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Abstract. How to provide scalable and quality guaranteed approximation for
query answering over expressive description logics (DLs) is an important prob-
lem in knowledge representation (KR). This is a pressing issue, in particular due
to the fact that, for the widely used standard Web Ontology Language OWL,
whether conjunctive query answering is decidable is still an open problem. Pan
and Thomas propose a soundness guaranteed approximation, which transforms
an ontology in a more expressive DL to its least upper bound approximation in
a tractable DL. In this paper, we investigate a completeness guaranteed approxi-
mation, based on transformations of both the source ontology and input queries.
We have implemented both soundness guaranteed and completeness guaranteed
approximations in our TrOWL ontology reasoning infrastructure.

1 Introduction

The growing availability of semantic annotated data requires scalable query answer-
ing in description logics. How to provide efficient querying answering service for ex-
pressive DLs has been an important open problem in KR. In fact, whether query an-
swering in OWL DL is decidable is still an open problem. The closest available com-
plexity results are about the SHIQ DL, which is OWL DL without nominals and
datatypes, but allowing qualified number restrictions. Ortiz et al. [7] have shown the co-
NP-complete data complexity result for query answering in SHIQ, with a restriction
that transitive properties and properties with transitive sub-properties are disallowed in
queries. Glimm et al. [1] have further provided the co-NP-complete data complexity
and 2EXPTIME combined complexity results for general query answering in SHIQ.

Approximation has been identified as a potential way to reduce the complexity
of reasoning over OWL DL ontologies. Many existing approaches [10, 12, 3, 2, 5] are
mainly based on syntactic approximation of ontological axioms and queries. All these
approaches could introduce unsound answers. Pan and Thomas [8] propose a soundness
guaranteed approximation, which transforms an ontology in a more expressive DL to
its least upper bound approximation in a tractable DL. To the best of our knowledge,
there is no published scalable completeness preserving approximation approaches for
query answering in OWL DL.

In this paper, we investigate a completeness guaranteed approximation for non-
boolean query answering, based on transformations of both the source ontology and
input queries It turns out that the semantic approximation constructed for soundness



guaranteed query service can also be exploited to provide completeness guaranteed
query service. We then provide a more fine grained approximation, which can provide
potentially much smaller but still completeness guaranteed, which can be used to pro-
vide anytime querying answering for OWL DL. We have implemented both soundness
guaranteed and completeness guaranteed approximations in our TrOWL ontology rea-
soning infrastructure. Accordingly, for each query, we provide two answer sets: one is
soundness guaranteed and the other is completeness guaranteed. To evaluate our ap-
proach, we use the ontologies that Motik et al [6] used for evaluating ABox reasoning,
and extend the tested queries by allowing non-distinguished variables. Our evaluation
shows: (1) Both the soundness guaranteed and completeness guaranteed answer sets
can be computed efficiently. (2) Our anytime algorithm effectively produces smaller
completeness guaranteed answer set. (3) For every query in our evaluation, at least one
of our completeness guaranteed answer sets is both sound and complete with respect to
the reference answer for that query.

2 Preliminary

2.1 Conjunctive Query Answering

A conjunctive query is of the form q(X)← ∃U.ϕ(X,U), or simply q(X)← ϕ(X,U),
where X and U are vectors of distinguished variables (DVs) and non-distinguished
variables (NDVs) resp., and ϕ is a conjunction of atoms of the form A(v), R(v1, v2),
where A, R are named concepts and named roles resp., v, v1 and v2 are variables in
X and U , or individual names in the given ontology. If v, v1 and v2 are not in U , then
A(v) and R(v1, v2) are non-distinguished variable free atoms. If X is an empty set, we
say q is a boolean query; otherwise, we say q is a non-boolean query. Theoretically,
allowing only named concepts and roles in atoms is not a restriction, as we can always
define such named concepts and roles in ontologies. Practically, this should not be an
issue as querying against named relations is a usual practice when people query over
relational databases. In this paper, although we consider input queries with only named
concepts and roles in atoms, it is still possible to have concept descriptions in atoms due
to query rewriting (see Section 3). As usual, an interpretation I satisfies an ontology O
if it satisfies all the axioms in O; in this case, we say I is a model of O. Given an
evaluation [X 7→ S], where S is a vector of individual names, if every model I of O
satisfies q[X 7→S], we say O entails q[X 7→S]; in this case, S is called a solution of q.

