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Abstract. Generalized closed world reasoning allows for the assump-
tion of a specified maximal set of negated atomic assertions retaining
the consistency of an indefinite knowledge base. In this paper, a gene-
ralized closed world assumption (GCWA) is specified for the description
logic ALCN and all of its sublanguages, provided that the terminological
component is eliminable. In certain situations, by applying the GCWA,
queries are often answered as intended by users. Opposed to queries
with an epistemic operator K, querying with this approach provides the
information which of the corresponding assertions can consistently be
assumed to be true. Further, the GCWA can be applied locally.

1 Introduction

The set of assertions logically entailed by a knowledge base usually contains less
elements than expected by users. In description logics (DLs), this is the case for
queries involving value restrictions ∀R.C (resp. negated existential restrictions),
at-most restrictions (≤ nR.C) (resp. negated at-least restrictions) or atomic
negation ¬A resp. ¬R. For example, ∀hasChild .Female(john) is not entailed
from KB = {hasChild(john,mary),Female(mary)}, though often intended. Due
to the open world assumption (OWA) of logical formalisms, an assertion is only
entailed if it is satisfied in all models of a knowledge base. An approach to solve
this problem is the closed world assumption (CWA) defined by Reiter in [2].
Under the CWA, a given knowledge base KB can be considered to be complete:
If an atomic formula does not follow from KB, its negation is assumed to be
true. There are extensions to the CWA which further reduce the models of a
knowledge base to intended models: The domain closure assumes that all entities
of the domain are denoted by the constants mentioned in a knowledge base and
the unique name assumption (UNA) is the assumption that different constants
denote different entities of the domain. While in relational databases the CWA
and its extensions are presupposed, this is not the case for description logics.

In less expressive DLs equivalent to sets of Horn clauses such as AL0 know-
ledge bases [6], there is a rather simple method to apply the CWA with a more
expressive query language similar to the algorithm mentioned in [10] for so-called
vivid first-order knowledge bases.



Unfortunately, indefinite knowledge bases (augmenting e.g. AL0 with dis-
junction or existential quantification) do not remain consistent by applying the
CWA. Given e.g. a knowledge base KB = {(Intelligent t Rich)(john)}, under
CWA John is not intelligent as well as not rich, leading to an inconsistency.

A well-established approach to enable closed world reasoning and to avoid
such inconsistencies is to extend the query language with the epistemic opera-
tor K [5–7]. With this operator it is possible to apply a concept closure resp.
a role closure by using the expression ¬KA instead of ¬A, ¬KR instead of
¬R, ∀KR.C instead of ∀R.C and (≤ nKR.C) instead of (≤ nR.C). The spec-
ification of these expressions is similar to the application of a local CWA and
therefore of particular importance for querying DL systems. However, there is no
information about which assertions can consistently be assumed. Consider again
KB = {(Intelligent t Rich)(john)}. Since Intelligent(john) and Rich(john) are
not satisfied in all models of KB, ¬KIntelligent(john) as well as ¬KRich(john)
are entailed from KB though KB ∪ {¬Intelligent(john),¬Rich(john)} would be
inconsistent. In other words, by executing epistemic queries, there is also the
problem of considering indefinite knowledge.

A suitable formalism to deal with disjunctive information is the generalized
closed world assumption (GCWA) [1]. It is a refinement of the CWA retaining
the consistency of an indefinite knowledge base by considering indefinite clauses
logically entailed by this knowledge base. Such a formalism would provide an
answer how to apply a closed world assumption in expressive DLs, but instead
of assuming complete knowledge for the whole domain, in concrete applications
there is often the need to consider open world reasoning with the additional
possibility to close off parts of the domain assumed to be represented completely.
Therefore, it should be possible to apply the GCWA locally.

