
On Higher-Order Description Logics

Giuseppe De Giacomo, Maurizio Lenzerini, Riccardo Rosati

Dipartimento di Informatica e Sistemistica
SAPIENZA Università di Roma

www.dis.uniroma1.it/∼lastname

Abstract. We investigate an extension of Description Logics with higher-order
capabilities, based on Henkin-style semantics. Our study starts from the observa-
tion that the various possibilities of adding higher-order constructs to a DL form
a spectrum of increasing expressive power, including domain metamodeling, i.e.,
using concepts and roles as predicate arguments, and full metamodeling, pro-
viding the ability of using the language constructors and operators as predicate
arguments, in the style of RDF. We argue that higher-order features of the for-
mer type are sufficiently rich and powerful for the modeling requirements arising
in many relevant situations, and therefore we carry out an investigation of the
computational complexity of reasoning in DLs extended with such features. In
particular, we show that adding domain metamodeling capabilities to expressive
DLs has no impact on the complexity of the various reasoning tasks.

1 Introduction

Metamodeling allows one to treat concepts and properties as first-order citizens, and
to see them as individuals whose properties can be asserted and reasoned upon. This
feature is important in all applications where the need arises of modeling and reasoning
about meta-concepts, i.e., concepts whose instances are themselves concepts, and meta-
properties, i.e., relationships between meta-concepts.

It is well-known that in logic, and in Description Logics (DLs) in particular, higher-
order constructs are needed for a correct representation of concepts and properties at
the meta-level. However, the issue of devising suitable extensions to DLs for represent-
ing and reasoning about meta-level elements is largely unexplored. Recent research on
this subject shows that there is a spectrum in the modeling capabilities of DLs. Four
points in this spectrum represent specific notable cases, which we call domain model-
ing, metaquerying, domain metamodeling, and full metamodeling, respectively.
Domain modeling. In domain modeling, the language only focuses on the ability of
specifying the domain of interest in terms of individuals, concepts and roles, and is
therefore “first-order”. This is the simplest case of the spectrum, with no higher-order
feature, and is actually the one addressed in most of the research on DLs.
Metaquerying. This is the case where the knowledge base does not contain any axiom
regarding meta-concepts or meta-roles, but the query language allows for using meta-
concepts, so that concepts and roles in the knowledge base can match the variables in the
query, and may thus be returned as answers to the query [1]. This mechanism allows
to express queries that are beyond first-order logic. For instance, asking for the least
common subsumers of two concepts, or for the most specific concept for an individual,
can be done by means of suitable meta queries.

Domain metamodeling. This is the case where the language allows for using concepts
and roles as predicate arguments, so that one can assert properties of concepts and roles,
as if they were individuals. Domain metamodeling includes metaquerying as a special
case. It is our opinion that higher-order features of this kind are sufficiently rich and
powerful for the modeling requirements arising in many relevant situations. One of the
most popular approaches to domain metamodeling, which is closely related to DLs,
is HiLog [7]. HiLog is a logic with a higher-order syntax, thus allowing predicates
to appear as arguments in atomic formulae, but with a Henkin-style semantics, which
implies that the expressive power of the language actually remains within first-order.
Full metamodeling. This is the most general case, where the modeling language allows
not only for using concepts and roles as predicate arguments, but also for refining and
extending the properties of the language operators, and to reason upon such properties.
RDF and RDFS, which are again based on a Henkin semantics, are popular languages
enabling this kind of metamodeling. Both languages allow for stating axioms not only
on domain (meta-)elements, but also on the so-called built-in vocabulary (i.e., operators
such as rdf:type) of the language.

In this paper1, we investigate an extension of DLs with higher-order capabilities. We
are especially interested in those features that allow us both to model and to query indi-
viduals, concepts, roles, meta-concepts and meta-roles with no limitations. Therefore,
the extension that we study is geared towards domain metamodeling (thus including
metaquerying), for which we provide the following specific contributions.

First, we present syntax and semantics of an extension of DLs with domain meta-
modeling features (see Section 2). In particular, we show how, starting from any DL L,
one can define its higher-order version, called Hi(L). From the syntax point of view,
our approach stems from two ideas. On one hand, every modeling element can be seen
simultaneously as an individual, as a concept, and as a role. On the other hand, since
concepts in DLs are denoted not only by names, but also by complex expressions, every
complex expression is a modeling element in our language. From the semantic point of
view, we adopt a Henkin semantics, as in HiLog and RDF(S).

Second, we carry out an investigation of the computational complexity of reasoning
in DLs extended with higher-order features. By reasoning we mean not only logical im-
plication, but also answering unions of conjunctive queries with metaquerying abilities.
We show that adding domain metamodeling capabilities to expressive DLs, in particular
to SHIQ [3], has no impact on the complexity of the various reasoning tasks, including
conjunctive query answering (see Section 4).

