
Algebraic Tableau Algorithm forALCOQ

Jocelyne Faddoul1, Volker Haarslev1, and Ralf Möller2

1 Concordia University, Montreal, Canada
{j_faddou, haarslev}@encs.concordia.ca

2 Hamburg University of Technology, Hamburg, Germany
r.f.moeller@tuhh.de

1 Introduction

Description Logics (DLs) are a family of knowledge representation formalisms used to
represent and reason about an application’s domain elements. They are applicable in
the semantic web as they provide the basis for the Web Ontology Language (OWL).

Decision procedures for expressive DLs enabling both nominals and QCRs were
published in [10] with very weak optimizations if any (no DL reasoner was able to
classify the WINE3 ontology until recent efforts [15]). Nominals are challenging in rea-
soning because in order to preserve their semantics, each nominal must be interpreted
as exactly one individual, whereas a concept is interpreted as a set of individuals. An-
other challenge is that ontologies that use nominals no longer enjoy the quasi-tree model
property which has always been advantageous for tableau. Major inefficiency sources
can be due to (i) the high degree of non-determinism introduced by the use of GCIs
or when merging domain elements is necessary, (ii) the construction of large models,
or (iii) the interaction between constructors. The worst case occurs when nominals in-
teract with inverse roles (I) and QCRs. Each of these constructs alone is challenging
to reason with and needs special optimization techniques. Resolution-based reasoning
procedures were proposed in [18] without being well suited in dealing with large num-
bers in QCRs. Hypertableaux [13] were recently studied to minimize non-determinism
in DL reasoning with no special treatment for QCRs. Combining tableau and algebraic
reasoning dramatically improved performance with QCRs [5].

In this paper, we extend our previous work in [3] to additionally allow nominals
and unfoldable TBoxes. With nominals, the handling of numerical restrictions becomes
more challenging since numerical restrictions imposed by nominals interact with re-
strictions specified with QCRs. The algorithm is based on the assumption that domain
elements consists of a set of individuals divided into subsets depending on their role
filler membership and/or concept membership. Also nominals can be seen as singleton
sets and the at-least and at-most restrictions expressed in QCRs represent cardinality
restrictions on the corresponding sets of role fillers. These restrictions on sets are en-
coded as linear inequations solved by a linear programming (LP) algorithm (such as
simplex) with the objective of minimizing the sum of all cardinalities. If no solution
for the inequations is possible, this means that the individuals cannot be distributed be-
tween sets without violating the cardinality restrictions. When a solution is returned, a

3 http://www.w3.org/TR/2004/REC-owl-guide-20040210/wine.rdf

minimum number of individuals is distributed among sets without violating any at-least
or at-most restrictions. We also introduce proxy individuals as representative of domain
elements with common restrictions thus reducing the size of a completion graph model.

2 The Description LogicALCOQ

Let NC, NR be non-empty and disjoint sets of concept names and role names respec-
tively. Let No ⊆ NC be the set of nominals. The set ofALCOQ concepts is the smallest
set such that: (i) every concept name A ∈ NC is a concept, and (ii) if C,D are concepts
and R is a role name in NR then ¬C, (C t D), (C u D), (∃R.C), (∀R.C), (≥ nR.C),
(≤ nR.C) with n ∈ N are also concepts. In the following we use > (⊥) as an abbrevia-
tion for A t ¬A (A u ¬A) and ≥ nR (≤ nR) for ≥ nR.> (≤ nR.>). Also since ∃R.C can
be converted to ≥ 1R.C, we do not consider input descriptions of the form ∃R.C.

An interpretation I = (∆I, ·I) consists of ∆I, a non-empty set of individuals, called
the domain of the interpretation, and ·I, an interpretation function. The interpretation
function ·I maps each atomic concept A ∈ NC to a subset of ∆I, and each atomic role
R ∈ NR to a subset of ∆I × ∆I. Given role name R ∈ NR and an element s ∈ ∆I, the
set of R-fillers for s FIL(R, s) is defined as FIL(R, s) = {t ∈ ∆I | 〈s, t〉 ∈ RI} and the
set of all R-fillers for R is defined as: FIL(R) =

⋃
s∈∆I FIL(R, s). We use # to denote the

cardinality of a set and the semantics of allALCOQ concepts satisfies the following:
(C u D)I = CI ∩ DI

(C t D)I = CI ∪ DI

(¬C)I = ∆I \CI

#oI = 1 for all o ∈ No

(∀R.C)I = {s ∈ ∆I | 〈s, t〉 ∈ RI ⇒ t ∈ CI}
(≥ nR.C)I = {s ∈ ∆I | #(FIL(R, s) ∩CI) ≥ n}
(≤ nR.C)I = {s ∈ ∆I | #(FIL(R, s) ∩CI) ≤ n}
An unfoldable ALCOQ TBox T is a finite set of concept subsumption axioms of

the form A v C, and concept definition axioms of the form A ≡ C (which abbreviates
{A v C, C v A}) such that all axioms are unique and acyclic. T is said to be consistent
if there exists an interpretation I satisfying CI ⊆ DI for each C v D ∈ T . I is called a
model of T . A concept C is said to be satisfiable w.r.t. an unfoldable TBox T iff there
exists a model I of T with CI , ∅, i.e., there exists an individual s ∈ CI as an instance
of C. I is called a model of C w.r.t. T .