The main contribution of this paper is the specification of a local GCWA for
ALCN and all of its sublanguages, provided that the terminological component
is eliminable, i.e., a specification of a method deciding whether KB |=

GCWAπ
α

holds, where KB = T ∪ A is an ALCN knowledge base (with the possibility to
eliminate T at the beginning of the reasoning process), α is an ALCN -assertion
and |=

GCWAπ
is an entailment relation applying a GCWA only to specific parts of

the domain. Since the GCWA is defined under consideration of clauses, all asser-
tions involved in KB as well as the assertion α are transformed to a propositional
clause form. For the transformation of role restrictions, a kind of domain closure
is required. In order to deal with existential quantifiers, this domain closure is
extended with new constants.

The method presented provides a foundation to apply closed world reaso-
ning to all further expressive DLs having the finite model property. At the best
of the authors knowledge, until now there has not been a concrete specification
of a closed world assumption for DLs composed of basic constructors such as
disjunction, existential quantification or non-atomic negation. The approach is
related to formalisms introducing circumscription to DLs [3, 4], but while [3]
does only consider a very restricted form of ALE , [4] provides a model-theoretic
definition of circumscription as well as complexity results rather than a concrete



decision procedure. Since the non-monotonic framework presented in [8], similar
to [5–7], is based on the extension of DLs with epistemic operators, it encounters
the same problematic of considering indefinite knowledge.

The approach presented here is also appropriate for users not experienced
with non-monotonic DLs: Besides the DL KB and the query specified as usual,
it only requires the determination of the parts of the domain to be closed.

The paper is structured as follows: In Sect. 2, the syntax and semantics of
ALCN is presented. Problems with the CWA are mentioned in Sect. 3 leading
to the consideration of the GCWA (Sect. 4). In Sect. 5, the need for an extended
domain closure is explained. Sect. 6 shows how ALCN -assertions can be trans-
formed to a propositional clause form with respect to this domain closure and
proposes an algorithm for deciding whether an ALCN -assertion is entailed from
an ALCN knowledge base under consideration of a local GCWA. The paper
concludes in Sect. 7 with a summary and a discussion of the results.

2 The Description Logic ALCN

The vocabulary of description-logic languages consists of concepts, roles and
constants. Based on atomic concepts A and atomic roles R, ALCN concept
descriptions C,D are defined according to the syntax rule

C, D −→ > | ⊥ | A | ¬C | (C uD) | (C tD) | ∀R.C | ∃R.C | (≥ nR) | (≤ nR).

Descriptions are constructed with the logical constants > and ⊥, complements
¬C, conjunctions (C uD), disjunctions (C tD), value restrictions ∀R.C, exis-
tential restrictions ∃R.C and number restrictions (≥ nR) and (≤ nR).

The semantics is defined with interpretations I = (4I , ·I), where 4I is a
non-empty set of all objects considered in I (called the domain of I) and ·I
is an interpretation function which maps constants a to objects of the domain,
aI ∈ 4I , atomic concepts A to subsets of the domain, AI ⊆ 4I , and atomic
roles R to subsets of the cartesian product of the domain, RI ⊆ 4I ×4I . The
extension of ·I to arbitrary ALCN concept descriptions is defined as follows,
where card is a function assigning to a set its cardinality:

>I = 4I
⊥I = ∅
(¬C)I = 4I \ CI
(C uD)I = CI ∩DI
(C tD)I = CI ∪DI

(∀R.C)I = {u ∈ 4I | (∀v) [(u, v) ∈ RI → v ∈ CI ]}
(∃R.C)I = {u ∈ 4I | (∃v) [(u, v) ∈ RI ∧ v ∈ CI ]}
(≥ nR)I = {u ∈ 4I | card{v | (u, v) ∈ RI} ≥ n}
(≤ nR)I = {u ∈ 4I | card{v | (u, v) ∈ RI} ≤ n}

An ALCN knowledge base KB = T ∪ A is comprised of a TBox T and an
ABox A. T consists of a set of axioms C v D and C ≡ D called concept inclu-
sions resp. concept equivalences and A consists of a set of concept assertions
C(a) and role assertions R(a, b), where a and b are constants. An interpreta-
tion I satisfies C v D resp. C ≡ D resp. C(a) resp. R(a, b) if C I ⊆ DI resp.
C I = DI resp. aI ∈ C I resp. (aI , bI) ∈ RI . If an interpretation I satisfies all
axioms of T resp. all assertions of A it is called a model of T resp. A. If it



satisfies both T and A it is called a model of KB. Finally, if there is a model of
KB, then KB is called satisfiable.