The idea of representing concepts and properties at the meta-level is an old one
in Knowledge Representation and Computer Science. Semantic networks and early
Frame-based systems incorporated specific mechanisms for representing concepts
whose instances are themselves concepts [10, 2]. Conceptual modeling languages pro-
posed in the 70’s, such as TAXIS [12], provided both the notion of meta-class, and
suitable facilities for describing properties of operators on meta-classes. The notion of
meta-class is also present in virtually all object-oriented languages, including modern
programming languages (see, e.g., the Java class Class).

As we said before, the issue of extending DLs with higher-order constructs has been
addressed only by few research papers. In [4], probably the first paper on this subject,
the notion of “reification of concepts” is proposed as a means to express meta-level
classes, but the paper does not address neither the issue of meta-roles, nor the issue

1 For the sake of brevity, proofs are omitted in this version.

of query answering. A more recent paper is [8], where metamodeling capabilities are
added to a DL of the DL-Lite family.

Our work has connections with recent investigations on full metamodeling, in par-
ticular on RDF, RDFS, and OWL Full. In [11], the author addresses the issue of de-
cidability of reasoning on meta-properties in different fragments of OWL Full. It is
shown that, although going from domain to full metamodeling easily leads to undecid-
ability, reasoning in some fragments of OWL Full is decidable. Differently from the
present paper, the focus of [11] is neither on the tractability frontier, nor on conjunctive
query answering. Finally, reasoning (but not query answering) with metamodeling is
also studied in [14], where the language OWL FA is proposed, which introduces a stra-
tum number in class constructors and axioms to indicate the strata they belong to, and
suitable contraints impose that TBox axioms are stated on classes of the same stratum,
while ABox axioms can only involve elements of two consecutive strata.

The rest of the paper is organized as follows. In Section 2, we describe syntax and
semantics of Hi(L), by referring, in particular, to the higher-order DL Hi(SHIQ). As
we said above, Hi(L) denotes the higher-order version of the Description Logic L. In
Section 3 we present our technique for satisfiability in Hi(SHIQ), and in Section 4
we address query answering in the same DL. Both in Section 3 and in Section 4 we
also characterize the computational complexity of the presented algorithms. We end the
paper in Section 5, by pointing out future directions of our reseearch.

2 Higher-order Description Logics

In this section, we present our approach to higher-order DLs, by showing how, starting
from a DL L, one can define its higher-order version, called Hi(L). During the presen-
tation, we will also refer to a specific DL, namely SHIQ. Therefore, we will describe
in detail the higher-order DL Hi(SHIQ).

Before delving into Hi(L), we present some preliminary definitions. Every tradi-
tional DL L is characterized by a set OP(L) of operators, used to form concept and
role expressions, and a set of MP(L) of meta-predicates, used to form assertions. Each
operator and each meta-predicate have an associated arity. If symbol S has arity n, then
we often write S/n to denote such symbol and its arity. For SHIQ, we have

OP(SHIQ)= {Inv/1, And/2, Not/1} ∪ {AtLeastQn/2 | n ∈ N}
MP(SHIQ)= {InstC/2, InstR/3, IsaC/2, IsaR/2,Tran/1}.

We assume that the reader is familiar with SHIQ. Therefore, the intuitive meaning
of all the above symbols should be clear. The formal specification of their semantics
will be given shortly.

Syntax. We assume the existence of two disjoint, countably infinite alphabets: S, the
set of names, and V , the set of variables. The buidling blocks of a Hi(L) knowledge
base are assertions, which in turn are based on expressions. We define the set of expres-
sions, denoted by EL(S), over the alphabet S for Hi(L) inductively as follows:

– if E ∈ S then E ∈ EL(S);
– if C/n ∈ OP(L) and E1, . . . , En ∈ EL(S) then C(E1, . . . , En) ∈ EL(S).

Example 1. If the names Course,Teaches,Full belong to the alphabet S, then the fol-
lowing is a Hi(SHIQ) expression:

And(Course,Not(AtLeastQ2(Inv(Teaches)),Full)))

which intuitively denotes the concept representing the set of courses that are taught by
at most one full professor.

A Hi(L) assertion over EL(S) is a statement of the form M(E1, . . . , En) where
M ∈ MP(L), n ≥ 0 is the arity of M , and for every 1 ≤ i ≤ n, Ei ∈ EL(S). A Hi(L)
knowledge base (KB) is a set of assertions over EL(S).

Thus, an assertion is simply an application of a meta-predicate to a set of expres-
sions. Intuitively, an assertion is an axiom that predicate over a set of individuals, con-
cepts or roles.