An ALCOQ ABox A is a finite set of concept membership assertions of the form
a :C or role membership assertions of the form (a, b) :R with a, b two individual names.
A is said to be consistent w.r.t T if there exists a model I of T such that aI ∈ CI is
satisfied for each a :C inA and (aI, bI) ∈ RI is also satisfied for each (a, b) :R inA.

Using nominals, concept satisfiability and ABox consistency can be reduced to
TBox consistency; a concept C is satisfiable w.r.t. T iff (T ∪ {o v C}) is consistent
and o ∈ No new in T . For example, the concept description in (1) is satisfiable w.r.t the
TBox defined in (2) iff the TBox in (3) is consistent. An ABoxA is consistent w.r.t. T
iff (T ∪

⋃
(a:C)∈A{a v C} ∪

⋃
((a,b):R)∈A{a v ∃R.b}) is consistent. Hence, in the following

without loss of generality we restrict our attention to TBox consistency.

≥ 1S1.(A u B1)u ≥ 1S2.(A u B2) (1)
T = {A v ≥ 1R.B,B1 v ∀R.C,B2 v ∀R.¬C} (2)

T = {A v ≥ 1R.B,B1 v ∀R.C,B2 v ∀R.¬C, o v≥ 1S 1.(A u B1)u ≥ 1S 2.(A u B2)} (3)
T = {o v≥ 1S 1.(≥ 1R.B u ∀R.C)u ≥ 1S 2.(≥ 1R.B u ∀R.¬C)} (4)

CT = (¬ot ≥ 1S 1.(≥ 1R.B u ∀R.C)u ≥ 1S 2.(≥ 1R.B u ∀R.¬C)) (5)

In the following, we assume all concepts to be in their negation normal form (NNF).
We use ¬̇C to denote the NNF of ¬C and nnf (C) to denote the NNF of C. The con-
cept axioms in T can be reduced to a single axiom > v CT such that CT abbreviates�

CvD∈T nnf (¬CtD) [10] and T has been unfolded. T can be unfolded in the following
way: (i) for every A ≡ C ∈ T then occurrences of A are replaced by C, (ii) for every
A v C then occurrences of A such that A is not negated are replaced by C and otherwise
¬A is left unchanged. Unfolding the TBox in (3) would result in the TBox in (4) which
can be reduced to the single axiom in (5). A TBox consistency test can be checked by
testing the consistency of o v CT with o ∈ No new in T , which means that at least
oI ⊆ CT I and CT I , ∅. Moreover, since >I = ∆I then every domain element must
also satisfy CT (CT must hold at each domain element).

3 Motivation

Nominals carry implicit numerical restrictions; they not only name individuals but also
allow us to count them. This additional information carried with nominals interacts with
concepts and roles in a way that can limit the number of individual (i) members of a
certain concept C, or (ii) fillers for a certain role R. Given an individual s, instance of a
concept E (s ∈ EI), C ∈ NC, R ∈ NR, o1, . . . , on ∈ No, and n,m non-negative integers,
we distinguish between and define global and local numerical restrictions.

Definition 1 (Global Restrictions). Having E v o1 t · · · t on ∈ T (o1 t · · · t on v

E ∈ T) enforces a numerical restriction on the cardinality of the set of instances of
E; there can be at-most (at-least) n instances of E corresponding to the interpretation
of oI1 ∪ . . . ∪ oIn assuming o1, . . . , on are mutually disjoint. Such at-most (at-least) re-
strictions carried with nominals are global since they can affect the set of all individ-
uals in the domain of interpretation (∆I). Nominals can specify concept cardinalities
[1, 16] and can interact with local restrictions. For example in (6) the concept Blood-
Type has exactly 8 instances (assuming that the nominals o+, . . . , AB− are mutually
disjoint) and having s ∈ (∀R.BloodType)I then the set of R-fillers of s is bounded by 8,
#FIL(R, s) = 8.

BloodType ≡ o+ t A+ t B+ t AB+ t o− t A− t B− t AB− (6)

Definition 2 (Local Restriction). QCRs carry explicit numerical restrictions; when E
is of the form (≥ nR.C), or (≤ mR.C) it holds a restriction on the cardinality of the set of
R-fillers of s. These restrictions are local to FIL(R, s). For example, having s ∈ (Adult)I

with Adult defined in (7) imposes that at least 306 individuals s1, s2, . . . , s306 must be
hasBone-fillers of s, and therefore #FIL(R, s) ≥ 306.