In the following, the set of all predicate names (i.e. atomic concepts A and
atomic roles R) appearing in a given KB is denoted with PR and the set of
all assertions A(a) and R(a, b) constructable from PR and the constants of KB
with AS. In order to get a basis for the application of a GCWA to DLs, it is
assumed that T is acyclic and does only contain concept inclusions and concept
equivalences of the form A v C resp. A ≡ C . Consequently, it is possible to
eliminate T at the beginning of any reasoning process [9] and KB is reduced to
an ABox AT , expanded with respect to T such that KB = AT .

A reasoning service relevant for this investigation is the assertion check, sym-
bolically KB |=R α, deciding if an assertion α is entailed from an ALCN know-
ledge base KB with respect to an entailment relation |=R (KB |= α, if α is sa-
tisfied in all models of KB). This service provides the basis for querying DL
knowledge bases. If α = C(a), it is called instance check and if α = R(a, b), it is
called relation check. Additionally, by a slight extension of the query language,
it is possible to decide negated relation checks KB |=R ¬R(a, b). We will also
consider the case in which α is a propositional expression (note that |=R is not
restricted to relate (sets of) formulas of the same representation language).

3 Problems with the Closed World Assumption (CWA)

The CWA has been introduced by Reiter in [2]. Under the CWA, for all atomic
assertions that are not derivable from a given DL knowledge base, this knowledge
base is augmented implicitly with corresponding negated atomic assertions:

Definition 1. Let KB be a DL knowledge base. Then

CWA(KB) = {¬p | p ∈ AS and KB 6|= p}

is the closed world assumption of KB. The entailment relation |=cwa considering
this assumption for any assertion α is defined by

KB |=cwa α iff KB+ |= α, with KB+ = KB ∪ CWA(KB).

With the CWA, there are no gaps in the knowledge base, since for each atomic
assertion p ∈ AS either KB |=cwa p or KB |=cwa ¬p is successful. The same
holds for arbitrary boolean assertions, but not for assertions with quantifiers
until a domain closure axiom DCA(KB) = (∀x) [x .= c1 ∨ ... ∨ x

.= cm] has been
applied [10]. With DCA(KB), it is assumed that all objects of the domain are
denoted by the constants c1, ..., cm mentioned in a knowledge base KB. There
is no appropriate representation of DCA(KB) for a DL knowledge base KB.
However, this axiom can easily be applied by an appropriate decision procedure.



Definition 2. Let pi be an atomic assertion A(a) or R(a, b).

1. A clause L1 ∨ ... ∨ Ln is a disjunction of literals Li of the form pi or ¬pi.1
2. A Horn clause is a clause with at most one positive literal.
3. An indefinite clause is a positive clause p1 ∨ ... ∨ pn with n > 1.

In the context of first-order logic, Reiter [2] proved that the CWA retains the
consistency of Horn knowledge bases, i.e., knowledge bases only consisting of
Horn clauses. The following theorem is a direct consequence of [1, Theorem 3]:

Theorem 1 (Inconsistency). Let KB be a DL knowledge base. Then KB+

is inconsistent if and only if there are positive ground literals L1, ..., Ln with
KB |=L1 ∨ ... ∨ Ln and KB 6|= Li for all i = 1, ..., n.

As a consequence, DL KBs with concept disjunction generally do not remain con-
sistent by applying the CWA: If KB = {(Intelligent t Rich)(john)}, then KB 6|=
Intelligent(john), KB 6|= Rich(john) and KB |= Intelligent(john) ∨ Rich(john).