We could consider a conjunctive query as a directed graph [4], where the nodes
are variable or individual names. In addition, concept and role terms provide labels for
nodes and edges respectively. Note that the direction of the edge is related to role label;
namely, R(i, j) (i connects to j via R) is equivalent to R−(j, i) (j connects to i via
R−). Therefore, it is enough to consider weak connectivity of query graphs. Without
loss of generality, we assume input queries corresponding to weakly connected graphs;1

a graph is a weakly connected if replacing all its directed edges with undirected edges
produces a connected (undirected) graph. The weak connectivity degree of a node is

1 Unconnected components do not share variables, therefore they can be considered indepen-
dently to each other.



the number of nodes that weakly connect to it. A path in a query graph is a sequence
of nodes such that each of its nodes weakly connects to the next node in the sequence.
The length of the path is n − 1, where n is the number of nodes in the path. For the
readers’ convenience the non-distinguished variables are represented by filled circles
(•), distinguished variables by unfilled circles (◦) and individuals by diamonds (�).
For example, the query q1(x) ← C(x) ∧ R1(x, u) ∧ R2(x, Rome) corresponds to the
following graph.

A non-distinguished variable sub-graph (or NDV sub-graph) of a query q is a sub-graph
of q with all its nodes being non-distinguished variables. For example, q1 has one NDV
sub-graph (containing the node u).

2.2 Knowledge Compilation

Selman and Kautz illustrated the idea of knowledge compilation in [9] by showing
how a propositional theory can be compiled into a tractable form consisting of a set of
Horn clauses. As a logically equivalent set of Horn clauses does not always exist, they
proposed to use Horn lower-bound and Horn upper-bound to approximate the original
theory.

Let Σ be a set of clauses (the original theory), the sets Σlb and Σub of Horn clauses
are respectively a Horn lower-bound and a Horn upper-bound of Σ iff M(Σlb) ⊆
M(Σ) ⊆ M(Σub), or, equivalently, Σlb |= Σ |= Σub. This says the Horn lower-
bound is logically stronger than the original theory and the Horn upper-bound is logi-
cally weaker than it. A Horn lower-bound Σglb is a greatest Horn lower-bound iff there
is no set Σ′ of Horn clauses such thatM(Σlb) ⊂ M(Σ′) ⊆ M(Σ). A Horn upper-
bound Σlub is a least Horn upper-bound iff there is no set Σ′ of Horn clauses such that
M(Σ) ⊆M(Σ′) ⊂M(Σlub).

2.3 Semantic Approximation

Pan and Thomas [8] apply the idea of knowledge compilation on semantically approx-
imating a source ontology Os in a more expressive DL Ls (source language) with its
(least) upper-bound Ot in a less expressive DL Lt (target language). This sub-section
summaries the results from [8].

The following definition provides the notion of least upper-bound in their setting;
i.e., they consider all Lt axioms that are entailed by Os.
Definition 1. (Entailment Set) Let NC , NP and NI be the finite set of named con-
cepts, named roles and named individuals, respectively, used in Os. The entailment set
of Os w.r.t. Lt, denoted as ES(Os,Lt), is the set which contains all Lt axioms (con-
structed by using only vocabulary in NC , NP and NI ) that are entailed by Os.



Lemma 1. ES(Os,Lt) is the least upper bound compilation of Os in Lt.

In order to use ES(Os,Lt) as the target approximation ontology Ot, we need to find
some lightweight language Lt such that ES(Os,Lt) is finite.

Lemma 2. Given an OWL DL ontology Os, ES(Os,LDL-LiteR) is a finite set.

Accordingly, we can use DL-LiteR as a lightweight language Lt for approximating
OWL DL ontologies in order to provide scalable query answering service. See [8] for
how to compute ES(Os,LDL-LiteR) from Os.

Given an OWL DL ontology Os and an arbitrary query q, we denote the set of
solutions of q overOs as Sq,Os

and the set of solutions of q over ES(Os,DL-LiteR) as
Sq,ES(Os,DL-LiteR). The following theorem shows that query answering based on the
DL-LiteR entailment set is soundness guaranteed.

Theorem 1. Given an OWL DL ontologyOs and an arbitrary query q, Sq,ES(Os,DL-LiteR) ⊆
Sq,Os .

For queries without non-distinguished variables, it is both soundness and completeness
guaranteed.

Theorem 2. Given an OWL DL ontology Os and an arbitrary query q′ that contains
no non-distinguished variables, Sq′,ES(Os,DL-LiteR) = Sq′,Os

.