Adult v ≥ 306 hasBone.Bone (7)

The interaction between global and local restrictions makes the problem of reasoning
with nominals twofold. First, nominals break the advantageous tree model property of
TBoxes and tableau algorithms can no longer decide a TBox consistency test by con-
structing a tree-like model. Second, the nominals semantics impose global restrictions
which means that arithmetic solutions used to satisfy a local restriction as in [3] must
not invalidate the nominals semantics during the construction of a completion graph.

4 Algebraic Tableau Reasoning with Nominals

In [3] the hybrid algorithm uses the atomic decomposition technique to reduce reason-
ing about QCRs to linear inequation solving. With nominals the technique needs to han-
dle the interaction between local and global numerical restrictions while preserving the
nominals semantics. We first illustrate the preprocessing steps needed to allow the ap-
plicability of the atomic decomposition technique and show how we use this technique
to reduce satisfying the nominals and QCRs semantics into linear inequation solving.

4.1 Preprocessing

For R, S in NR and CT ,DALCOQ concepts, we define a new concept operator ∀(R\S).D,
and a role implication operator, R v S , needed to rewrite CT before applying the calcu-
lus. These operators are based on set semantics such that given an interpretation I, then
(∀ (R\S).D)I = {s ∈ ∆I | 〈s, t〉 ∈ RI ∧ 〈s, t〉 < S I ⇒ t ∈ DI} is satisfied, and (RI ⊆ S I)
is satisfied for each role implication R v S ∈ R, with R a set of role implications and
can be seen as a weak form of a role hierarchyH [10].

Algorithm 1 Given A ∈ NC, C , DALCOQ concepts, R ∈ NR and R the set of role
implications, the following rewriting holds:
rw(A,NR,R) −→ A
rw(¬A,NR,R) −→ ¬A
rw((C u D),NR,R) −→ (rw(C,NR,R) u rw(D,NR,R))
rw((C t D),NR,R) −→ (rw(C,NR,R) t rw(D,NR,R))
rw((¬C),NR,R) −→ rw(¬̇C,NR,R)
rw(∀R.C,NR,R) −→ ∀R.rw(C,NR, R)
rw((≥ nR.C),NR,R) −→ (≥ nR′ u ∀R′.rw(C,NR ∪ {R′},R ∪ {R′ v R}))
rw((≤ nR.C),NR,R) −→ (≤ nR′ u ∀R′.rw(C,NR ∪ {R′},R)u

∀ (R\R′).rw(¬̇C,NR ∪ {R′}, R ∪ {R′ v R}))

Given CT , a set NR of role names, and an empty set R of role implications, we
re-write CT using Algorithm 1 and Lemma 1 holds (see [4] for proofs and examples).

Lemma 1 (Preserving Satisfiability). Rewriting concept expressions according to Al-
gorithm 1 preserves satisfiability. Satisfying CT consists of satisfying rw(CT ,NR,R)
w.r.t. R.

Please note that each rewriting step for a number restriction introduces a fresh role
name R′ new inT andR. Thus, NR andR are extended. For example, rewriting CT in (5)

gives CT =

(
¬o t (≥ 1S11 u ∀S11.(≥ 1R1 u ∀R1.B u ∀R.C)
u≥ 1S21 u ∀S21.(≥ 1R2 u ∀R2.B u ∀R.¬C))

)
with NR, R extended such

that NR = {R,R1,R2, S 1, S 11, S 2, S 21},R = {R1 v R, R2 v R, S 11 v S 1, S 21 v S 2}.

4.2 Arithmetic Reasoning with Nominals and QCRs

The atomic decomposition technique [14] has been used in [3, 8] to divide the sets of
role fillers local to a domain element into mutually disjoint atomic sets and these set
cardinalities are used as a bridging function to encode local numerical restrictions as
inequations. With nominals, we extend the atomic decomposition technique to consider
a global decomposition of the whole domain into disjoint sets such that each domain
element belongs to exactly one set. Thus, one has to consider all possible interactions
between local and global restrictions which can also be encoded into inequations. We
illustrate how this works in the following.

The Atomic Decomposition For each role R ∈ NR that is used in a number restriction
or a QCR, a fresh sub-role R′ introduced by the preprocessing enables a simple role
hierarchy; R′ can have only one super role R. Let H(R) denote the set of role names for
all sub-roles of R: H(R) = {R′ | (R′ v R) ∈ R}. We do not need to add R to H(R) since it is
always implied and does not occur in number restrictions anymore after preprocessing.
For every role R′ ∈ H(R), the set of R′-fillers forms a subset of the set of R-fillers
(FIL(R′) ⊆ FIL(R)). We define R′ to be the complement of R′ w.r.t. H(R), the set of
R′-fillers is then defined as R′-fillers =(FIL(R) \ FIL(R′)).