Consider ∃R.>(a) ∈ KB. It is known that the constant a is related over R
to an unknown role filler ω, usually referred to as a Skolem constant. Minker [1]
analyses the case in which ω in each interpretation is identified with one of the
constants c1, ..., cm mentioned in KB (cf. domain closure). Then, by specifying
∃R.>(a) it holds that KB |= R(a, c1) ∨ ... ∨ R(a, cm). Following to this implicit
disjunction and referring to Theorem 1, DL knowledge bases with existential
quantification (in ALCN existential restrictions ∃R.C and at-least restrictions
(≥ nR)) in general are also inconsistent with the CWA.

4 Generalized Closed World Assumption (GCWA)

The GCWA [1] is a generalization of the CWA which is guaranteed to retain
the consistency of an indefinite knowledge base by considering indefinite clauses
logically entailed by this knowledge base:

Definition 3. Let KB be a DL knowledge base and PK the set of all positive
clauses constructable from AS. Then GCWA(KB) =

{¬p | p ∈ AS , K ∈ PK , KB 6|= p, and if KB |= p ∨K , then KB |= K}
is the generalized closed world assumption of KB. The entailment relation |=gcwa

considering this assumption for any assertion α is defined by

KB |=gcwa α iff KB∗ |= α with KB∗= KB ∪ GCWA(KB).

Minker suggests that a literal of an indefinite clause can consistently be assumed
to be false if there is a subclause without this literal. For example, in the context
of propositional logic, KB = {p1, p1∨ p2, p3 ∨ p4} can consistently be augmented
with {¬p2} (while KB+ = KB ∪ {¬p2,¬p3,¬p4} is inconsistent).

A consequence of retaining the consistency is that indefinite knowledge bases
under the GCWA are not assumed to be complete: There can be assertions α
with KB 6|=gcwa α and KB 6|=gcwa ¬α. Another property of the GCWA is its
relation to the CWA: If KB+ is consistent, then KB∗= KB+.
1 In this investigation, a clause is always considered to be ground, i.e., only containing

variable-free literals.



5 Extended Domain Closure

Since the domain closure axiom solely considers constants c1, ..., cm mentioned
in a knowledge base, Skolem constants ω can be identified only with these
constants such that the interpretation of ω is ω .= c1 ∨ ... ∨ ω

.= cm. A con-
sequence of this is that the set of models of a given knowledge base is possi-
bly reduced to unintended models, resulting in unexpected inferences: Suppose
KB1 = {Human(john),∃hasChild .>(john)} and DCA(KB1 ) = (∀x )[x .= john].
Then there is only one “absurd” model in which John is a human and a child
of himself such that KB1 ∪DCA(KB1) |= hasChild(john, john). In addition, it
is possible to construct a knowledge base that is inconsistent with the domain
closure: If KB2 = {Human(john),Human(susy), (≥ 3 hasChild)(john)} is aug-
mented with its domain closure axiom, it is assumed that there are only the
two objects denoted by john and susy, but the restriction (≥ 3 hasChild)(john)
requires that there are at least three objects.

To avoid these problems, in this article it is proposed that a Skolem constant
ω can also be identified with a new constant η. Under consideration of such a
constant, every Skolem constant ωk can be interpreted as follows:

ωk
.= c1 ∨ ... ∨ ωk

.= cm ∨ ωk
.= ηk (1)

Given an ALCN knowledge base KB, it is not obvious to determine all
Skolem constants associated to existentially quantified assertions in KB or even
all implicit assertions related to these Skolem constants. A foundation to solve
this problem is to eliminate T such that KB = AT and to apply the tableau-
based satisfiability algorithm forALCN e.g. presented in [9].2 IfKB is satisfiable,
let S(KB) be the full expanded tableau of KB, i.e., the union of all assertions
of all complete and clash-free ABoxes. For example, it is known that KB3 =
{∀P.∃P.>(a),∃R.>(a),∃R.∃P.A(a)} is satisfiable and S(KB3) = {∀P.∃P.>(a),
∃R.>(a),∃R.∃P.A(a), R(a, ω1), R(a, ω2),∃P.A(ω2), P (ω2, ω3), A(ω3)}. Regarding
∃P.> in scope of the value restriction, no Skolem constant is introduced, since
there is no information of a filler of a with respect to the atomic role P . Cases in
which Skolem constants such as ω2 are identified with a are not considered in this
context in order to avoid the introduction of infinitely many Skolem constants.

