
Lemmas for Justifications in OWL?

Matthew Horridge, Bijan Parsia, Ulrike Sattler

The University of Manchester
Oxford Road, Manchester, M13 9PL

{matthew.horridge|bparsia|sattler}@cs.man.ac.uk

1 Introduction

Over the past few years there has been a significant amount of interest in the
area of debugging and repairing of OWL ontologies. The process of debugging
an ontology is necessary in the same way that debugging programme code is
necessary – that is, debugging takes place in order to eradicate faults. In terms of
ontology debugging, the faults manifest themselves as undesirable entailments.
In particular, the entailment that a concept is unsatisfiable is almost always
undesired. However, undesirable entailments are not restricted to unsatisfiable
concepts. Other entailments, such as certain subsumptions between concepts,
might be unintended and contrary to the modeler’s understanding of the domain,
and thus, undesirable. Ontology debugging is the process of finding the causes
of an undesirable entailment, understanding these causes, and modifying the
ontology so that the undesirable entailment no longer holds.

Without some kind of tool support, it can be very difficult, or even impos-
sible, to work out why entailments arise in ontologies. Even in small ontologies,
that only contain tens of axioms, there can be multiple reasons for an entail-
ment, none of which may be obvious. It is for this reason that there has recently
been a lot of focus on generating explanations for entailments in ontologies. In
the OWL world, justifications are a popular form of explanation for entailments.
Justifications are minimal subsets of an ontology that are sufficient for an en-
tailment to hold. Virtually all mainstream ontology editors such as Protégé-4,
Swoop, and Top Braid Composer provide support for generating justifications
as explanations for arbitrary entailments. Justifications have proved enormously
useful for understanding and debugging ontologies. In [1], Kalyanpur presents a
user study which showed that the availability of justifications had a significant
positive impact on the ability of users to successfully diagnose and repair an
ontology. Recently, justifications have been used for debugging very large on-
tologies such as SNOMED [2], where the size of the ontology prohibits efficient
manual debugging.

In the same way that debugging software requires an understanding of why
errors in the code occur, it is necessary to understand why undesirable or un-
expected entailments arise in a buggy ontology. Without this understanding, it

? The user studies that form part of this work were approved by the University of
Manchester Senate Ethics Committee. Reference 0723

is essentially impossible to devise any kind of reasonable repair strategy for an
ontology. However, people can find it difficult to understand certain justifica-
tions. Indeed, as will be seen later, there is evidence that some justifications are
very difficult, or even impossible, for a wide range of people to understand. The
ability to understand a justification is affected by many factors ranging from
presentation techniques through to the interplay between the various types of
axioms in the justification. This paper focuses on the latter aspect. The work
presented in this paper focuses on taking justifications that are difficult to un-
derstand, and choosing subsets of these justifications that can be replaced with
simpler summarising entailments, such that the result is an easier to understand
justification. Note that it is highly unlikely that this service should be directly
exposed to end users. Instead, it is envisioned that a debugging tool will make
multiple calls to this service in order to build proof structures to present to users.

2 Preliminaries

Throughout this paper, the following nomenclature is used:
α an axiom
O an ontology
η an entailment
J a justification
S a sets of axioms
S? the deductive closure of S
Sig(X) the signature of X
A and B are used as atomic concept names, C, D, E are used as (possibly

complex) concepts, R and S as role names. This paper focuses on OWL and
OWL 2 and their rough syntactic variants SHOIN (D) [3] and SROIQ [4]
respectively. For the purposes of this paper, an ontology is regarded as a finite
set of SROIQ axioms {α0, . . . , αn}. An axiom is of the form of C v D or
C ≡ D, where C and D are (possibly complex) concept descriptions, or S v R or
S ≡ R where S and R are (possibly inverse) roles. It should be noted that OWL
contains a significant amount of syntactic sugar, such as DisjointClasses(C,D),
FunctionalObjectProperty(R) or Domain(R,C). Signature The signature of
a concept expression, axiom, or set of axioms is the set of concept, role, individual
and datatype names appearing in the concept expression, axiom, or set of axioms.
Sig(X) denotes the signature of X. Consistency A set of axioms S is consistent
if there exists an interpretation that satisfies every axiom in S (i.e. there exists
a model of S). Justifications A justification [1, 5, 6] for an entailment in an
ontology is a minimal set of axioms from the ontology that is sufficient for the
entailment to hold. The set is minimal in that the entailment does not follow
from any proper subset of the justification. More precisely,

