
Using Description Logics in
Relation Based Access Control

Rui Zhang1, Alessandro Artale2, Fausto Giunchiglia1 and Bruno Crispo1

1 Faculty of Information Engineering and
Computer Science

I-38100 Trento, Italy
{zhang,fausto,crispo}@disi.unitn.it

2 Faculty of Computer Science
Free University of Bozen-Bolzano

I-39100 Bolzano, Italy
artale@inf.unibz.it

Abstract. Relation Based Access Control (RelBAC) is an access control
model designed for the new scenarios of access control on Web 2.0. Under
this model, we discuss in this paper how to formalize with Description
Logics the typical authorization problems of access control together with
the enforcement of an important security property: Separation of Duties
(SoD) and some high level security policies about the composition of
those subjects on which to separate the duties.

1 Introduction

Access control is an important branch of computer security. Nowadays, access
control models become more and more complex in order to represent the dynam-
ics of the subject, i.e., the new scenario where objects and permissions of access
control are located on the web. Early access control models, such as Mandatory
Access Control and Discretionary Access Control, have evolved to more com-
plex models such as Role-Based Access Control (RBAC) [4] and, most recently,
Relation-Based Access Control (RelBAC) [8]. Complex models, such as RBAC,
have been deeply studied and many logical formalisms have been proposed to for-
malize their access control policies. In particular, it has been shown how RelBAC
can be used to model access control in terms of lightweight ontologies [6, 7, 18] of
users, objects and permissions, and how this can be exploited to automatically
manage permissions.

In this paper, we discuss how to formalize the typical authorization prob-
lems in the RelBAC model with a specific Description Logic (DL), i.e., the DL
ALCQIBO [13, 14, 16]. RelBAC is a new model designed specially for the var-
ious dynamic scenarios of Web 2.0 in [8]. It is natural and flexible such that it
is easy to understand and use for personal resources of an ordinary web user
(see, e.g., photos on Flickr1). The main feature of RelBAC is that a permission,
intuitively the operation allowed to be performed on some resource, is modeled
as a binary relation between a set of subjects and a set of objects. Furthermore,
it is flexible enough to enforce cardinality related access such as to restrict that
‘anonymous users can view no more than 5 of my photos’. RelBAC is formalized
1 http://www.flickr.com

with an access control domain specific Description Logic in order to provide for-
mal syntax and semantics plus an automated reasoning mechanism to facilitate
the access control management.

The contributions of this paper are as follows:

– Focusing on authorization problem of RelBAC , we discuss the usage of DL
to formalize access control policies.

– Different formalizations of Separation of Duties (SoD) are analyzed as an
important security property.

– Dynamic SoD and high-level security policies about SoD are also formally
represented and discussed.

The rest of the paper is organized as follows. Section 2 describes the DL
exploited to capture the access control problems. Section 3 discusses the ex-
pressiveness of the proposed DL to faithfully capture the RelBAC application
domain. In Section 4 we discuss the logical formalization of a security property,
i.e., Separation of Duties. The related work is summarized in Section 5 and we
make our concluding remarks in Section 6.

2 The Description Logic ALCQIBO

The logic ALCQIBO extends the description logic ALC [1] with qualified cardi-
nalities, inverse roles, nominals and Boolean for roles (see [16, 14, 13] for exten-
sions of DLs with Booleans between roles). We define the syntax of ALCQIBO
as follows.

Definition 1 (ALCQIBO Syntax). Let NC, NR and NI be pairwise disjoint
and countably infinite sets of concept names, role names and individual names.
Then concept expressions and role expressions are defined as follows:

C,D ::= A | ¬C | C uD | ≥ nR.C | {ai}
R,S ::= P | R− | ¬R | R u S

where A ∈ NC, P ∈ NR, ai ∈ NI and n ∈ N.
A Knowledge Base (KB) is a pair K = 〈T ,A〉 where T , called TBox, is a finite
set of general concept inclusions (GCIs) of the form C v D and a finite set of
general role inclusions (GRIs) of the form R v S, while A, called ABox, is a
finite set of concept and role assertions of the form C(ai) and R(ai, aj), with
ai, aj ∈ NI.