For querying purposes, there is the need to capture new constants η asso-
ciated to Skolem constants. This is done by augmenting initially empty sets
NEW (T , v) with ηk for every role assertion T (v, ωk) ∈ S(KB). In the case that
v itself is a Skolem constant, for each constant p the Skolem constant is identifi-
able with due to (1), the set NEW (T , p) has to be augmented with the corres-
ponding ηk. Concerning KB3 e.g. NEW (R, a) = {η1 , η2}, NEW (P , a) = {η3}
and NEW (P , η2 ) = {η3}. If a role assertion T (v, ωk) is not contained in all
ABoxes of the tableau of S(KB), then there are models I of KB in which ωk
need not be considered. However, since there is an interest in all possibilities,
sets NEW (T , v) in this case are constructed as above.

2 The modified algorithm needing only polynomial space is not considered here.



Definition 4 (Extended Domain Closure). Let KB be a satisfiable DL
knowledge base, c1, ..., cm all constants mentioned in KB and {η1, ..., ηp} the
union of all sets NEW (T , v). Then

DCA+(KB) = (∀x)[x .= c1 ∨ ... ∨ x
.= cm ∨ x

.= η1 ∨ ... ∨ x
.= ηp]

is the extended domain closure axiom.

Regarding KB1, under consideration of DCA+(KB1) = (∀x)[x .= john∨x .= η1],
hasChild(john, john) is not entailed from KB1, and referring to KB2, under
extended domain closure for each ωk associated to (≥ 3hasChild)(john) a new
constant ηk is introduced such that KB2 remains consistent.

Definition 5 (Extended Unique Name Assumption). Let KB be a DL
knowledge base, c1, ..., cm all constants mentioned in KB and η1, ..., ηp all new
constants to be considered from DCA+(KB). Then

UNA+(KB) = {(ci 6
.= cj) | 1 ≤ i < j ≤ m} ∪

{(ci 6
.= ηk) | 1 ≤ i ≤ m, 1 ≤ k ≤ p} ∪

{(ηk 6
.= ηl) | 1 ≤ k < l ≤ p, ηk and ηl are associated to the

same at-least restriction}
is the extended unique name assumption.

Note that by this definition, new constants ηk denote new (not necessarily
existent) objects, i.e., different from all objects denoted by constants mentioned
in KB. Therefore, by considering an extended domain closure and a correspon-
ding extended unique name assumption, an assertion ∃hasChild .>(john) is in-
terpreted as usually intended, namely to represent the information that John
does have a child either known or not known to a knowledge base.

6 Local GCWA in ALCN

6.1 Propositional Clause Form of ALCN -Assertions

Arbitrary ALCN concept assertions in negation normal form (NNF)3 can be
transformed to a propositional clause form. The transformation of boolean as-
sertions is depicted in Table 1, where u is a constant belonging to DCA+(KB).

Table 1. Transformation of boolean assertions to a clause form

>(u) ⇒ >
⊥(u) ⇒ ⊥
A(u) ⇒ A(u)

¬A(u) ⇒ ¬A(u)
(C1 u ... u Cn)(u) ⇒ C1(u) ∧ ... ∧ Cn(u)
(C1 t ... t Cn)(u) ⇒ C1(u) ∨ ... ∨ Cn(u)

The transformation of assertions with role restrictions requires a form of do-
main closure. For all-quantified assertions ∀R.C(u) and (≤ nR)(u), all constants
3 In NNF, negation occurs only in front of atomic concepts and roles.



belonging to DCA+(KB) are considered while for existential assertions ∃R.C(u)
and (≥ nR)(u), it suffices to consider the constants c1, ..., cm and one resp. n new
constants ηk. However, new constants associated to a query have to correspond
to new constants considered for KB. Therefore, the transformation of existen-
tial assertions with respect to a role R and a constant u, besides all constants
c1, ..., cm mentioned in KB is applied with exactly the new constants η1, ..., ηr
contained in NEW (R, u). If all constants to be considered are determined, trans-
formations of existential- and all-quantified assertions to a propositional (dual)
clause form are based on known correspondences of ALCN to first-order logic
(cf. [9, p. 54]) and are depicted in Table 2 resp. Table 3. Note that transfor-
mations of assertions with qualified role restrictions are defined recursively with
respect to C.