Definition 1 (Justification). For an ontology O and an entailment η where
O |= η, a set of axioms J is a justification for η with respect to O if J ⊆ O,
J |= η and, for all J ′ (J , then J ′ 6|= η. Additionally, J is simply a justification
(without respect to O) if J |= η and, if J ′ (J , then J ′ 6|= η.

Consider the following ontology, O = {1: A v B, 2: A v ∃R.A, 3: D ≡
∃R.B, 4: A v F, 5: B v D} which entails A v D. There are two justifications
for A v D, the first being {1, 2, 3} and the second being {1, 5}. Notice that if any
one of the axioms is removed from any of these justifications, then the remaining
set of axioms no longer supports the entailment.

3 Understanding Justifications

Through personal experience and through the observation of users working with
justifications, the intuition that some justifications can be very difficult or even
impossible for people to understand has emerged. In order to verify this intuition,
we conducted a user study. The aim of the study was to gather sufficient data
on the difficulty of understanding justifications in order to develop, calibrate,
and validate a model for predicting how easy or difficult it would be for people
to understand a given justification.

3.1 User Study

Participants Generally speaking, people who view justifications of entailments
do so within the context of an ontology development environment. Users request
justifications for entailments during the editing or browsing process when they
encounter undesirable entailments or entailments that they do not understand.
The target population of the study was therefore people who have had experience
of either browsing, editing, or using OWL ontologies. The target population did
not include OWL neophytes, or people with a very limited understanding of
OWL who would find it difficult to read and interpret OWL axioms. Given the
target population, it was reasonable for the study sample to comprise staff and
students from computer science departments, Semantic Web researchers, and
people from other research communities who are familiar with OWL.

Procedure We collected a corpus of justifications for entailments found in pub-
lished OWL ontologies. The entailments were either unsatisfiable concept entail-
ments (A ≡ ⊥) or subsumption entailments between named concepts (A v B).
We selected a subset of the corpus which seemed difficult for people to under-
stand (e.g., we removed trivial justifications such as those consisting of the entail-
ment itself). We then expanded the set of justifications using various substitution
lemmas that we speculated would make justifications easier to understand. In
total this provided a pool of 100 justifications which were used in the study.
In order to remove biasing effects from domain knowledge (or lack of domain
knowledge), justifications were obfuscated by replacing the names of entities with
alpha-numeric identifiers.

A random selection of justifications was presented to each participant. For
each justification, we recorded the time taken for the participant to claim that
they had understood (or had not understood) the justification. The “think aloud
protocol” was used in order for the study facilitator to determine whether or not

the participant had, in fact, understood the justification. We also recorded the
participant’s ranking on how easy or difficult the justification was to under-
stand using a six point Likert scale: {‘Very easy’=1, ‘Easy’=2, ‘Neither easy or
difficult’=3, ‘Difficult’=4, ‘Very difficult’=5, ‘Impossible’=6}.