Example 2. Suppose that the alphabet S contains all names mentioned in Example
1, plus GradCourse,UniversityConcept ,ObsoleteConcept , John , and DefinedBy .
Then the following are Hi(SHIQ) assertions:

IsaC(GradCourse,And(Course,Not(AtLeastQ2(Inv(Teaches)),Full))))
InstC(And(Course,Not(AtLeastQ2(Inv(Teaches)),Full))),UniversityConcept)

InstR(UniversityConcept , John,DefinedBy)
InstR(Not(ObsoleteConcept), John,DefinedBy)

The first assertion states that every graduate course is taught by at most one
full professor. The intended meaning of the second assertion is that the concept
And(Course,Not(AtLeastQ2(Inv(Teaches)),Full))) is an instance of the concept
UniversityConcept (which is therefore a meta-concept). Finally, the intended mean-
ing of the third and the fourth assertions is that the concepts UniversityConcept and
Not(ObsoleteConcept) have been introduced in the knowledge base by John .

Next, we introduce the notion of query, which in turn relies on the notion of “atom”.
Intuitively, an atom is constituted by a meta-predicate applied to a set of arguments,
where each argument is either an expression or a variable. More formally, we define the
set τ(S,V) of terms over S and V to be EL(S)∪V . Terms of the form EL(S) are called
ground. We define an atom to be constituted by the application of a meta-predicate in
MP(L) to a set of terms, and we call an atom ground if no variable occurs in it. Note
that a ground atom has the same form of an assertion. An atom whose meta-predicate
is IsaC or IsaR is called an ISA-atom, while we call instance-atom an atom whose
meta-predicate is InstC or InstR.

A higher-order conjunctive query (HCQ) of arity n is an expression of the form

q(x1, . . . , xn)← a1, . . . , am

where q, called the query predicate, is a symbol that does not belong to S ∪V , every xi
belongs to V , every ai is a (possibly non-ground) atom, and all variables x1, . . . , xn oc-
cur in some aj . The variables x1, . . . , xn are called the free variables (or distinguished
variables) of the query, while the other variables occurring in a1, . . . , am are called ex-
istential variables. A higher-order union of conjunctive queries (HUCQ) of arity n is a
set of HCQs of arity n with the same query predicate. A HCQ/HUCQ is called Boolean
if it has no free variable.

1. for each d1 ∈ ∆, if d = InvIo(d1) then dIr = (dIr
1)−1;

2. for each d1, d2 ∈ ∆, if d = AndIo(d1, d2) then dIc = dIc
1 ∩ d

Ic
2 ;

3. for each d1 ∈ ∆, if d = NotIo(d1) then dIc = ∆− dIc
1 ;

4. for each d1, d2 ∈ ∆ and for each n ∈ N, if d = AtLeastQn(d1, d2)
then dIc = {e | ∃e1, . . . , en s.t. ei 6= ej for i 6= j, and

(∀i s.t. 1 ≤ i ≤ n, 〈e, ei〉 ∈ dIr
1 and ei ∈ dIc

2).

Fig. 1. Semantic conditions on interpretations for SHIQ predicate expressions.

Example 3. Referring to the alphabet mentioned in Example 2, the following is a HCQ:

q(x)← InstC(x, y), InstR(y, John,DefinedBy)

Intuitively, the query asks for the instances of all the concepts in the
knowledge base defined by John. In our case, the answer will be simply
{GradCourse,Not(AtLeastQ2(Inv(Teaches)),Full)))}.

Example 4. Consider now the case where we want to ask for the instances of all the
concepts y such that the expression Not(y) is a concept in the knowledge base defined
by John. The natural formulation of this query would be:

q(x)← InstC(x, y), InstR(Not(y), John,DefinedBy)

However, according to our syntax for queries, variables cannot appear as arguments
within terms, and therefore the above is not a query in Hi(SHIQ). We discuss this
kind of queries further in the conclusions.

Semantics. The semantics of Hi(L) is based on the notion of interpretation structure.
An interpretation structure is a triple Σ = 〈∆, Ic, Ir〉 where: (i) ∆ is a non-empty
(possibly countably infinite) set; (ii) Ic is a function that maps each d ∈ ∆ into a subset
of ∆; and (iii) Ir is a function that maps each d ∈ ∆ into a subset of ∆ ×∆. In other
words, Σ treats every element of ∆ simultaneously as: (i) an individual; (ii) a unary
relation, i.e., a concept, through Ic; and (iii) a binary relation, i.e., a role, through Ir.