Table 2. Transformation of existential assertions to a propositional (dual) clause form

∃R.C(u) ⇒NEW (R,u) [R(u, c1) ∧ C(c1)] ∨ ... ∨ [R(u, cm) ∧ C(cm)] ∨
[R(u, η1) ∧ C(η1)] ∨ ... ∨ [R(u, ηr) ∧ C(ηr)]

(≥ nR)(u) ⇒NEW (R,u) [R(u, ci1) ∨ ... ∨ R(u, ci|N|−n+1)] ∧
...

... ∧
[R(u, ηk1) ∨ ... ∨ R(u, ηk|N|−n+1)]

Table 3. Transformation of all-quantified assertions to a propositional clause form

∀R.C(u) ⇒DCA+ [¬R(u, c1) ∨ C(c1)] ∧ ... ∧ [¬R(u, cm) ∨ C(cm)] ∧
[¬R(u, η1) ∨ C(η1)] ∧ ... ∧ [¬R(u, ηp) ∨ C(ηp)]

(≤ nR)(u) ⇒DCA+ [¬R(u, ci1) ∨ ... ∨ ¬R(u, cin+1)] ∧
...

... ∧
[¬R(u, ηk1) ∨ ... ∨ ¬R(u, ηkn+1) ∨ EQη]

For the dual clause form of ∃R.C(u) there is an equivalent clause form such
that for each ALCN knowledge base KB = AT there is a corresponding set
of clauses. Regarding (≥ nR)(u), |N| is the cardinality of {c1, ..., cm, η1, ..., ηr}.
In the context of a query or in the case that Skolem constants associated to an
expression in scope of a value restriction are not introduced (see Sect. 5), it is
possible that n >|N| such that (≥ nR)(u) is equivalent to ⊥(u). However, in
these cases the problems mentioned for KB1 and KB2 in Sect. 5 cannot occur.
Due to UNA+(KB), axioms v1 6

.= v2 with arbitrary constants v1, v2 need not
be considered by transforming (≥ nR)(u). Similarly, due to UNA+(KB), only
equalities ηk

.= ηl involving pairs of new constants not associated to the same
at-least restriction have to be considered for the transformation of (≤ nR)(u)
(abbreviated with EQη). Furthermore, if there are less than n+ 1 constants
belonging to DCA+(KB), then (≤ nR)(u) is equivalent to >(u).



6.2 Decision Procedure

Definition 6. Let KB be an ALCN knowledge base, U the set of all constants
belonging to DCA+(KB) and π(PR) ⊆ PR the set of predicates assumed to be
specified complete. Then |=

GCWAπ
for any assertion α is defined by

KB |=
GCWAπ

α iff KB ∪ π(GCWA(KB)) ∪ DCA+(KB) ∪ UNA+(KB) |= α,

where π(GCWA(KB)) = {¬F (u) ∈ GCWA(KB) | u ∈ U and F ∈ π(PR)}.

Besides the extended domain closure and its corresponding unique name as-
sumption, with |=

GCWAπ
a GCWA is applied locally, i.e., only for predicates

F ∈ π(PR). The AssertALCN algorithm deciding whether KB |=
GCWAπ

α is de-
picted in Table 4.