An ALCQIBO-interpretation, I, is a pair (∆, ·I) where ∆ is a non-empty
set called the domain of I and ·I is a function mapping each A ∈ NC to a subset
AI ⊆ ∆ and each P ∈ NR to a relation P I ⊆ ∆ × ∆. Furthermore, ·I applies
also to individuals by mapping each individual name ai ∈ NI into an element
aIi ∈ ∆ such that aIi 6= aIj , for all i 6= j, i.e., we adopt the so called unique name
assumption (UNA). We extend the mapping ·I to complex roles and concepts
as follows:

(R−)I := {(y, x) ∈ ∆×∆ | (x, y) ∈ RI},
(¬R)I := ∆×∆ \RI , (¬C)I := ∆ \ CI ,

(R u S)I := RI ∩ SI , (C uD)I := CI ∩DI ,
(> n R.C)I := {x ∈ ∆ |]{y ∈ ∆ | (x, y) ∈ RI and y ∈ CI} ≥ n}, {ai}I := {aIi }.

An ALCQIBO-interpretation I = (∆, ·I) is said a model of a KB, K, iff it
satisfies CI ⊆ DI , for all C v D ∈ K, RI ⊆ SI , for all R v S ∈ K, aIi ∈ CI ,
for all C(ai) ∈ A, and (aIi , a

I
j) ∈ RI , for all R(ai, aj) ∈ A. In this case we say

that K is satisfiable and write I |= K. A concept C (role R) is satisfiable w.r.t.
K if there exists a model I of K such that CI 6= ∅ (RI 6= ∅).

As usual, we can define a number of useful abbreviations:

C tD for ¬(¬C u ¬D)
(6 n R.C) for ¬(> n+ 1 R.C)
(= n R.C) for ¬(> n+ 1 R.C) u (> n R.C)

∃R.C for (> 1 R.C)
∀R.C for (6 0 R.¬C)
> for A t ¬A (for some concept A)
⊥ for ¬>
U for R t ¬R (for some role R)

Note that, TBox axioms can be internalized. Indeed, we can encode each
axiom C v D as the concept expression ∀U .(¬C t D), while each role axiom
R v S can be encoded as the concept expression ∀U .∀(R u ¬S).⊥. (To encode
ABox assertions as concept expressions see [16]).

Concerning the complexity of ALCQIBO, KB satisfiability can be reduced
to reason over the two-variable first-order fragment with counting quantifiers
which is NExpTime-complete [15]. On the other hand, Boolean modal logic is a
proper sub-language of ALCQIBO and it is NExpTime-complete [13]. Summing
up, reasoning in ALCQIBO is NExpTime-complete.

3 The Authorization Problem in RelBAC

Here we discuss the authorization problem, which deals with questions like ‘who
is authorized to access what’. We distinguish two different phases: general au-
thorizations on group of users and sets of resources, and ground authorizations
onto individual users and/or resource instances.

3.1 General Authorizations

In RelBAC , a generic permission P (e.g., Write) is modeled as a binary relation
between a class of users U (e.g., SW-Developer) and a class of objects O (e.g.,
Java-Code). The following general constraints can be captured in ALCQIBO.

1. ‘The permission P applies only between users U and objects O’.
This is a form of domain and range constraint for the binary relation P and
can be modeled in ALCQIBO with the following axioms:
∃P.> v U Domain Restriction
∃P−.> v O Range Restriction

2. ‘Users in U can access just objects in O with P ’
‘Objects in O can be accessed just from users in U with P ’.
We can represent these constraint using universal restrictions as:
U v ∀P.O Universal Restriction
O v ∀P−.U Universal Restriction

3. ‘Users in U are allowed to access (with P) at most n objects in O’
‘At most n users in U are allowed to access any given object in O with P ’.
We can represent these constraints using cardinality constraints as:
U v (6 n P.O) Cardinality Restriction
O v (6 n P−.U) Cardinality Restriction