Each subset P of H(R) (P ⊆ H(R)) defines a unique set of role names that admits
an interpretation PI corresponding to the unique intersection of role fillers for the role
names in P: PI =

⋂
R′∈P FIL(R′) ∩

⋂
R′′∈(H(R)\P) FIL(R′′). PI cannot overlap with role

fillers for role names that do not appear in P since it is assumed to overlap with their
complement. This makes all PI disjoint. For example, if P1 = {R1,R2}, P2 = {R2,R3}

and H(R) = {R1,R2,R3} this means that P1 is the partition name for FIL(R1)∩FIL(R2)∩
FIL(R3) which is equal to PI1 and P2 is the partition name for FIL(R2) ∩ FIL(R3) ∩
FIL(R1), and therefore, although P1 ∩ P2 = {R2} we have PI1 ∩ PI2 = ∅ (see [14]).
Since ALCOQ does not allow concept expressions using role complements, no role
complement will be explicitly used. For ease of presentation, we do not list the role
complements in a partition name.

Each nominal o ∈ No, oI can interact with R-fillers for some R in NR and become
a subset of the set of R-fillers (oI ⊆FIL(R) if having for example ≥ 1R.C u ∀R.o) . In
order to handle such interactions we define the decomposition set DS of all possible
role names and nominals as: DS =

⋃
R∈NR

H(R) ∪ No. Let P be the set of partition
names defined for the decomposition of DS: P = {P | P ⊆ DS}. For P ⊆ DS, PI =⋃

R∈P FIL(R) ∩ {d ∈ ∆I | d ∈ oI, o ∈ P ∩ No} ∩ {d ∈ ∆I | d ∈ ¬oI, o ∈ No \ P}.
Then PI = ∆I because it includes all possible domain elements which correspond to a
nominal and/or a role filler; PI =

⋃
P⊆DS PI.

Mapping Cardinalities to Variables We assign a variable name v for each partition
name P such that v can be mapped to a non-negative integer value n using σ : V → N
such that σ(v) denotes the cardinality of PI. LetV be the set of all variable names and
α:V → P be a one-to-one mapping between each partition name P ∈ P and a variable
v ∈ V such that α(v) = P, and if a non-negative integer n is assigned to v using σ then
σ(v) = n = #PI. Let VS denote the set of variable names mapped to partitions for a role
(S ∈ NR) or a nominal (S ∈ No) then VS is defined as VS = {v ∈ V | S ∈ α(v)}.

Using Inequation Solving Given a partitioning P for all roles in NR and nominals in
No and a mapping α of variables, we can reduce a conjunction of (≥ nR) and (≤ mR)
to a set of inequations and reason about the numerical restrictions using an inequation
solver based on the following principles.

P1: Encoding Number Restrictions and Nominals Into Inequations. Since the
partitions in P are mutually disjoint and the cardinality function is additive, a lower
(upper) bound n (m) on the cardinality of the set of role fillers FIL(S) for some role
S ∈ H(R) can be reduced to an inequation of the form

∑
v∈VS

σ(v) ≥ n (
∑

v∈VS
σ(v) ≤

m). Thus, we can easily convert an expression of the form (≥ nS) or (≤ mS) into an
inequation using ξ such that ξ(S ,≥, n) =

∑
v∈VS

σ(v) ≥ n, and ξ(S ,≤,m) =
∑

v∈VS
σ(v) ≤

m. The cardinality of a partition with a nominal can only be 1 based on the nominals
semantics which is encoded into inequations using ξ(o,≥, 1) and ξ(o,≤, 1) for each
nominal o ∈ No. In this way we make sure that the nominal semantics is preserved;
there is one individual for each o ∈ No: #oI = 1.

P2: Getting a Solution. Given a set ξa of inequations, an integer solution defines
the mapping σ for each variable v occurring in ξa to a non-negative integer n denoting
the cardinality of the corresponding partition. For example, assuming σ(v) = 4 and
α(v) = {R′,R′′}, this means that the corresponding partition (α(v))I must have 4 fillers;
#(FIL(R′) ∩ FIL(R′′)) = 4. Additionally, by setting the objective function to minimize
the sum of all variables a minimum number of role fillers is ensured at each level.σ then
defines a distribution of individuals that is consistent with the numerical restrictions
encoded in ξa and the hierarchy expressed in R.

4.3 The Tableau

In general the satisfiability of numerical restrictions does not decide TBox consistency
since logical restrictions expressed using logical operators (u,t,¬,v) and using ∀ op-
erators need also be satisfied. Numerical and logical restrictions share expressions and
their satisfiability cannot be tested independently to decide a TBox consistency. For this
purpose we propose a hybrid algorithm; we define a tableau forALCOQ TBox consis-
tency and describe the algorithm in the next section. Our tableau is different from other
tableaux forALCOQ by the way it ensures the semantics of the QCRs operator and the
new operator (∀(R\S)) introduced after preprocessing an unfoldable ALCOQ TBox.
We also define clos(C) to be the smallest set of concepts such that: (a) C ∈ clos(C), (b)
if D ∈ clos(C) then ¬̇D ∈ clos(C), (c) if (EuD) or (EtD) ∈ clos(C) then E,D ∈ clos(C),
(d) if (∀R.D) or (∀R\S .D) ∈ clos(C) then D ∈ clos(C). The set of relevant sub-concepts
of a TBox T is then defined as clos(T) = clos(rw(CT ,NR,R)).