Table 4. AssertALCN algorithm specifying a local GCWA

Algorithm AssertALCN (KB, α, π(PR))
input ALCN knowledge base KB = T ∪ A, ALCN -assertion α, set π(PR) of
predicates assumed to be specified complete
output TRUE if KB |=

GCWAπα, else FALSE

1. Expand A w.r.t. T such that KB = AT
2. If there is an ALCN tableau proof for KB |=una+ ⊥(a) for the constant a,

evaluate to TRUE and stop
3. Determine all sets NEW (T , v) containing new constants ηk for atomic roles

T and constants v appearing in the full expanded tableau of 2.
4. Transform NNF (KB) under consideration of sets NEW (T , v) in a proposi-

tional clause form Cl(KB)
5. Compute the set Res(Cl(KB)) by adding to Cl(KB) all resolvents of Cl(KB)
6. Transform NNF (α) under consideration of sets NEW (T , v) in a propositional

clause form Cl(α)
7. If there is a clause K ∈ Cl(α) neither containing > nor literals L and ¬L and

further not fulfilling any of the constraints

(a) K or a subclause of K is in Res(Cl(KB))
(b) K contains a negative Literal ¬A(a) resp. ¬R(a, b) with A ∈ π(PR)

resp. R ∈ π(PR) s.t. for all positive clauses of Res(Cl(KB)) containing
A(a) resp. R(a, b) there is a subclause in Res(Cl(KB)) without A(a)
resp. R(a, b)

evaluate to FALSE and stop, else evaluate to TRUE and stop

It is assumed that the reader is familiar with the propositional resolution
calculus. After the elimination of T (1.), KB = AT is checked for satisfiability
(2.). GCWA(KB) as well as DCA+(KB) need not be considered for this check,
since these assumptions are known to retain the consistency of KB. But KB is



inconsistent with UNA+(KB), if (≤ nR)(v), R(v, v1), ..., R(v, vn+1) and vi 6
.= vj

for all pairs (vi, vj) are in S(KB). Therefore the satisfiability check is evalu-
ated with the entailment relation |=una+ considering UNA+(KB). There is no
information whether ci 6

.= ωk, and all axioms ωk 6
.= ωl with pairs of Skolem con-

stants associated to the same at-least restriction are introduced by the calculus
[9] such that S(KB) is augmented only with axioms ci 6

.= cj for pairs of con-
stants mentioned in KB. If there is no tableau proof, the full expanded tableau
contains all relevant assertions T (v, ωk) to determine all sets NEW (T , v) (3.).
All assertions of KB (in NNF ) are then transformed to a propositional clause
form w.r.t. sets NEW (T , v) (resp. DCA+(KB) obtained by these sets) (4.). Role
assertions R(a, b) ∈ KB are equivalent to the clause R(a, b). The set Cl(KB) is
augmented with all its resolvents to Res(Cl(KB)) (5.). The transformation of
NNF (α) to Cl(α) (6.) is analogue to (4.). AssertALCN then evaluates to TRUE,
if for each non-tautological clause K ∈ Cl(α) either K or a subclause of K is
in Res(Cl(KB)) or if K contains ¬A(a) resp. ¬R(a, b) with A ∈ π(PR) resp.
R ∈ π(PR) such that for all positive clauses of Res(Cl(KB)) with A(a) resp.
R(a, b), there is a subclause without A(a) resp. R(a, b) in Res(Cl(KB)).

The soundness and completeness of AssertALCN is based on the soundness
and completeness of the well-known propositional resolution calculus. Given a set
of clauses Cl(KB), a set of clauses Cl(α) is proved with this calculus, symbolically
Cl(KB) `Res Cl(α), if an empty clause can be derived from Cl(KB) ∪ ¬Cl(α),
where ¬Cl(α) has been transformed to clause form.

Theorem 2. Let K be a non-tautological clause. Then K or a subclause of K
is in Res(Cl(KB)) if and only if Cl(KB) `Res K.