4. ‘Users in U have access to at least m objects in O with P ’
‘At least m users in U have access to any object in O with P ’.
We can represent these constraints using cardinality constraints as:
U v (> m P.O) Cardinality Restriction
O v (> m P−.U) Cardinality Restriction

5. ‘All users in U have access to all objects in O with P ’
‘All objects in O are accessed by all users in U with P ’.
This rule defines a so called Total Access Control rule (TAC) and can be
captured using the negation of roles constructor in cardinality restriction:
U v ∀¬P.¬O TAC Rule
O v ∀¬P−.¬U TAC Rule

3.2 Ground Authorizations

Using the ABox mechanism of ALCQIBO we can assert particular facts asso-
ciated to given individuals of the domain. The following is a list of the most com-
mon assignments concerning single individuals that can be captured inALCQIBO
(in the following u and o are individuals in NI, P is a role in NR, U and O are
concepts in NC).

1. ‘The user u is allowed to access the object o with P ’.
This is represented as: P (u, o).
For example, Update(david,mb903ll/a) says that ‘David is allowed to update
the entry MB903LL/A’.

2. ‘The user u is allowed to access maximum n objects in O with P ’.
This is represented as: (6 n P.O)(u).
For example, (6 5 Update.Digital)(David) says that ‘David is allowed to
update maximum 5 entries of Digital’.

Fig. 1. Combination of RULE cardinalities in RelBAC

3. ‘The user u is allowed to access minimum n objects in O with P ’.
This is represented as: (> n P.O)(u).
For example, (> 5 Update.Digital)(David) says that ‘David is allowed to
update minimum 5 entries of Digital’.

4. ‘The user u is allowed to access all objects in O with P ’.
This is represented as: (∀¬P.¬O)(u).
For example, (∀¬Update.¬Digital)(David) says that ‘David is allowed to
update all entries in Digital’.

5. ‘Minimum n users in U are allowed to access the object o with P ’.
This is represented as: (> nP−.U)(o).
For example, (> 3 Update−.Apple)(mb903ll/a) says that ‘At least 3 friends
from Apple are allowed to update the entry MB903LL/A’.

6. ‘All users in U are allowed to access the object o with P ’.
This is represented as: U v ∃P.{o}.
For example, Apple v ∃Update.{mb903ll/a} says that ‘All friends from Ap-
ple are allowed to update the entry MB903LL/A’.

Besides the traditional access control rules which can specify only ‘one-to-
one’ and ‘one-to-many’ mappings about individuals, we see that the ABox of
ALCQIBO provides many ways to write a ground access control rule in Rel-
BAC . Altogether, as is shown in Figure 1 (taken from [18]), RelBAC can spec-
ify 15 kinds of access control rules with a single DL axiom (counting mini-
mum/maximum/equal cardinality restriction as one). These rules show, both
the power of RelBAC as an access control model and the expressiveness of the
logic to be able to capture this scenario. The cardinality related rules (formed
with cardinality restriction) are important especially in those scenarios where
number is a key factor for access control.

So far we discussed the permission assignments at design time. When an ac-
cess control request arrives at run time the access control should decide whether
to accept or deny these requests according to the assignments done at design
time. Since a RelBAC system is an ALCQIBO KB, while a request is captured

by an ABox, then at run time the system decides to grant an access if by adding
the ABox to the current KB the resulting KB is satisfiable.

4 Separation of Duties

Separation of Duties SoD is an important security property in modern access
control systems. It enforces that more than one person is required to complete
a task. In this section, we will discuss the general meaning of an SoD, its en-
forcement at design and run time and the high-level security policy [12] for an
SoD.

4.1 General SoD

Definition 2 (Separation of Duties SoD). An SoD states that, if a sensi-
tive task consists of two steps, then two different users should perform mutually
exclusive steps. More generally, when a sensitive task is composed of n steps, an
SoD constraint requires the cooperation of at least k (for some k 6 n) different
users to complete the task.