Definition 3. [Tableau] Given an unfolded ALCOQ TBox T rewritten by applying
Algorithm 1, we define a tableau T = (S,L,E) as an abstraction of a model for T with
S a non-empty set of individuals, L : S → 2clos(T) a mapping between each individual
and a set of concepts, and E: NR → 2S×S a mapping between each role and a set of pairs
of individuals in S. For all s, t ∈ S, A ∈ NC, C,D ∈ clos(T), o ∈ No, R, S ∈ NR, and
given the definition RT (s) = {t ∈ S | 〈s, t〉 ∈ E(R)}, properties 1 - 10 must always hold:

1. CT ∈ L(s)

2. If A ∈ L(s) then ¬A < L(s).
3. If C u D ∈ L(s) then C ∈ L(s) and D ∈ L(s).
4. If C t D ∈ L(s) then C ∈ L(s) or D ∈ L(s).
5. If ∀S .C ∈ L(s) and 〈s, t〉 ∈ E(S) then C ∈ L(t).
6. If ∀(R\S).C ∈ L(s) and 〈s, t〉 ∈ E(R), and 〈s, t〉 < E(S) then C ∈ L(t).
7. If (≥ nR) ∈ L(s) then #RT (s) ≥ n.
8. If (≤ mR) ∈ L(s) then #RT (s) ≤ m.
9. If 〈s, t〉 ∈ E(R) and R v S ∈ R, then 〈s, t〉 ∈ E(S).

10. For each o ∈ No, #{s ∈ S | o ∈ L(s)} = 1

Lemma 2. AnALCOQ TBox T is consistent iff there exists a tableau for T .

Proof. The proof is similar to the one found in [10]. Property 6 of this tableau ensures
that the semantics of the ∀(R\S).C operator is preserved. Property 9 ensures that the
form of role hierarchy introduced at preprocessing is preserved, together with Properties
8 and 7 this property ensures that the semantics of the original (before rewriting) QCRs
is preserved. Property 10 ensures that the semantics of nominals is preserved.

5 A Hybrid Algorithm forALCOQ

In this section, we describe a hybrid algorithm which decides the existence of a tableau
for an unfoldedALCOQ TBox T . Our algorithm is hybrid because it relies on tableau
expansion rules working together with an inequation solver, the corresponding model
is represented using a compressed completion graph (CCG). The CCG is different from
the “so-called" completion graphs used in standard tableau algorithms forALCOQ [9]
in four ways. (I) it makes no distinction between a nominal node and a blockable node.
(II) it allows the re-use of existing nodes instead of creating new similar ones. (III) it
implements no blocking or merging of existing nodes. Finally, it uses a new labeling
for nodes to collect and encode the number restrictions into inequations. In the context
of this paper we use “completion graph" to refer to a CCG.

Definition 4. [Compressed Completion Graph] A compressed completion graph is a
directed graph G = (V, E,L,LE). Each node x ∈ V is labeled with two labels: L(x) and
LE(x), and each edge 〈x, y〉 ∈ E is labeled with a set, L(〈x, y〉) ⊆ NR, of role names.
L(x) denotes a set of concept expressions and role names such that L(x) ⊆ clos(T)

∪ P. By doing this, we not only label nodes based on the concept descriptions that they
satisfy but also based on the partition they belong to. A partition name might include a
nominal or a role name. We do not need to distinguish whether a nominal o ∈ L(x) is
part of a partition name or a concept expression; in both cases x satisfies the nominal
o. When a role name R appears in L(x) this means that x belongs to the partition for
R-fillers and can therefore be used as an R-filler. This tagging is needed for the re-use
of individual nodes.
LE(x) denotes a set ξx of inequations that must have a non-negative integer solution.

The set ξx is the encoding of (≥ nR) and (≤ mR) ∈ L(x). In order to make sure that
numerical restrictions local for a node x are satisfied while the global restrictions carried
with nominals are not violated,LE(x) is propagated from each node to all its successors.
This makes sure that nominals are globally preserved while still satisfying the numerical
restrictions at each level.

Given T , we unfold T as outlined in Section 2 and build C′
T

which is rewritten into
CT = rw(C′

T
,NR,R) and P is the corresponding atomic decomposition. To decide the

consistency of T we need to test the consistency of CT using i ∈ No new in T such that
iI ∈ CT I and every new individual satisfies CT .

The algorithm starts with the completion graph G = ({r0}, ∅ ,L,LE). WithLE(ro) =⋃
o∈No

{ξ(o,≤, 1), ξ(o,≥, 1)} which is an encoding of the nominal semantics. The node
r0 is artificial and is not considered as part of the model, it is only used to process the
numerical restrictions on nominals using the inequation solver which returns a distribu-
tion for them. The distribution of nominals (solution) is processed by the fil-Rule (see
Fig. 1) which non-deterministically initializes the individual nodes for nominals. After
at least one nominal is created, G is expanded by applying the expansion rules given in
Fig. 1 until no more rules are applicable or when a clash occurs. No clash triggers or
rules other then the fil-Rule apply to ro.