Proof. (sketch) Res(Cl(KB)) contains all implicit clauses of Cl(KB). All fur-
ther resolvents are obtained by the consideration of ¬K = ¬L1 ∧ ... ∧ ¬Ln. “⇒”:
Consider Cl = L1 ∨ ... ∨ Lk ∈ Res(Cl(KB)) with k ≤ n. It is obvious that the
k-th resolvent of Cl and ¬K is the empty clause. “⇐”: Consider {} 6`Res K (K
is non-tautological), K ′ = L′1∨ ...∨L′m ∈ Res(Cl(KB)) and there is no subclause
of K ′ in Res(Cl(KB)). If the negation of only k literals L′i is contained in ¬K,
then the k-th resolvent of K ′ and ¬K consists of all literals L′j whose negation
is not contained in ¬K and there are no further resolvents of Res(Cl(KB)) and
¬K. Therefore all ¬L′i must be contained in ¬K and m must be lower than or
equal than n in order to derive the empty clause. ut

Since Cl(KB) `Res K1 ∧ ... ∧Kn iff Cl(KB) `Res K1, ..., Cl(KB) `Res Kn, all
clauses K1, ...,Kn are independent of each other. Consequently, Theorem 2 also
holds for a set of clauses Cl(α) such that decisions obtained by executing step 7
(a) are sound and complete. Finally, step 7 (b) exactly corresponds to the consi-
deration of π(GCWA(KB)). AssertALCN can further be simplified by deleting
all superclauses of Res(Cl(KB)). Then, in step 7 (b) it suffices to check if there
are positive clauses in Res(Cl(KB)) containing A(a) resp. R(a, b).



Example 1. Let KB = {∃R.A(a), R(a, b), A(b)} and suppose there is interest
in deciding whether KB |=

GCWAπ
∀R.A(a) for π(PR) = {R}. It is obvious that

KB 6|=una+ ⊥(a). The fact that a itself is mentioned in KB is independent of this.
DCA+(KB) = (∀x)[x .= a ∨ x .= b], since the ∃-rule (cf. [9]) cannot be applied
such that all sets NEW (T , v) are empty. The transformation of ∃R.A(a) is

∃R.A(a) ⇒NEW (R,a) [R(a, a) ∧A(a)] ∨ [R(a, b) ∧A(b)].

The clauses obtained by this dual clause form are redundant, since for each clause
the subclause R(a, b) or A(b) is in Cl(KB) such that Cl(KB) =
Res(Cl(KB)) = {R(a, b), A(b)}. The propositional clause form of ∀R.A(a) is
{¬R(a, a) ∨ A(a),¬R(a, b) ∨ A(b)}. The second clause follows from KB w.r.t.
|=

GCWAπ
, since A(b) is in Res(Cl(KB)) and the first clause, since R ∈ π(PR)

and there are no positive clauses with R(a, a) in Res(Cl(KB)). Consequently, it
holds that KB |=

GCWAπ
∀R.A(a).

Example 2. SupposeKB = {∀R.A(a),∃R.>(a)} with NEW (R, a) = {η1}. There
is interest in deciding whether KB |=

GCWAπ
¬A(a) with π(PR) = {A,R}. The

clause form of KB is {¬R(a, a) ∨ A(a), ¬R(a, η1) ∨ A(η1), R(a, a) ∨ R(a, η1)}.
The resolvents A(a) ∨ R(a, η1) as well as R(a, a) ∨ A(η1) can be derived. Since
in Res(Cl(KB)) there is the clause A(a) ∨R(a, η1), but not the clause R(a, η1),
the instance check given above is not successful.

7 Conclusion

We proposed a method for applying a local closed world assumption for DLs in-
cluding indefinite knowledge which is also appropriate for users not experienced
with non-monotonic DLs. As mentioned in the introduction, under the OWA
there are often answers to queries that are not intended by users. Referring to
the approach presented, these answers are due to the presence of negative liter-
als in the corresponding propositional clause form of the query. By applying the
GCWA, a subset of those negative literals whose non-negative counterpart can-
not be proven is assumed to be true. This subset in general is strict, since under
the GCWA indefinite knowledge remains indefinite, i.e., an indefinite knowledge
base under the GCWA is not assumed to contain complete knowledge. Following
to this, there are still answers to queries that are not intended by a lot of users.

Further investigations could be adressed to the extension of this approach to
DLs more expressive than ALCN as well as to DLs with no restrictions on the
terminological component, i.e., allowing for general concept inclusions (GCIs).
Though the set Res(Cl(KB)) for each KB has to be determined only once, its
computation is highly intractable such that an optimization of the proposed
method is of particular importance.
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