An interpretation over Σ is a pair I = 〈Σ, Io〉, where Σ = 〈∆, Ic, Ir〉 is an
interpretation structure, and Io is a function that maps: (i) each element of S to a
single domain object of ∆; and (ii) each element C/n ∈ OP(L) to an n-ary func-
tion CIo : ∆n → ∆ that satisfies the conditions characterizing the operator C/n. In
particular, the conditions for the operators in OP(SHIQ) are described in Figure 1.
We extend Io to expressions in EL(S) inductively as follows: if C/n ∈ OP(L), then
(C(E1, . . . , En))Io = CIo(EIo

1 , . . . , EIo
n).

To interpret non-ground terms, we need assignments over interpretations. An as-
signment µ over 〈Σ, Io〉 is a function µ : V → ∆.

We are now ready to describe how to interpret terms in Hi(L). Given an inter-
pretation I = 〈Σ, Io〉 and an assignment µ over I, we define the function (·)Io,µ :
τ(S,V)→ ∆ as follows:

– if t ∈ S then tIo,µ = tIo ;
– if t ∈ V then tIo,µ = µ(t);
– if t is of the form C(t1, . . . , tn), then tIo,µ = CIo(tIo,µ

1 , . . . , tIo,µ
n).

Satisfaction of an assertion with respect to an interpretation I and an assignment
µ over I is defined based on the semantics of the meta-predicates in MP(L). For the
meta-predicates used in SHIQ, satisfaction in I, µ is defined as follows:

– I, µ |= InstC(E1, E2) if EIo,µ
1 ∈ (EIo,µ

2)Ic ;
– I, µ |= InstR(E1, E2, E3) if 〈EIo,µ

1 , EIo,µ
2 〉 ∈ (EIo,µ

3)Ir ;
– I, µ |= IsaC(E1, E2) if (EIo,µ

1)Ic ⊆ (EIo,µ
2)Ic ;

– I, µ |= IsaR(E1, E2) if (EIo,µ
1)Ir ⊆ (EIo,µ

2)Ir ;
– I, µ |= Tran(E) if (EIo,µ)Ir is a transitive relation.

A Hi(L) KB H is satisfied by I if all the assertions in H are satisfied by I.2 As
usual, the interpretations I satisfying H are called the models of H. A Hi(L) KB H is
satisfiable if it has at least one model.

Let I be an interpretation and µ an assignment over I. A Boolean HCQ q of the
form q ← a1, . . . , an is satisfied in I, µ if every assertion ai is satisfied in I, µ. A
Boolean HUCQ Q is satisfied in I, µ if there exists a Boolean HCQ q ∈ Q that is
satisfied in I, µ. A Boolean HUCQ Q is satisfied in an interpretation I, written I |= Q,
if there exists an assignment µ over I such that Q is satisifed in I, µ. Given a Boolean
HUCQ Q and a Hi(L) KB H, we say that Q is logically implied by H (denoted by
H |= Q) if for each model I of H there exists an assignment µ such that Q is satisfied
by I, µ.

Given a non-Boolean HUCQ q of the form q(t1, . . . , tn) ← a1, . . . , am, a ground-
ing substitution of q is a substitution θ such that t1θ, . . . , tnθ are ground terms. We
call t1θ, . . . , tnθ a grounding tuple. The set of certain answers to q in H is the set of
grounding tuples t1θ, . . . , tnθ that make the Boolean query qθ ← a1θ, . . . , anθ logi-
cally implied by H. Notice that, in general, the set of certain answers may be infinite
even if the KB is finite. Therefore, it is of interest to define suitable notions of safeness,
which guarantee that the set of answers is bounded. This issue, however, is beyond the
scope of the present paper.

Indeed, in this paper, we focus on Boolean queries only, so as to address the com-
putation of certain answers as a decision problem. Also, in our analysis, we measure
the computational complexity in three different ways: with respect to the size of the
whole KB (KB complexity), with respect to the size of the part of the KB formed by the
assertions involving only the meta-predicates InstC/2, InstR/3 (instance complexity),
and with respect to the size of the KB and the query together (combined complexity).

3 Satisfiability in Hi(SHIQ)

In this section we study the computational characterization of KB satisfiability in the
higher-order DL Hi(SHIQ). Query answering in the same DL is addressed in the next
section.

2 We do not need to mention assignments here, since all assertions inH are ground.

We start by defining a translation Π from Hi(SHIQ) to SHIQ. First, we define
three injective functions

νO : ESHIQ(S)→ So, νC : ESHIQ(S)→ Sc, νR : ESHIQ(S)→ Sr

where So, Sc and Sr are three mutually disjoint alphabets of names, each one disjoint
from S. Then, we inductively define two functions τC and τR as follows:

– if S ∈ S, then τC(S) = νC(S) and τR(S) = νR(S);
– τC(Not(E)) = Not(τC(E));
– τC(And(E1, E2)) = And(τC(E1), τC(E2));
– τC(AtLeastQn(E1, E2)) = AtLeastQn(τR(E1), τC(E2));
– τR(Inv(E)) = Inv(τR(E)).