3 Completeness Guaranteed Approximations

In this section, we will first show how to make use of entailment sets (introduced in
Section 2.3) to provide a completeness guaranteed approximation for OWL DL query
answering. Secondly, we will show how to provide smaller completeness guaranteed
approximations by using some enriched entailment sets.

3.1 Approximation Based on Entailment Sets

In order to provide a completeness guaranteed approximation based on entailment sets,
we first introduce the approximate function FC0, and then show that, given an OWL DL
ontology Os and a query q, querying FC0(q) over ES(Os,DL-LiteR) is completeness
guaranteed, i.e. Sq,Os

⊆ S
FC0(q),ES(Os,DL-LiteR).

Definition 2. (Approximation Function FC0) Let q be an input non-boolean conjunc-
tive query of the form q(X) ← ϕ(X,U), the approximation function FC0 returns
qC0(X) ← ϕ′(X, ∅), where ϕ′(X, ∅) is a non-distinguished variable free conjunction
that only contains all the non-distinguished variable free atoms in ϕ(X,U).

From the query graph point of view, this amounts to removing all NDV sub-graphs of
an input query q and all edges connecting to these sub-graphs from q.

Example 1. Let us revisit the query q1(x)← C(x)∧R1(x, u)∧R2(x, Rome), FC0(q1)
is q1C0(x)← C(x) ∧R2(x, Rome), which corresponds to the following graph.



Theorem 3. Given an OWL DL ontology Os and an arbitrary non-boolean query q,
Sq,Os

⊆ SFC0(q),ES(Os,DL-LiteR).

Proof: (Sketch) Immediate consequence of (i) Sq,Os ⊆ SFC0(q),Os
, due to the definition

of FC0, and (ii) SFC0(q),Os
= S

FC0(q),ES(Os,DL-LiteR), due to Theorem 2.

Theorems 1 and 3 suggest that, given an OWL DL ontology Os and a non-boolean
query q, we could now provide both a soundness guaranteed answer set Sq,ES(Os,DL-LiteR)
and a completeness guaranteed answer set S

FC0(q),ES(Os,DL-LiteR).

3.2 Towards Fine Grained Approximations

The approximation function FC0 removes all the non-distinguished atoms from the in-
put query q, which could potentially introduce many unsound answers in the complete-
ness guaranteed answer set.

Example 2. Consider the cyclic query q2 of the form q2(x1, x2)← C(x1)∧R1(x1, u1)∧
R2(x1, Rome)∧R3(u1, u2)∧R4(Rome, u2)∧D(u2)∧R5(u2, x2), which corresponds
to the following graph:

FC0(q2) is q2C0(x1, x2)← R2(x1, Rome)∧>(x2), which corresponds to the following
graph:

FC0(q2) has two disconnected components that do not share any variables:R2(x1, Rome)
and >(x2). The latter one binds all named individuals to x2, thus the answer set poten-
tially could be large and contain many unsound answers.

In this section, we investigate how to improve FC0 by keeping more information
from the non-distinguished atoms. We develop a query rewriting technique based on
the rolling up technique that has been used [4] to help reduce the problem of answering
boolean queries with acyclic query graphs to the problem of knowledge base satisfia-
bility checking.

Let us revisit the query q1 (with an acyclic query graph) before providing formal
analysis.



Example 3. The query q1 is to retrieve all named individuals (x), which are instances
of C, related by role R1 to an (possibly unnamed) individual (u) and related by role R2
to the individual Rome. The query can be paraphrased as the query q1′(x) ← C(x) ∧
∃R1.>(x) ∧R2(x, Rome), which corresponds to the following graph.

It should be noted that the intuition from the above example is substantiated by the fact
q1 corresponds to the first order logic formula ∀x(∃u(C(x)∧R1(x, u)∧R2(x, Rome))),
which can be translated to the first order logic formula ∀x(C(x)∧∃R1.>(x)∧R2(x, Rome)).
Accordingly, we have the the following lemma for rolling-up a path of non-distinguished
variables.

Lemma 3. LetOs be an OWL DL ontology,C1, ...Cm concepts,R1, ...Rm named roles
and o a named individual in Os, x, u1, ..., um variables. Given the following input
query q and corresponding rolled up query q′:

– q(x)← R(x, u1)∧S(o, u1)∧C1(u1)∧R2(u1, u2)∧C2(u2)∧...∧Rm(um−1, um)∧
Cm(um)

– q′(x)← ∃R.(C1u∃R2.(...∃Rm−1.(Cm−1u∃Rm.Cm)))(x)∧∃S.(C1u∃R2.(...∃Rm−1.(Cm−1u
∃Rm.Cm)))(o) ∧ ∃R.∃S−.{o}(x) ∧ ∃S.∃R−.>(o)

we have Sq,Os
= Sq′,Os

.