Definition 5. [Clash] A node x in (V \ {r0}) is said to contain a clash if:

– (i) {C,¬C} ⊆ L(x), or
– (ii) a subset of inequations ξx ⊆ LE(x) does not admit a non-negative integer solu-

tion, this case is decided by the inequation solver, or
– (iii) for some o ∈ No, #{x ∈ (V \ {r0})| o ∈ L(x)} > 1.

Definition 6. [Proxy node] A proxy node is a representative for the elements of each
partition. Proxy nodes can be used since partitions are disjoint and all elements in a
partition share similar restrictions (see Lemma 4 in [4] for a proof).

When no rules are applicable or there is a clash, a completion graph is said to be
complete. When G is complete and there is no clash, this means that the numerical as
well as the logical restrictions are satisfied (CT I , ∅) and there exists a model for T :
the algorithm returns that T is consistent and inconsistent otherwise.

5.1 Strategy of Rule Application

Given a node x in the completion graph, the expansion rules in Figure 1 are triggered
when applicable based on the following priorities:

– Priority 1: u-Rule, t-Rule, ∀-Rule, ch-Rule, ≤-Rule, ≥-Rule, e-Rule.
– Priority 2: fil-Rule.
– Priority 3: ∀\-Rule.

The rules with Priority 1 can be fired in arbitrary order. The fil-Rule has Priority 2
to ensure that all at-least and at-most restrictions for a proxy node x are encoded and
satisfied by the inequation solver before creating any new proxy nodes. This justifies
why role fillers or nominals are never merged nor removed from the graph; a distribution
of role fillers and nominals either survives into a complete model or fails due to a clash.
Also, assigning the fil-Rule Priority 2 helps in early clash detection in the case when the
inequation solver detects a numerical clash even before new nodes are created. The ∀\-
Rule has Priority 3. By giving this priority we ensure that the semantics of the ∀(R\S)
operator are not violated. We allow the creation of all possible edges between a node
and its successors before applying the ∀(R\S) operator semantics. This rule priority is
needed to ensure the completeness of the algorithm (See Section 5.3 for proofs).

u-Rule If C u D ∈ L(x), and {C,D} * L(x)
then set L(x) = L(x) ∪ {C,D}.

t-Rule If C t D ∈ L(x), and {C,D} ∩ L(x) = ∅

then set L(x) = L(x) ∪ {E} with E ∈ {C,D}.
∀-Rule If ∀R.C ∈ L(x) and there exists y such that L(〈x, y〉) ∩ (H(R) ∪ {R}) , ∅,

with C < L(y)
then set L(y) = L(y) ∪ {C}.

∀\-Rule If ∀(R\S).C ∈ L(x), and there exists y such that L(〈x, y〉) ∩ (H(R) ∪ {R}) , ∅, and
L(〈x, y〉) ∩ (H(S) ∪ {S }) = ∅ with C < L(y)

then set L(y) = L(y) ∪ {C}.
≤-Rule If (≤ nR) ∈ L(x) and ξ(R,≤, n) < LE(x)

then set LE(x) = LE(x) ∪ {ξ(R,≤, n)}.
≥-Rule If (≥ nR) ∈ L(x) and ξ(R,≥, n) < LE(x)

then set LE(x) = LE(x) ∪ {ξ(R,≥, n)}.
ch-Rule If there exists v occurring in LE(x) with {v ≥ 1, v ≤ 0} ∩ LE(x) = ∅

then set LE(x) = LE(x) ∪ {V}, V ∈ {v ≥ 1, v ≤ 0}.
fil-Rule If there exists v occurring in LE(x) with σ(v) = m and m > 0, and

there exists no y with α(v) ⊆ L(y)
then 1. create a new proxy node y,

2. set L(y) = α(v)∪ {CT },
3. set LE(y) = LE(x).

e-Rule If (Z nR) ∈ L(x), n ≥ 1, and there exists y with R ∈ L(y) and R < L(〈x, y〉)
then set L(〈x, y〉) = L(〈x, y〉) ∪ {R}, and

if LE(x)*LE(y) then set LE(y) = LE(y) ∪ LE(x).