Now, let Expr(H) denote the set of ground expressions occurring inH (notice that
every subexpression of an expression occurring in H also belongs to Expr(H)). Then,
given a Hi(SHIQ) KBH, we inductively define the SHIQ KB Π (H) as follows:

1. if Not(E) ∈ Expr(H), then νC(Not(E)) ≡ τC(Not(E)) ∈ Π (H);
2. if Inv(E) ∈ Expr(H), then νR(Inv(E)) ≡ τR(Inv(E)) ∈ Π (H);
3. if And(E1, E2) ∈ Expr(H), then νC(And(E1, E2)) ≡ τC(And(E1, E2)) ∈

Π (H);
4. if AtLeastQn(E1, E2) ∈ Expr(H), then νC(AtLeastQn(E1, E2)) ≡
τC(AtLeastQn(E1, E2)) ∈ Π (H);

5. if InstC(E1, E2) ∈ H, then νC(E1)(νO(E2)) ∈ Π (H);
6. if InstR(E1, E2, E3) ∈ H, then νR(E1)(νO(E2), νO(E3)) ∈ Π (H);
7. if IsaC(E1, E2) ∈ H, then νC(E1) v νC(E2) ∈ Π (H);
8. if IsaR(E1, E2) ∈ H, then νR(E1) v νR(E2) ∈ Π (H);
9. if Tran(E) ∈ H, then Tran(νR(E)) ∈ Π (H).

Informally, the above translation, when applied to a Hi(SHIQ) DL H, provides a
SHIQ KB Π (H) in which for every ground termE occurring inH (notice thatE may
be a subterm of another term occurring inH) there exists a concept name νC(E) (and a
role name νR(E)) that is defined, through the use of the function τC (respectively, τR)
as equivalent to the term E seen as a concept (respectively, role) expression.

Based on the above translation, we get the first of our main results, namely a reduc-
tion of KB satisfiability in Hi(SHIQ) to KB satisfiability in SHIQ.

Theorem 1. A Hi(SHIQ) KBH is satisfiable iff the SHIQ KB Π (H) is satisfiable.

Proof (sketch). One direction of the proof is trivial: if there exists a model I for H,
then based on I it is immediate to define a model I ′ for Π (H) which interprets objects
according to Io, atomic concepts (i.e., concepts denoted by names) according to Ic,
and atomic roles according to Ir. As for the other direction, given a model I for Π (H)
over a domain ∆, it is possible to define a model I ′ for H by considering the disjoint
union of a countably infinite number of copies of I (over a countably infinite number of
copies of ∆), and defining I ′o so that it coincides with Io on the expressions occurring
inH, while every expression that does not occur inH is interpreted by I ′o to an element
of the extra copies of ∆. Then, it is easy to define I ′c and I ′r in order to satisfy the
semantic conditions of Figure 1.

From the above theorem, and the computational characterization of KB satisfia-
bility in SHIQ [3], we are able to provide the computational characterization of KB
satisfiability in Hi(SHIQ).

Theorem 2. KB satisfiability in Hi(SHIQ) is EXPTIME-complete w.r.t. KB complex-
ity, and coNP-complete w.r.t. instance complexity.

4 Query answering in Hi(SHIQ)

In this section we study query answering in Hi(SHIQ). In particular, we restrict our
attention to a specfic class of HUCQs, which we call guarded. For the definition of
this class of queries, we need the notions of object position, concept position, and role
position, whose goal is to characterize the various argument positions in both atoms
and terms. If we use symbol O to mark object positions, symbol C to mark concept
positions, and symobl R to mark role positions, then we have:

InstC(O,C) InstR(O,O,R) IsaC(C,C) IsaR(R,R) Tran(R)
Not(C) And(C,C) Inv(R) AtLeastQn(R,C)

Now, a HCQ q is called guarded if, for every variable x occurring in an ISA-atom
of q, x also occurs in a concept or role position of an instance-atom of q. A HUCQ is
called guarded is every HCQ q in Q is guarded.

We start our analysis of query answering by showing that answering guarded
HUCQs is coNP-hard w.r.t. KB complexity (actually, w.r.t. instance complexity only)
and Πp

2 -complete w.r.t combined complexity, as soon as the DL admits the InstC ,
InstR and IsaC meta-predicates (and even if the DL does not allow for any logical
operator).