Results A total of 12 people participated in the study. The participants’ expe-
rience with OWL ranged from less than 6 months to over 4 years. Some partic-
ipants only had experience in browsing ontologies, while other participants de-
velop OWL tools. The total number of rankings, a ranking being an instance of a
viewing of a justification, was 227 (an average of 18.9 rankings per participant).
Figure 1 shows a plot of ranking versus time (in seconds). Each point represents
a ranking. A rank of 1 corresponds to “very easy to understand”, and a rank of 6
corresponds to “impossible to understand”. Excluding ranking 6 (“impossible to
understand”) the general trend indicates that when participants took longer to
understand a justification they perceived it to be more difficult to understand.
It is noticeable that, in many cases the time spent trying to understand jus-
tifications that were deemed impossible to understand (raking 6), is less than
the time spent trying to understand very difficult justifications. This indicates
that participants gave up trying to understand a justification very soon, perhaps
because it simply seemed to complicated, or, after some effort they thought that
they would never understand the justification. In fact, it was common for partic-
ipants who could not understand a particular justification to ask the question,
“Is this explanation correct?”, thereby implying that they doubted the ability of
the system to generate sound justifications. Out of the 227 rankings, 69 (30%)
corresponded to being “difficult to understand” through to “impossible to under-
stand” (35 rankings, (15%) corresponded to being “impossible” to understand).
Interestingly, all of the “impossible to understand” rankings were rankings of
unmodified, naturally occurring, justifications. In summary, there were a signif-
icant number of “difficult” to “impossible” to understand justifications, which
indicates that understanding justifications is a real problem.

3.2 Factors that Affect Understanding

Data from the user study provided insight into how people understand justifi-
cations and why they find certain justifications difficult to understand. Broadly
speaking, the following reasons were identified as being important.

When people work through justifications they typically perform obvious syn-
tactic transformation of axioms and spot simple patterns to reach intermedi-
ate conclusions. For example, a user might work through a justification, such
as {1, 2, 3}, from the Example in Section 2, as follows: Axioms 1 and 2 entail
A v ∃R.B, and this result, in conjunction with Axiom 3 entails A v D (the en-
tailment). Note that the user must spot a suitable intermediate inference step,
understand how it arises, and understand the part it plays in the whole justifi-
cation. Justifications that contain a lot of information, and a lot of intermediate
inference steps, are difficult to understand. In particular, the number of different
types of axioms and concept expressions that the justification contains plays an

!"

#!!"

$!!"

%!!"

&!!"

'!!!"

'#!!"

'$!!"

'" #" (" $")" %"

!
"#

$
%&
'$
()
*
+
',
%

-'$.%/0*1"*2%

Fig. 1: User Ranking vs. Time

0

20

40

60

80

100

120

140

160

180

200

1 2 3 4 5 6

User ranking

C
o

m
p

le
x
it

y
 M

o
d

e
l

R
a
n

k
in

g

Fig. 2: User Ranking vs. Model

important part. Justifications whose intermediate inference steps arise due to
the interaction between many different types of axioms or concept expressions
are hard to understand.

Justifications that contain unfamiliar patterns of axioms are difficult to un-
derstand. Consider the following ontology,O = {1: A ≡ ∀R.C, 2: Domain(R,A),
3: E v F}, which is derived from a real ontology1 and was presented to some
of the study participants as part of a justification. This ontology entails E v A.
The reason for this is that Axioms 1 and 2 entail > v A. During the study, it
was observed that many of the participants (including participants with many
years of experience with OWL, and even reasoner developers) did not realise, or
neglected to see, that A ≡ ∀R.C, coupled with Domain(R,A), entails > v A.
Many of the participants had not encountered this “pattern of axioms” before.
They therefore had difficulty in realising what these axioms entail, and their sig-
nificance in the context of the complete justification. There are, of course, other
such patterns of axioms that occur in justifications that people find difficult to
spot or understand.

A commonality between the two points detailed above is that subsets of a
justification can result in entailments that can be viewed as “steps” or “inter-
mediate entailments”. When trying to understand justifications, it is necessary
for people to spot and understand these intermediate entailments. In terms of
how complex a justification is for people to understand, the number of signif-
icant intermediate entailments, and for any given intermediate entailment, the
number of different types of axioms and concept expressions that give rise to the
entailment, has an effect. What counts as a significant intermediate entailment
is an open question; however, this basic idea of steps gives rise to the notion
lemmas for justifications.