In one of the most well-known access control model, RBAC[4], SoD is en-
forced with the help of restrictions on the ‘roles2’. The SoD that ‘different users
should perform two different steps of a task’ can be enforced at design time by
restricting any user from the assignments to the two roles, each of which is as-
signed the permission to carry out a step of the two. For a more general SoD that
‘different users should perform n different steps of a task’, each step is modeled
as an RBAC role Ri, and the SoD is formally expressed as the following formula:
R1 u ... uRi u ... uRn v ⊥.

In RelBAC , a permission is a relation which links a subject with an ob-
ject. To enforce this SoD in RelBAC , we can simply assert an axiom about the
permissions. For example, suppose in a scenario of sales force automation3, to
initiate, process, check and archive an order should not be completed by only one
user. Suppose Initiate, Process, Check and Archive are four permissions with the
same domain as users and co-domain as orders. The SoD above can be expressed
in RelBAC as

Initiate u Process u Check uArchive v ⊥

This policy restricts any pair (u, o) from belonging to all four sets Initiate, Pro-
cess, Check and Archive.

In general, given n steps of a task step1, ..., stepn, the SoD requires at least
k (k 6 n) users can fulfill all these n steps. Suppose any of the k users can fulfill

2 To be differentiated from a DL role, the ‘role’ in the RBAC model is a component
simulating the real world enterprise organism. A user can only execute a permission
assigned to the role that s/he can activate.

3 http://www.salesforce.com

maximum m steps. In the worst case, everyone can fulfill equal number of steps,
and satisfies the following DL axiom:

(k − 1) ∗m < n i.e. m 6 dn/(k − 1)e − 1 (1)

because k, m, n are all integers. This means intuitively that any user can be
assigned to at most m of these duties as restricted in Formula 1. Thus, any m+1
of these duties should not be assigned to one user. Then RelBAC can enforce
the SoD with the following axiom:

Cdn/(k−1)e
n ⊔
i=1

(
dn/(k−1)el

j=1

Pij) v ⊥ (2)

in which Pij stands for one of the m permissions for each step, and Ckn is the
binomial coefficient of ‘n choose k’.

Following the example above, given the 4 duties in the SFA scenario, an SoD
requires that at least 3 users should be involved. This SoD can be enforced as
follows.

(Initiate u Process) t (Check u Initiate) t (Process uArchive)t
(Process u Check) t (Archive u Initiate) t (Check uArchive) v ⊥

as Cdn/(k−1)e
n = C

d4/2e
4 = C2

4 = 6.

An SoD can be enforced both at design and at run time. Up to now, we have
discussed the SoD designed by the administrator off-line. An SoD enforced at
run time intuitively means that the duties to be separated can be assigned to
one user during design, but cannot be executed by her simultaneously.

RBAC fulfills it with the concept of session as representatives of the user at
run time by restricting sessions from activation of separated roles. To enforce
an SoD at run time, the concept of ‘session’ has been introduced in the RBAC
model. At run time, a user activates sessions to execute permissions. The duties
assigned to the user at design time and restricted to be executed simultaneously
are separated by enforcing that no session can execute them at the same time.

In RelBAC , we do not need the concept of ‘session’, but use a run time
permission to describe the state of a permission in execution to enforce SoD at
run time.

Definition 3 (Run Time Permission - RTP). A RTP describes the current
execution of a permission. We assume that the name of a RTP is formed by
alternating the verb (phrase) denoting the permission into the present participle
of the verb (phrase). A user cannot be assigned to a RTP unless she has the
permission for the original permission.

For each RelBAC permission, a RTP is introduced. For example, assume that
Initiating is the RTP for the permission Initiate. As said above, a user cannot
execute the permission Initiating without having the permission Initiate. Now,

the SoD ‘a user cannot initiate and process an order at the same time’ is enforced
as follows (we assume that both permissions have the same range, Order):

Initiating u Processing v ⊥

In the real world, a user can be granted the permission to initiate an order (as
a customer) and to process an order (as a sales agent), but cannot perform the
two permissions (duties) simultaneously in order to avoid the process of one’s
own order.