Theorem 3. Let L be a DL such that MP(L) contains the meta-predicates InstC ,
InstR and IsaC . Answering guarded HUCQs over Hi(L) KBs is coNP-hard w.r.t. in-
stance complexity, and Πp

2 -hard w.r.t. combined complexity, even if OP (L) = ∅.

The previous theorem implies that answering guarded HUCQs is intractable w.r.t. in-
stance (and KB) complexity not only in Hi(SHIQ), but in all the DLs currently stud-
ied, since all DLs comprise the meta-predicates InstC , InstR and IsaC .

We now provide a technique for query answering over Hi(SHIQ) KBs, which is
based on the reduction to SHIQ provided by the function Π () defined for KB satisfia-
bility. For query answering, however, the function Π () must be extended to account for
expressions occurring in the query; moreover, we also need to define a translation π of
HUCQs. Such functions are defined below.

Let Q be a HUCQ. We say that Q is a metaground HUCQ if it does not contain any
variable in concept or role position. Moreover, we say that Q is an instance HUCQ if it
only contains instance-atoms.

In the following, given a HUCQQ, we denote by Expr(Q) the set of ground expres-
sions occurring in Q. Now let q be a HCQ and let e1, . . . , ek be the ground expressions
occurring as arguments of ISA-atoms in q. We define inductively the set of expressions
conj ISA(q) as follows:

C1 = {e1, . . . , ek}
Ci+1 = {And(e, e0)|e ∈ Ci and eo ∈ C1}
conj ISA(q) = Ck

Informally, conj ISA(q) denotes the set of all the possible conjunctions of ground ex-
pressions occurring as arguments of ISA-atoms in q. We are now ready to define the set
of ground expressions Expr(H, Q) as follows:

Expr(H, Q) = Expr(H) ∪ Expr(Q) ∪
⋃
q∈Q

conj ISA(q)

As we will show in the following, Expr(H, Q) constitutes the set of ground ex-
pressions that we use for grounding metavariables. Notice that Expr(H, Q) has size
polynomial in the size ofH.

Let q be a HCQ. An H-metaground instantiation of q is a HCQ obtained from q
by replacing every variable occurring in at least one concept or role position with an
expression of Expr(H, q). Given a HCQ q, we define metaground(q,H) as the HUCQ
corresponding to the union of all the H-metaground instantiations of q. If there are
no ground terms occurring in H (i.e., H is empty), we define metaground(q,H) to
be the HCQ obtained from q by replacing all variables occurring in concept and role
positions with any name in S. Given a HUCQ Q, we define metaground(Q,H) =⋃
q∈Q metaground(q,H).

Given a metaground HUCQ Q, we denote by π(Q,H) the standard UCQ obtained
from metaground(Q,H) by: (i) replacing every ground term E occurring as an argu-
ment in object position of an atom inQ with νO(E); (ii) replacing every ground termE
occurring as an argument in concept position of an atom in Q with νC(E); (iii) replac-
ing every ground termE occurring as an argument in role position of an atom inQ with
νR(E). Finally, given a Hi(SHIQ) KBH and a HUCQQ, we denote by Π (H, Q) the
SHIQ KB obtained starting from Π (H) and adding, for every ground term E that oc-
curs in metaground(Q,H) and does not occur inH, the inclusion assertions generated
by the first 5 items in the definition of Π (H) above.

Now we restrict our attention to both metaground and instance queries. For this
class of HUCQs, the following property can be easily proved.

Theorem 4. Let H be a Hi(SHIQ) KB, and let Q be a metaground instance HUCQ.
Then,H |= Q iff Π (H, Q) |= π(Q,H).

Based on the known computational characterization of answering “standard” UCQs,
i.e., both metaground and instance UCQs, in SHIQ [9, 6, 13], we immediately get the
following result.

Theorem 5. Answering metaground instance HUCQs over Hi(SHIQ) KBs is coNP-
complete w.r.t. instance complexity, EXPTIME-complete w.r.t. KB complexity, and 2-
EXPTIME-complete w.r.t. combined complexity.

We can actually extend the previous theorem to the whole class of instance HUCQs.
First, we show the following crucial property, which holds for the whole class of
guarded HUCQs.

Theorem 6. Let H be a Hi(SHIQ) KB, and let Q be a guarded HUCQ. H |= Q iff
H |= metaground(Q,H).

Proof (sketch). One direction (if H |= metaground(Q,H) then H |= Q) is triv-
ial. The proof of the other direction is quite involved. First, the following property (*)

can be shown: if H |= Q then H |= metaground(Q), where metaground(Q) is the
query obtained from Q through the meta-grounding of the meta-variables over the set
of all expressions of the language (not only those terms occurring in Expr(H, Q)).
Now suppose H |= Q. If H 6|= metaground(Q,H), then there exists a model I for
H such that I |= metaground(Q) and I 6|= metaground(Q,H). It is now possi-
ble to define a model I ′ for H which is essentially the disjoint union of a countably
infinite number of copies of I, in which the function I ′o is defined in such a way
that I ′ 6|= metaground(Q), which contradicts the above property (*). Consequently,
H |= metaground(Q,H).