Fig. 1. Expansion rules forALCOQ

5.2 Explaining the Rules

The u-Rule, t-Rule and the ∀-Rule rules are similar to the ones in the standard tableau
rules forALC [2].
∀\-Rule. This rule is used to ensure the semantics of the new operator ∀(R\S).D

(defined in preprocessing) by making sure that all R-fillers are labelled, and together
with the ch-Rule (see explanation below) it has the same effect as the choose-rule in [2]
needed to detect the unsatisfiability of concepts like ((≥ 3R.C)u (≤ 1R.D)u (≤ 1R.¬D))
(See Example 2 in [4] for details).
≤-Rule and ≥-Rule. These rules encode the numerical restrictions in the label L

of a node x into a set (ξx) of inequations maintained in LE(x) (P1 in Section 4.2). An
inequation solver is always active and is responsible for finding a non-negative integer
solution σ for ξx (P2 in Section 4.2) or triggering a clash if no solution is possible (see
Def. 5). If the inequations added by these rules do not trigger a clash, then the encoded
number restrictions can be satisfied by a possible distribution of role fillers.

ch-Rule. This rule is used to check for empty partitions. Given a set of inequations
in the label (LE) of a node x and a variable v such that α(v) = P and P ∈ P we
distinguish between two cases:

– (i) The case when PI must be empty (v ≤ 0, α(v) = P); this can happen when
restrictions of elements assigned to this partition trigger a clash. For instance, if

{∀R1.A, ∀R2.¬A} ⊆ L(x), v ≥ 1 ∈ LE(x) and P = {R1,R2} then a node y assigned to
P with {R1,R2} ⊆ L(〈x, y〉) triggers a clash {A,¬A} ⊆ L(y) and v ≤ 0 is enforced.

– (ii) The case when PI must have at least one element (1 ≤ m ≤ σ(v)); if PI can
have at least one element without causing any logical clash, this means that we can
have m elements also in PI without a clash. Therefore, when creating nodes (using
the fil-Rule) of corresponding partitions, it is sufficient to create one proxy node for
each partition (see Lemma 4 in [4] for a proof).

Since the inequation solver is unaware of logical restrictions of filler domains we allow
an explicit distinction between cases (i) and (ii). We do this by non-deterministically
assigning ≤ 0 or ≥ 1 for each variable v occurring in LE(x).

fil-Rule. This rule is used to generate individual nodes depending on the distribution
(σ) returned by the inequation solver. The rule is fired for every non-empty partition P
usingσ(v). It generates one proxy node as the representative for the m elements assigned
to PI by the inequation solver. The proxy individual is tagged with its partition name
using α(v) in its label, CT is also added to its label to make sure that every node created
by the fil-Rule also satisfies CT .

e-Rule. This rule connects a node x to a proxy individual y representing R-fillers of
x by adding the edge for R between x and y. For instance, if (≥ 2R) ∈ L(x) and there
exists a node y assigned to PI such that R ∈ P and P ⊆ L(y), this means that y can be
used as an R-filler of x. Therefore, the e-Rule creates/updates the edge 〈x, y〉 with R ∈
L(〈x, y〉). The node y can be re-used to satisfy another (≥ nR. For instance, if we have
another node x1 with (≥ 2R) ∈ L(x1), y is re-used and R is added to the edge 〈x1, y〉.

5.3 Proofs

The soundness, completeness and termination of the algorithm presented in this paper
are consequences of Lemmas 2, 3, 4, 5, and Lemma 6.

Lemma 3. Given an unfoldable TBox T and its complete and clash-free completion
graph G. Let x be a node in G, C,D ∈ NC, R ∈ NR, we define Num(x) = {E∈ L(x) | E
is of the form ≥ nR, ≤ mR} as the set of at-least and at-most restrictions to be satisfied
for x. A solution σ for the encoding ξx of Num(x) is valid w.r.t T : (i) it does not violate
Num(y) for a node y in G, (ii) it does not violate a restriction implied by any operator
used in T , (iii) it does not violate the hierarchy R introduced during preprocessing.

Lemma 4 (Termination). When started with an unfoldable TBox T using the DL
ALCOQ, the proposed algorithm terminates.

Lemma 5 (Soundness). If the expansion rules can be applied to T such that they yield
a complete and clash-free completion graph, then T has a tableau.

Lemma 6 (Completeness). IfT has a tableau, then the expansion rules can be applied
to T such that they yield a complete and clash-free completion graph.

Proof. The proofs for Lemmas 3, 4, 5, and Lemma 6 can be found in [4].

6 Discussion

The work presented in this paper not only extends our work in [3] to handle nominals
and unfoldable TBoxes. Moreover, it reduces the number of elements created and the
number of expansion rules triggered, by using one proxy element as in [6] to repre-
sent a partition’s elements. Proxy elements are tagged by a partition name to enable
their re-use. A different form of individual re-use is used in [11] and is based on non-
deterministic guessing. The calculus itself is not an optimization technique; a naïve
implementation is by no means better then any other naïve implementation of standard
DL reasoning algorithms proposed so far. However, by integrating arithmetic reason-
ing, the calculus is more informed and enjoys characteristics that make it more open to
address sources of inefficient DL reasoning such as those related to the creation of large
models and the interaction between nominals and QCRs.

The key intuition in our approach is to apply the atomic decomposition technique on
the set of all nominals and all role fillers. By doing this, the decomposition reaches all
domain elements and computes all possible groupings of these elements into mutually
disjoint partitions. In a sense it performs a semantic split for groups of individuals and
not necessarily for each individual (which is the case with standard tableau algorithms)
using the ch-Rule rule.

