role inclusions. In Proc. of
the 3rd Asian Semantic Web Conf. (ASWC 2008), volume 5367 of Lecture Notes
in Computer Science, pages 16–30. Springer, 2008.

14. M. Ortiz, D. Calvanese, and T. Eiter. Characterizing data complexity for con-
junctive query answering in expressive description logics. In Proc. of the 21st Nat.
Conf. on Artificial Intelligence (AAAI 2006), pages 275–280, 2006.

15. M. Ortiz, D. Calvanese, and T. Eiter. Data complexity of query answering in
expressive description logics via tableaux. J. of Automated Reasoning, 41(1):61–
98, 2008.

12

16. A. Poggi, D. Lembo, D. Calvanese, G. De Giacomo, M. Lenzerini, and R. Rosati.
Linking data to ontologies. J. on Data Semantics, X:133–173, 2008.

17. O. Reingold. Undirected connectivity in log-space. J. of the ACM, 55(4), 2008.
18. A. Schaerf. On the complexity of the instance checking problem in concept lan-

guages with existential quantification. J. of Intelligent Information Systems, 2:265–
278, 1993.

13