4 A Model for Predicting Complexity

Based on the data obtained from the study, we developed a simple model in
order to predict how difficult it is for people to understand a given justification.
The model is also used as a tool for identifying the significant intermediate
inference steps in a justification. The model is composed of two parts: 1) A

1 This example was taken from an ontology about movies, which was originally posted
to the Protege-OWL mailing list.

“structural” complexity measure, which estimates the complexity based on the
number of different types of axioms and concept expressions in a justification;
2) A “phenomena” based complexity measure, which increases the complexity
of a justification when certain patterns of axioms or “phenomena” occur in the
justification.

For the sake of brevity only an informal description and summary of the
model is given here:

An “axiom and concept expression type” component estimates complexity
based on the syntax of justifications. It predicts complexity based on the number
of different types of axioms and concept expressions in a justification. Differ-
ent types of axioms, and concept expressions have different weightings. These
weightings are based on the data obtained in the user study. For example, in-
verse role axioms have a heavy weighting in the complexity model because many
participants found justifications that contained inverse properties difficult to un-
derstand. Likewise, subclass axioms that have a complex concept expression on
the left hand side are weighted heavier than subclass axioms that have a concept
name on the left hand side.

A “signature flow” component, reflects the degree of spreading of terms in
the signature of the justification across axioms in the justification (how much the
signature “flows” across the axioms in the justification). This component was
introduced as an indicator for justifications where there are many intermediate
steps that reuse the same axioms to justify their conclusions. In some sense, it
reflects the “tangling” of the justification.

A “universal implication” component increases the computed complexity if
there are any subclass axioms that have a left hand side of ∀R.C, or equiva-
lent concept axioms which state that ∀R.C is equivalent to some other concept
expression. This component was motivated by the fact that many participants
failed to realise that ∀R.C subsumes the class of individuals that have no R
successor.

A “general concept inclusion” component increases the complexity of a justi-
fication as the number of General Concept Inclusions present in laconic versions
of the justification increases. GCIs in laconic justifications are usually a direct
indicator of an intermediate inference step that needs to be spotted.

A “synonym of top” component increases the complexity if the justification
has any entailed synonyms of > that are not explicitly asserted. It was found
that study participants were generally surprised by this kind of entailment, with
most of them having trouble spotting it.

It should be noted that various weightings are used throughout the model.
The purpose of these weightings is to allow individual components of the model
to be altered for tuning purposes. In a user setting, it might also be possible to
tune out certain components, such as the “universal implication” component,
when users start to feel comfortable spotting certain patterns of axioms. In a
similar vein, the model could be augmented with additional components should
other patterns be discovered in the future. In any case, the model presented here

is a first approximation, and, as will be seen, is satisfactory for the purpose of
lemmatising justifications.

A version of the model was implemented using weightings based on data
from the study. Figure 2 shows a plot of the user rankings that were assigned to
justifications against complexity as predicted by the model. The model prediction
has a linear relationship with the rankings provided by study participants. In
fact, there is a correlation of 0.8 between the two variables, which indicates a
strong correlation. In what follows the model is used as a first approximation
for predicting how difficult it is for people to understand a justification, which
in turn, is used to defined lemmas as the notion of intermediate inference steps.

5 Lemmas for Justifications

Given a justification J for an entailment η, J can be lemmatised into J ′, so
that J ′ is easier to understand than J ′. With this notion in hand, lemmas for
justifications can now be defined. First, an informal definition is given, then a
more precise definition is given in Definition 3.

Informally, a set of lemmas Λ for a justification J for η is a set of axioms
that is entailed by J which can be used to replace some set S ⊆ J to give a
new justification J ′ = (J \ S) ∪Λ for η. Moreover, J ′ is simpler to understand
than J . J ′ is called a lemmatisation of J .

Various restrictions are placed on the generation of the set of lemmas Λ that
can lemmatise a justification J . These restrictions prevent counter-intuitive lem-
matisations, an example of which will be given below. Before these restrictions
are discussed, it is necessary to introduce the notion of a tidy set of axioms.

Definition 2 (Tidy sets of axioms). A set of axiom S is tidy if S 6|= > v ⊥,
S 6|= A v ⊥ for all A ∈ Sig(S), and S 6|= > v A for all A ∈ Sig(S).