Unfortunately the number of partitions is exponential to the size of the input (num-
ber of nominals and QCRs) which results in an exponential blow up of variables. Naïve
applications of the ch-Rule give a double exponential worst case algorithm. However,
many of these partitions will not be assigned any individuals. For instance, in most of
the cases the partitions including more then one nominal will be empty assuming that
nominals are disjoint. As a default, one can assume that all partitions are empty and use
only those needed to satisfy the QCRs. In a sense, the inequation solver only allocates
and deals with non-zero variables and the variables not considered are assumed to be
zero. Which means that in the average case the algorithm does not have to deal with
inequations containing an exponential number of variables (see [5] for more details).

It has been shown in [8, 5] that extending a DL reasoning algorithm with an arith-
metic component can dramatically improve the average case performance in the case
of the DL SHQ. We conjecture that the calculus presented in this paper can enable
similar performance improvements once equipped with adequate optimizations. In par-
ticular, it seems to be amenable to the optimizations used in [5] and the ones discussed
in [14]. A prototype implementation for the calculus presented in this paper is part of
ongoing work where we also extend the calculus to handle GCIs, transitive roles and
role hierarchies. Empirical evaluation will be reported in a separate paper.

References
1. Baader, F., Buchheit, M., and Hollunder, B. Cardinality restrictions on concepts. Artificial

Intelligence 88, 1-2 (1996), 195–213.
2. Baader, F., and Sattler, U. An overview of tableau algorithms for description logics. Studia

Logica 69 (2001), 5–40.
3. Faddoul, J., Farsinia, N., Haarslev, V., and Möller, R. A hybrid tableau algorithm for
ALCQ,. In Proc. of the 2008 Int. Workshop on Description Logics, also in 18th European
Conference on Artificial Intelligence (ECAI 2008) (2008), pp. 725–726.

4. Faddoul, J., Haarslev, V., andMöller, R. Hybrid reasoning for description logics with nomi-
nals and qualified number restrictions. Tech. rep., Institute for Software Systems (STS), Ham-
burg University of Technology, 2008. http://www.sts.tu-harburg.de/tech-reports/
papers.html.

5. Farsinia, N. Combining integer programming and tableau-based reasoning: A hybrid calculus
for the description logic SHQ. Master’s thesis, Concordia University, 2008.

6. Haarslev, V., andMöller, R. Optimizing reasoning in description logics with qualified num-
ber restrictions. In Description Logics (2001).

7. Hollunder, B., and Baader, F. Qualifying number restrictions in concept languages. In Proc.
of the 2nd Int. Conference on Principles of Knowledge Representation and Reasoning,KR-91
(Boston (USA), 1991), pp. 335–346.

8. Haarslev, V., Timmann, M., and Möller, R. Combining tableaux and algebraic methods for
reasoning with qualified number restrictions. In Description Logics (2001), pp. 152–161.

9. Horrocks, I., and Sattler, U. Ontology reasoning in the SHOQ(D) description logic. In
Proc. of the 17th Int. Joint Conf. on Artificial Intelligence (IJCAI 2001) (2001), Morgan Kauf-
mann, Los Altos, pp. 199–204.

10. Horrocks, I., and Sattler, U. A tableaux decision procedure for SHOIQ. Journal of
Automated Reasoning (2007), 249–276.

11. Motik, B., and Horrocks, I. Individual reuse in description logic reasoning. In IJCAR
(2008), pp. 242–258.

12. Motik, B., Patel-Schneider, P. F., and Cuenca Grau, B. OWL 2 web ontology language:
Direct semantics. Latest version available at http://www.w3.org/TR/owl2-semantics/.

13. Motik, B., Shearer, R., and Horrocks, I. Optimized reasoning in description logics using
hypertableaux. In (CADE-21) (2007), vol. 4603 of Lecture Notes in Artificial Intelligence,
Springer, pp. 67–83.

14. Ohlbach, H. J., and Koehler, J. Modal logics description logics and arithmetic reasoning.
Artificial Intelligence 109, 1-2 (1999), 1–31.

15. Parsia, B., Cuenca Grau, B., and Sirin, E. From wine to water: Optimizing description
logic reasoning for nominals. In Proc. of the 10th Int. Conference on Principles of Knowledge
Representation and Reasoning (KR) (2006), pp. 90–99.

16. Tobies, S. The complexity of reasoning with cardinality restrictions and nominals in expres-
sive description logics. Journal of Artificial Intelligence Research 12 (2000), 199–217.

17. Wolstencroft, K., Brass, A., Horrocks, I., Lord, P., Sattler, U., Stevens, R., and Turi,
D. A little semantic web goes a long way in biology. In 4th Int. Semantic Web Conference
(Ireland, 2005), vol. 3792, pp. 786–800.

18. Kazakov, Y., and Motik, B. A Resolution-Based Decision Procedure for SHOIQ,
vol. 4130/2006. Springer Berlin / Heidelberg, 2006, pp. 662–677.