Although an SoD can be enforced at design and run time with similar role
axioms in RelBAC , the mechanisms regulating it are different. To enforce an SoD
at run time, the monitoring mechanism should inform the access control system
in real time, so that the current state such as Alice is initiating an order ‘Bolzano’
should be recognized. Then the knowledge base should be updated with the new
assertion Initiating(alice, bolzano). Therefore, the above SoD (ruling out the
possibility of initiating and processing an order at the same time) in the KB K
entails the following:

K t {Initiating(alice, bolzano)} |= ¬Processing(alice, bolzano)

although Alice might have permissions to both initiate and process some order.

4.2 High Level Security Policy about SoD

For the general SoD property, the composition of the k users to complete the task
is sometimes important. The administrator may like to constraint first that these
users are from certain groups, cardinality related constraints are also necessary
for the composition.

N.Li et al. studied SoD in detailed requirements for specific attributes of the
users in addition to numbers of each kind of users. An algebra was proposed in
[12] to specify complex policies combining requirements on user attributes and
number. On top of the cardinality constraints for given duties, the algebra can
specify the composition of the users for the SoD which they regard as high-level
security policy. For example, beyond to restrict that at least 2 users should be
involved for the 4 steps in the SFA schema of Section 4.1, it further enforces that
the set of users that can complete the order fulfillment task involve customer(s)
to initiate the order and sales manager(s) to check the order. For example, the
composition of the user set should be as follows.

1. At least one sales manager to check orders and at least one customer to
initiate orders.

2. At least one sales manager and at least one customer and maybe some other
sales manager or customer involved, but no others than those two kinds of
users.

3. Exactly two users, one sales manager and one customer.

Case 1 means that a customer should be involved to initiate the order and a
manager should be involved to check the order, for the other users, the adminis-
trator does not care who processes and archives the order. Case 2 specifies that
only customer and manager can be involved which means the same manager (or
some other manager) will take charge of the duties to process and to archive.
Case 3 is the most strict by allowing only one customer and one manager to be
involved.

RelBAC can achieve this kind of constraints with object-centric rules with
the cardinality restriction constructor. For example, as for the cases above, the
three constraints for the set of users can be formalized as follows.

Order v (> 1 Initiate−.Customer) u (> 1 Check−.Manager)
Order v ∀Involve.(Customer tManager) u

(> 1 Initiate−.Customer) u (> 1 Check−.Manager)
Order v (= 2 Involve.(Customer tManager)) u

(= 1 Initiate−.Customer) u (= 1 Check−.Manager)
u ¬∃ Involve.(Customer uManager)

Where Involve is a permission more general than any of the 4 permissions for
the 4 duties in the above schema, i.e.

Initiate− t Process− t Check− tArchive− v Involve

This kind of high-level security policy complements the general SoD policy as
discussed in Section 4.1 because it has the full power to describe the composition
of the set of subjects including the exact cardinality.

5 Related Work

Description Logics [1] arouse the interests in the AI community for their expres-
siveness and decidability of the reasoning services. Various papers describe the
use of Description Logics to formalize access control models and use state of the
art Description Logic reasoners to formalize security properties and check their
consistency (see, e.g. [2, 5, 8, 9, 18, 19]).

F.Giunchiglia et al. introduced in [8] the RelBAC model together with a
domain specific Description Logic as the formalism. RelBAC captures, with
subsumption axioms, the dynamic hierarchies of the subjects, objects and per-
missions and provides, with cardinality restrictions, powerful cardinality related
specifications of access control rules. The theory of Lightweight Ontology [7] can
be used to model the social community into ontologies as discussed in [9] and
can facilitate the management of knowledge hierarchies and access control rules.

In [19] an early attempt was made by C.Zhao et al. to apply DLs to the
representation of policies in the RBAC model. In their proposal, users, roles,
sessions and permissions are formalized as DL concepts but objects are regarded
as encapsulated inside permissions together with operations. This results in an

explosion in the number of permissions and the corresponding difficulty to spec-
ify policies about objects. Moreover, they proposed to use only the existential
restriction constructor for permission assignments.