Theorem 6, Theorem 4, and Theorem 5 allow us to immediately derive the com-
putational characterization of query answering in Hi(SHIQ) for the whole class of
instance HUCQs.

Theorem 7. Answering instance HUCQs over Hi(SHIQ) KBs is coNP-complete
w.r.t. instance complexity, EXPTIME-complete w.r.t. KB complexity, and 2-EXPTIME-
complete w.r.t. combined complexity.

In order to go beyond instance HUCQs, and answer guarded HUCQs in
Hi(SHIQ), we now define a technique which reduces this problem to answering stan-
dard UCQs in SHIQ.

In the following, we call intensional (or, TBox) assertion every assertion using one
of the meta-predicates IsaC , IsaR, and Tran . Moreover, given a KB H and a HUCQ
Q, we define TAH,Q to be the set of all the intensional assertions in SHIQ that can be
obtained from the set of ground terms occurring in Expr(H, Q).

Let T ′ be a subset of TAH,Q. We say that T ′ is coherent with H iff T ⊆ T ′,
where T is the set of TBox assertions occurring in H, and T ′ ∪ H 6|= φ for every
φ ∈ TA(Expr(H, Q)) − T ′. Then, we denote by IntEval(Q,H, T ′) the metaground
instance HUCQ Q′ obtained starting from Q′ = metaground(Q,H) and then evaluat-
ing every intensional assertion over T ′ as follows:

– if φ is an intensional assertion occurring in a HCQ q ∈ Q′ and φ ∈ T ′, then
eliminate φ from q;

– if φ is an intensional assertion occurring in a HCQ q ∈ Q′ and φ 6∈ T ′, then
eliminate q from Q′.

Finally, we define KBSHIQ(H, T ′, Q) as the SHIQ KB3 obtained starting from
K′ = Π (H′, Q) (where H′ = T ′ ∪ H) and then adding to K′ the following assertions
for every TBox assertion α ∈ TA(Expr(H, Q))− T ′:

– if α = IsaC(E1, E2) then add to K′ the ABox assertions νC(E1)(n) and
νC(Not(E2))(n), where n is a new individual name in K′;

– if α = IsaR(E1, E2) then add to K′ the TBox assertion (role disjointness)
νR(E2) v ¬Aux i, where i is such that Aux i is a new role name in K′, and the
ABox assertions νR(E1)(n1, n2) and Aux i(n1, n2), where n1, n2 are new individ-
ual names in K′;

– if α = Tran(E) then add to K′ the TBox assertion (role disjointness) νR(E) v
¬Aux i, where i is such that Aux i is a new role name in K′, and the ABox asser-
tions νR(E)(n1, n2), νR(E)(n2, n3) and Aux i(n1, n3), where n1, n2, n3 are new
individual names in K′.

3 Actually, KBSHIQ(H, T ′, Q) is a SHIQ KB with role disjointness assertions, however
adding this kind of axioms to SHIQ does not change the complexity of query answering.

Intuitively, KBSHIQ(H, T ′, Q) is such that, if α ∈ TA(Expr(H, Q)) − T ′, then α
is forced to be false in every model of KBSHIQ(H, T ′, Q). The following theorem
(whose proof relies on Theorem 6) reduces answering guarded HUCQs in Hi(SHIQ)
to answering standard UCQs in SHIQ.

Theorem 8. Let H be a Hi(SHIQ) KB, and let Q be a guarded HUCQ. Then,
H 6|= Q iff there exists a subset T ′ of TAH,Q such that T ′ is coherent with H, and
KBSHIQ(H, T ′, Q) 6|= π(IntEval(Q,H, T ′),H).

Based on Theorem 8, Theorem 4 and Theorem 5, we get the computational charac-
terization of answering guarded HUCQs in Hi(SHIQ).

Theorem 9. Answering guarded HUCQs over Hi(SHIQ) KBs is coNP-complete
w.r.t. instance complexity, EXPTIME-complete w.r.t. KB complexity, and 2-EXPTIME-
complete w.r.t. combined complexity.

5 Conclusions

In this paper we have presented a general mechanism for defining a family of Descrip-
tion Logics for domain metamodeling. We have shown how, starting from any DL L,
one can define a higher-order logic, called Hi(L), that adds to L metamodeling fea-
tures. Also, we have presented algorithms for both satisfiability and query answering
in a specific expressive higher-order Description Logic, namely Hi(SHIQ). This re-
search can be seen as an extension of the work in [8]: in particular, on the one hand
we have extended the results presented there to SHIQ, and on the other hand we have
characterized the computational complexity for a larger class of meta-queries.