Intuitively, a set of axioms is tidy if it is consistent, contains no synonyms of
⊥ (where a class name is a synonym of ⊥ with respect to a set of axioms S if
S |= A v ⊥), and contains no synonyms of > (where a class name is a synonym
of > with respect to a set of axioms S if S |= > v A).

The restrictions mandate that a set of lemmas Λ must only be drawn from
(i) the deductive closure of tidy subsets of the set S ⊆ J , (ii) from the exact set
of synonyms of ⊥ or > over S.

Without the above restrictions on axioms in Λ, it would be possible to lem-
matise a justification J to produce a justification J ′ that, in isolation, is simple
to understand, but otherwise bears little or no resemblance to J . For example,
consider J = {A v ∃R.B, B v Eu∃S.C, B v Du∀S.¬C} as a justification for
A v ⊥. Suppose that any axioms entailed by J , could be used as lemmas (i.e.
there are no restrictions on the axioms that make up Λ). In this example, A is
unsatisfiable in J , meaning that it would be possible for J ′ = {A v E,A v ¬E}
to be a lemmatisation of J . Here, J ′ is arguably easier to understand than J ,
but in bears little resemblance to J . In other words, A v E and A v ¬E are
not intuitively lemmas for J |= A v ⊥. Similarly, counter-intuitive results arise

if lemmas are drawn from inconsistent sets of axioms, or sets of axioms that
contain synonyms for >. The definition of lemmas below, Definition 3, therefore
only allows Λ to contain axioms that are drawn from (i) the deductive closures
of tidy subsets of S ⊆ J (ii) the set of direct/explicit synonyms of > or ⊥ with
respect to S.

In what follows, δ is the ‘well known’ structural transformation originally
defined in [8] (with a version of the rewrite rules for description logic syntax
given in [7]). This structural transformation pulls axioms apart and flattens out
concept expressions, removing any nesting and is used in order to allow a “fine-
grained” approach in lemma generation. T ? is the deductive closure of T , J ? is
the deductive closure of J , A represents an atomic class name, and Complexity
is a function that returns a value that represents how complex a justification is
for a person to understand—the larger the value the more complex. In this case,
the previously described model is used to provide a complexity rating.

Definition 3 (Lemmas for Justifications). Let J be a justification for η
and S a set of axioms such that S ⊆ J . Let Θ be the set of tidy (Definition 2)
subsets of (S ∪ δ(S)). Let Ω be the set of consistent subsets of (S ∪ δ(S)). Let

Λ ⊆
⋃
T ∈Θ
T ? ∪ {α | α is of the form A v ⊥ or > v A, and ∃K ∈ Ω s.t. K |= α}

Λ is a set of lemmas for a justification J for η if, for J ′ = (J \ S) ∪ Λ

1. J ′ is a justification for η over J ?, and,
2. Complexity(η,J ′) < Complexity(η,J)

6 Computing Lemmas

Algorithm 1 is a practical algorithm for computing lemmatised justifications.
The algorithm requires two sub-routines: The ComputeJustifications sub-routine
returns the justifications for an entailment that holds in a set of axioms—any
“off the shelf” implementation of a justification finding service may be used
here. The ComputeCandidateLemmas sub-routine computes a set of axioms that
are entailed by tidy subsets (Definition 2) of the set of input axioms. In the im-
plementation described in this paper, the ComputeCandidateLemmas subroutine
computes lemmas that in themselves have a low complexity and hence users find
easy to understand. In particular, the implementation computes lemmas of the
form A v B, C v A, A v ∃R.B, Domain(R,A), A(a), (∃R.A)(a) and S v R.
The implementation of the routine generates these axioms and checks that they
are entailed by tidy subsets of the set of input axioms. It should be noted that
Algorithm 1 is non-deterministic—the output depends on the complexity model
that is used to determine whether one justification is simpler than another, and
also on the GetCandidateLemmas subroutine. The algorithm always terminates.