Another formalization of RBAC in DLs was proposed by J.Chae et al. [2],
where an operation is represented by a DL role. Their system has several critical
points, and in particular:

– Miss use of existential quantifier. In the semantics of their formalization,
the assignment with the formula ‘Admin v ∃CanRead.Log’ assigns to all
administrators the read access to all log files. But the DL semantics of this
formula enforces only the existence of some connections between administra-
tors and log files. In our case, the TAC rules are introduced to cover precisely
this case (see Sect. 3.1).

– The formalization of ‘assign’ and ‘classify’ into DL roles seems redundant.
These DL roles are supposed to connect users to RBAC roles or object to
object classes. We explicitly use an ABox mechanism to better deal with
individuals.

However, their work is relevant for our approach since:

– They inspired us in the way they formalized operation, i.e., by introducing
a binary relation from a subject to an object.

– They extended RBAC with the object hierarchy similar to the user hierarchy
which facilitates the permission propagation.

Recently, T.Finin et al. proposed to use OWL4 language as the formalization
of the RBAC model in [5]. They provide two ways to formalize a RBAC role,
as a class or as an attribute. N3Logic is used together with DL subsumption
reasoning. Authorization decision queries can be answered using DL reasoners
in their system.

Another important work is related with the formalization of SoD. N.Li et al.
studied SoD in [12], and proposed an algebra to specify the composition of the
users that share the duties. In [11] N.Li et al. modeled the problem of an SoD
of n duties among k users with a first order logic formula as

∀u1...uk−1 ∈ U((
k−1⋃
i=1

auth permsγ [ui]) 6⊇ {p1...pn}) (3)

with universal quantifier on arbitrary k − 1 users in space of U . Formula 3
specifies that the collection of all the permissions explicitly/implicitly assigned
to this k − 1 users should not be a superset of all the n steps of duties. Their
solution has the complexity of (|U |k−1 ∗ n) which explodes to the cardinality of
the subject space. In RelBAC , as shown in Formulas 2, our solution enforces a
sufficient but not necessary condition of the SoD because the ‘ceiling’ operator
(d · e) is an approximation of the exact value for n/(k− 1). For example, in the
schema above, the representation are the same for k = 3 and k = 4. However the
4 http://www.w3.org/TR/owl-guide/

computational complexity is only (nn/k). Considering that the number of steps
which is n, is far less than the number of users in the system, which is |U |, our
method is more efficient than [11].

An existing industry standard is XACML [3] which is an XML based access
control policy language without formal semantics such as in a logic. Kolovski et
al. used DL to provide formal semantics for XACML in [10]. RelBAC , in contrast,
is not only a new access control model, but also a logic with well defined syntax
and semantics to express web-based access control policies.

6 Conclusion

In this paper, we discussed a domain specific Description Logic, i.e. ALCQIBO
for access control, in which the reasoning is NExpTime-complete. Exploiting
ALCQIBO to formalize the RelBAC model, we have been able to formalize
the typical authorization problem of access control. Besides, we studied the for-
malization of an important security property which is the Separation of Duties
(SoD). Furthermore, different aspects of SoD can be formalized in ALCQIBO
such as dynamic SoD and high level security policy of SoD.

A basic version of RelBAC has been implemented as described in [18]. But
the evaluation results with a general purpose DL reasoner, Pellet [17], are not
good enough to achieve real-time response. The future work of this direction is
to adapt such general purpose DL reasoners to access control knowledge bases
for more efficient reasoning.

References

1. Franz Baader, Diego Calvanese, Deborah L. McGuinness, Daniele Nardi, and Pe-
ter F. Patel-Schneider, editors. The description logic handbook: theory, implemen-
tation, and applications. Cambridge University Press, New York, NY, USA, 2003.

2. Jung-Hwa Chae and Nematollaah Shiri. Formalization of rbac policy with object
class hierarchy. In Ed Dawson and Duncan S. Wong, editors, ISPEC, volume 4464
of Lecture Notes in Computer Science, pages 162–176. Springer, 2007.

3. OASIS eXtensible Access Control Markup Language (XACML) TC.
http://www.oasis-open.org/committees/tc home.php? wg abbrev=xacml.