The research presented here can be continued along different lines. First, while the
query answering algorithm presented in this paper is suited for the class of guarded
HUCQs, it is our goal to address query answering for the whole class of HUCQs. Sec-
ond, it would be interesting to see whether more metamodeling features can be added
to the query language. In particular, one might wonder whether the query answering
method described in this paper can be extended to deal with the case where variables
can appear freely within the terms in the query atoms (see Example 4 in Section 2). Un-
fortunately, our first investigation on this subject shows that allowing for a more flexible
use of variables in the queries easily leads to undecidability of query answering. An-
other interesting direction is to add both domain and full metamodeling capabilities to
tractable DLs, in particular, the DLs of the DL-Lite family [5], so as to check whether
reasoning remains tractable in the resulting logics.

Finally, we remark that punning, i.e., using the same name for different elements
of the ontology (for example, an individual and a concept), has been introduced in
OWL 2 4. While punning can be treated trivially in classical reasoning tasks over the
DL ontology, it poses interesting problems in the context of query processing. In par-
ticular, if variables are not typed a priori, punning introduces the kind of meta-querying
discussed in this paper. Indeed, the DL query language presented in this paper is the first
one (to our knowledge) that exploits punning in queries, since it allows for expressing
joins involving variables which simultaneously denote both individuals and predicates.

Acknowledgments This research has been partially supported by MIUR FIRB project “Tecnolo-
gie Orientate alla Conoscenza per Aggregazioni di Imprese in Internet” (TOCAI.IT).

4 http://www.w3.org/2007/OWL/wiki/OWL Working Group

References

1. F. Angiulli, R. Ben-Eliyahu-Zohary, G. Ianni, and L. Palopoli. Computational properties of
metaquerying problems. ACM Trans. on Computational Logic, 4(2):149–180, 2003.

2. G. Attardi and M. Simi. Consistency and completeness of OMEGA, a logic for knowledge
representation. In Proc. of the 7th Int. Joint Conf. on Artificial Intelligence (IJCAI’81), pages
504–510, 1981.

3. F. Baader, D. Calvanese, D. McGuinness, D. Nardi, and P. F. Patel-Schneider, editors. The
Description Logic Handbook: Theory, Implementation and Applications. Cambridge Uni-
versity Press, 2003.

4. L. Badea. Reifying concepts in description logics. In Proc. of the 15th Int. Joint Conf. on
Artificial Intelligence (IJCAI’97), pages 142–147, 1997.

5. D. Calvanese, G. De Giacomo, D. Lembo, M. Lenzerini, and R. Rosati. Tractable reasoning
and efficient query answering in description logics: The DL-Lite family. J. of Automated
Reasoning, 39(3):385–429, 2007.

6. D. Calvanese, G. De Giacomo, and M. Lenzerini. Conjunctive query containment and
answering under description logics constraints. ACM Trans. on Computational Logic,
9(3):22.1–22.31, 2008.

7. W. Chen, M. Kifer, and D. S. Warren. HILOG: A foundation for higher-order logic program-
ming. J. of Logic Programming, 15(3):187–230, 1993.

8. G. De Giacomo, M. Lenzerini, and R. Rosati. Towards higher-order DL-Lite. In Proc. of the
2008 Description Logic Workshop (DL 2008), volume 353 of CEUR Electronic Workshop
Proceedings, http://ceur-ws.org/, 2008.

9. B. Glimm, I. Horrocks, C. Lutz, and U. Sattler. Conjunctive query answering for the descrip-
tion logic SHIQ. In Proc. of the 20th Int. Joint Conf. on Artificial Intelligence (IJCAI 2007),
pages 399–404, 2007.

10. F. Lehmann, editor. Semantic Networks in Artificial Intelligence. Pergamon Press, Oxford
(United Kingdom), 1992.

11. B. Motik. On the properties of metamodeling in OWL. J. of Logic and Computation,
17(4):617–637, 2007.

12. J. Mylopoulos, P. A. Bernstein, and H. K. T. Wong. A language facility for designing
database-intensive applications. ACM Trans. on Database Systems, 5(2):185–207, 1980.

13. M. Ortiz, D. Calvanese, and T. Eiter. Data complexity of query answering in expressive
description logics via tableaux. J. of Automated Reasoning, 41(1):61–98, 2008.

14. J. Z. Pan and I. Horrocks. OWL FA: a metamodeling extension of OWL DL. In Proc. of the
15th Int. World Wide Web Conf. (WWW 2006), pages 1065–1066, 2006.