Algorithm 1 LemmatiseJustification
Function-1: LemmatiseJustification(J, η)

1: S ← J ∪ ComputeCandidateLemmas(J, η) \ {η}
2: justs← ComputeJustifications(S, η)
3: c1 ← ComputeComplexity(J, η)
4: L← J
5: for J ′ ∈ justs do
6: c2 ← ComputeComplexity(J ′, η)
7: if c2 < c1 then
8: L← J ′

9: return L

6.1 Implementation Evaluation

In order to demonstrate that it is practical to compute lemmatised justifications,
the 1 algorithm was implemented in Java using the latest version of the OWL API
in conjunction with the Pellet reasoner. Justifications (over 450 for entailments
of the form A v B, A v ⊥ and A(a)) whose predicted complexity was greater
than 100.0 (roughly corresponding to ‘Difficult’, ‘Very difficult’ or ‘Impossible’),
were then selected for lemmatisation from the ontologies, shown in Table 3. For
each justification a lemmatised version of the justification that had a predicted
complexity of less than 50.0 (roughly corresponding to a ‘very easy’ or ‘easy’
ranking) was computed. The implementation was run on a laptop with a 2.16GHz
Intel Core Duo Processor, with the Java Virtual Machine allocated 1GB RAM.

Figure 4 shows a plot of the initial justification complexity against the time
required for computing lemmatised justifications. It is clear to see that, in most
cases, lemmatised justifications can be computed in under two seconds. The
maximum time required was 4.5 seconds. It is noticeable that the plot exhibits
a clustering effect. This is due to the fact that in certain ontologies there were
many justifications with a similar complexity score. For example the clustering
between 100 and 150 is caused by justifications extracted from the Chemical
ontology.

ID Ontology Expressivity Logical Justifi-
Axioms cations

1 Generations ALCOIF 38 59
2 Nautilus ALCHF(D) 38 10
3 People ALCHOIN 108 150
4 Periodic-table ALU 214 378
5 University SOIN(D) 52 12
6 Economy ALCH(D) 1625 1383
7 Transportation ALCH(D) 1157 188
8 MiniTAMBIS SHOIN 173 65
9 Earthrealm SHOIN(D) 2546 262

10 Chemical ALCHF(D) 114 424

Fig. 3: Ontologies used for Testing

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

100 120 140 160 180 200 220 240

Input Complexity

T
im

e
 /

 (
s
e
c
o

n
d

s
)

Fig. 4: Lemmatisation Time

Person v ¬Movie

RRated v CatMovie

CatMovie v Movie

RRated ≡ (∃hasScript.ThrillerScript) t (∀hasViolenceLevel.High)

Domain(hasViolenceLevel, Movie)

Fig. 5: A justification for Person v ⊥

Entailment : Person v ⊥

Person v ¬Movie

> v Movie

∀hasViolenceLevel.⊥ v Movie

∀hasViolenceLevel.⊥ v RRated

RRated ≡ (∃hasScript.ThrillerScript) t (∀hasViolenceLevel.High)

RRated v Movie

RRated v CatMovie

CatMovie v Movie

∃hasViolenceLevel.> v Movie

Domain(hasViolenceLevel,Movie)

Fig. 6: A schematic of a series of lemmatised justifications arranged into a tree. The
root justification is for Person v ⊥

7 An Example

Figure 5 shows a justification J for Person v ⊥. A lemmatisation of this jus-
tification, along with lemmatisations of the justifications for the lemmas over
J is shown in Figure 6. Axioms in J are shown in bold, while lemmas are
shown in a plain typeface. In this example, J was initially lemmatised to give
J ′ = {> v Movie, Person v ¬Movie}. Since > v Movie is lemma in J ′, another jus-
tification for this lemma was computed over J and then itself lemmatised. This
process was repeated to automatically build up the tree shown in Figure 6. It
should be noted that this presentation is for illustrative purposes and to give a
flavour of the kinds of lemmas introduced into a justification, it is not necessarily
intended for end users.