4. David F. Ferraiolo, Ravi S. Sandhu, Serban I. Gavrila, D. Richard Kuhn, and
Ramaswamy Chandramouli. Proposed NIST standard for role-based access control.
Information and System Security, 4(3):224–274, 2001.

5. T. Finin, A. Joshi, L. Kagal, J. Niu, R. Sandhu, W. Winsborough, and B. Thurais-
ingham. Rowlbac: representing role based access control in owl. In SACMAT ’08:
Proceedings of the 13th ACM symposium on Access control models and technologies,
pages 73–82, New York, NY, USA, 2008. ACM.

6. Fausto Giunchiglia, Maurizio Marchese, and Ilya Zaihrayeu. Encoding classifica-
tions into lightweight ontologies. In ESWC, pages 80–94, 2006.

7. Fausto Giunchiglia and Ilya Zaihrayeu. Lightweight ontologies. In Encyclopedia of
Database Systems. Springer, 2008.

8. Fausto Giunchiglia, Rui Zhang, and Bruno Crispo. Relbac: Relation based access
control. In SKG ’08: Proceedings of the 2008 Fourth International Conference on
Semantics, Knowledge and Grid, pages 3–11, Washington, DC, USA, 2008. IEEE
Computer Society.

9. Fausto Giunchiglia, Rui Zhang, and Bruno Crispo. Ontology driven community
access control. In SPOT2009 - Trust and Privacy on the Social and Semantic Web,
2009.

10. Vladimir Kolovski, James Hendler, and Bijan Parsia. Analyzing web access control
policies. In WWW ’07: Proceedings of the 16th international conference on World
Wide Web, pages 677–686, New York, NY, USA, 2007. ACM.

11. Ninghui Li, Mahesh V. Tripunitara, and Ziad Bizri. On mutually exclusive roles and
separation-of-duty. ACM Transactions on Information System Security, 10(2):5,
2007.

12. Ninghui Li and Qihua Wang. Beyond separation of duty: an algebra for specifying
high-level security policies. In CCS ’06: Proceedings of the 13th ACM conference
on Computer and communications security, pages 356–369, New York, NY, USA,
2006. ACM.

13. C. Lutz and U. Sattler. The complexity of reasoning with boolean modal logics. In
Frank Wolter, Heinrich Wansing, Maarten de Rijke, and Michael Zakharyaschev,
editors, Advances in Modal Logics Volume 3. CSLI Publications, Stanford, 2001.

14. C. Lutz and D. Walther. Pdl with negation of atomic programs. Journal of Applied
Non-Classical Logic, 15(2):189–214, 2005.

15. Ian Pratt-Hartmann. Complexity of the two-variable fragment with counting quan-
tifiers. J. of Logic, Lang. and Inf., 14(3):369–395, 2005.

16. R. A. Schmidt and D. Tishkovsky. Using tableau to decide expressive description
logics with role negation. In K. Aberer, K.-S. Choi, N. Fridman Noy, D. Alle-
mang, K.-I. Lee, L. J. B. Nixon, J. Golbeck, P. Mika, D. Maynard, R. Mizoguchi,
G. Schreiber, and P. Cudré-Mauroux, editors, The Semantic Web, 6th International
Semantic Web Conference, 2nd Asian Semantic Web Conference, ISWC 2007 +
ASWC 2007, Busan, Korea, November 11–15, 2007, volume 4825 of Lecture Notes
in Computer Science, pages 438–451. Springer, 2007.

17. E. Sirin, B. Parsia, B. Cuenca Grau, A. Kalyanpur, and Y. Katz. Pellet: A practical
owl-dl reasoner. Submitted for publication to Journal of Web Semantics., 2003.

18. Rui Zhang. RelBAC: Relation Based Access Control. PhD thesis, University of
Trento, March 2009.

19. Chen Zhao, NuerMaimaiti Heilili, Shengping Liu, and Zuoquan Lin. Representation
and reasoning on rbac: A description logic approach. In Dang Van Hung and Martin
Wirsing, editors, ICTAC, volume 3722 of Lecture Notes in Computer Science, pages
381–393. Springer, 2005.