8 Related Work

In [9], a sequent calculus is used as the basis for explaining subsumption in
ALC. The proofs produced by this approach explicitly reference the inference
rules that are used to go from one step to the next, and in this regard are
fairly close to formal proofs and not in the spirit of justifications. Borgida briefly

mentions the idea of sub-steps and weakenings as ways of deriving higher quality
explanations. In [10], Schlobach uses interpolation to explain subsumption in
ALC. He searches for interpolants that have particular syntactic and semantic
properties. Schlobach calls these interpolants illustrations, and uses them to
help explain how one subsumption follows from another. The basic motivations
are to make explanations easier to understand. Lingenfelder [11] and Huang
[12] tackle the problem of presenting machine generated proofs to humans. In
both cases, they attempt to address the problem that machine generated proofs
are difficult for humans to understand. Lingenfelder remarks that even natural
deduction proofs are at too low a level for human understanding, and that their
length causes difficulty in seeing “the important steps” and therefore hinders
understanding. Huang also argues that natural deduction proofs are also at too
low a level, and develops ND style proofs that are at a higher level of abstraction.
Interestingly, Lingenfelder sketches the idea of grouping proof steps together
and applying lemmas. He also points out that it is necessary to distinguish
between trivial steps and more complicated steps, possibly with use of a model.
There has been a significant amount of work on predicting the complexity of
understanding and the ease of maintainability of software. In particular, seminal
work by McCabe [13] was followed by a plethora of work. Some of the inspiration
and ideas for the properties of the complexity model presented here were drawn
from this work.

9 Conclusions and Future Work

A wide range of people can find justifications for entailments in OWL difficult to
understand. The work that has been presented in this paper attempts to begin
to address this problem through the use of lemmas for justifications.

A model that predicts how difficult it is for people to understand a justifica-
tion has been defined. The model was calibrated and validated against data from
a user study. This model has been used as input into a definition of lemmas for
justifications. The definition specifies that a lemmatisation of a justification re-
sults in another justification that is easier to understand according to the notion
of justification complexity. Initial empirical results indicate that it is feasible to
compute lemmatised justifications for entailments from published ontologies.

The next major challenge is to design and evaluate services that make use
of lemmatised justifications for building proof structures that are ultimately
aimed at end users. More studies will be needed to evaluate these mechanisms
and to show that they can be beneficially integrated into ontology development
environments and user workflows.

References

1. Kalyanpur, A.: Debugging and Repair of OWL Ontologies. PhD thesis, The
Graduate School of the University of Maryland (2006)

2. Baader, F., Suntisrivaraporn, B.: Debugging SNOMED CT using axiom pinpoint-
ing in the description logic EL+. In: KR-MED. (2008)

3. Horrocks, I., Patel-Schneider, P.F., van Harmelen, F.: From SHIQ and RDF to
OWL: The making of a web ontology language. J. of Web Semantics (2003)

4. Horrocks, I., Kutz, O., Sattler, U.: The even more irresistible SROIQ. In: KR
2006. (2006)

5. Baader, F., Hollunder, B.: Embedding defaults into terminological knowledge rep-
resentation formalisms. J. Autom. Reasoning (1995)

6. Schlobach, S., Cornet, R.: Non-standard reasoning services for the debugging of
description logic terminologies. In: IJCAI. (2003)

7. Horridge, M., Parsia, B., Sattler, U.: Laconic and precise justifications in owl. In:
ISWC. (2008)

8. Plaisted, D.A., Greenbaum, S.: A structure-preserving clause form translation. J.
of Symbolic Computation (1986)

9. Borgida, A., Franconi, E., Horrocks, I., McGuinness, D.L., Patel-Schneider, P.F.:
Explaining ALC subsumption. In: ECAI. (2000)

10. Schlobach, S.: Explaining subsumption by optimal interpolation. In: JELIA. (2004)
11. Lingenfelder, C.: Structuring computer generated proofs. In: IJCAI. (1989)
12. Huang, X.: Reconstructing proofs at the assertion level. In: CADE 12. (1994)
13. McCabe, T.J.: A complexity measure. In: IEEE Trans. On Software Eng. (1976)