A few remarks for the above lemma: (i) If we have Ai,1(ui) ∧ ... ∧ Ai,n(ui) in the
query q, we could first combine them into one atomAi,1u...uAi,n(ui), before applying
the lemma. Hence, Ci can be either a named concept or a conjunction of named con-
cepts Ai,1u ...uAi,n. (ii) The lemma shows that rolling up non-distinguished variables
to distinguished variables (x) is the similar to rolling up to individuals (o). For example,
we could roll up q3(x)← R1(x, u1) ∧R3(u1, u2) into q3′(x)← ∃R1.(∃R3.>)(x).

In order to apply Lemma 3 for completeness guaranteed approximations of poten-
tially cyclic non-boolean queries, we introduce the notion of proxy nodes. Intuitively
speaking, proxy nodes are nodes to which we roll up paths of non-distinguished vari-
able.

Definition 3. (Proxy Node) Given a non-boolean query q, a proxy node of q is a node
in the query graph of q that (i) corresponds to a distinguished variable or an individual
and (ii) directly connects via a role to a non-distinguished variable.

For example, in the query graph of q2, proxy nodes include x1, x2 and Rome.
Given a non-boolean query q, a proxy node p of q, we call the acyclic path p, n1, ...nh

(where n1, ..., nh are nodes in q) a proxy path w.r.t. p. Note that the above defini-
tion does not take into account the direction of edges, since R(ui, uj) is equivalent to
R−(uj , ui). We use Path(p, n) to denote all proxy paths from the proxy node p to
the node n. For example, in the query graph of q2, Path(x1, Rome) contains one path:
x1, u1, u2, Rome w.r.t. x1.

The following lemma deals with enriching the labels of proxy nodes based on their
non-distinguished variable paths.



Lemma 4. Let Os be an OWL DL ontology, C1, ...Cm concepts and R1, ...Rm named
roles in Os, X the set of distinguished variables, p a proxy node in q and n1, ..., nm
nodes in q. Given the following input query q and corresponding enriched query q′

based on the rolling up of the proxy path p, n1, ..., nm:

– q(X)← D(p)∧R1(p, n1)∧C1(n1)∧R2(n1, n2)∧C2(n2)∧...∧Rm(nm−1, nm)∧
Cm(nm)

– q′(X)← D(p)∧R1(p, n1)∧C1(n1)∧R2(n1, n2)∧C2(n2)∧...∧Rm(nm−1, nm)∧
Cm(nm) ∧ ∃R1.(C1 u ∃R2.(...∃Rm−1.(Cm−1 u ∃Rm.Cm)))(p)

we have Sq,Os = Sq′,Os .

It should be noted that q′ contains all atoms of q, while adding an atom for p based on
the rolling up.

Definition 4. (Proxy Node Based Rolling Up Function FR) Let q be an input non-
boolean query of the form q(X) ← ϕ(X,U), p1, ..., pn proxy nodes in q, the proxy
node based rolling up function FR rewrite q as follows:

1. Normalise q into q′: transform concept atoms of the form A1(i) ∧ ... ∧ Ak(i) into
A1 u ... uAk(i).

2. Enrich q′ into q′′: For each NDV-subgraph g of q′,
– if g weakly connects to at least two proxy nodes p1, ...pk(k ≥ 2), then for each

pair 〈pi, pj〉 (1 ≤ i < j ≤ k) of the weakly connected proxy nodes, enrich q′

based on all paths in Path(pi, pj) according to Lemma 4;
– if there is only one proxy node p connected to g, let n1, ...ns be the set of nodes

in g that has the lowest weak connectivity degree. For each nh (1 ≤ h ≤ s),
enrich q′ based on all paths in Path(p, nh) according to Lemma 4.

3. Returns FC0(q′′).

Example 4. q2 contains only one NDV sub-graph, which connects to three proxy nodes.
FR(q2) is q2R(x1, x2) ← C(x1) ∧ R2(x1, Rome) ∧ ∃R1.(∃R3.(D u ∃R5.>))(x1) ∧
∃R5−.(D u ∃R3−.(∃R1−.C))(x2) ∧ ∃R1.(∃R3.(D u ∃R4−.>))(x1) ∧ ∃R4.(D u
∃R3−.(∃R1−.C))(Rome)∧∃R5−.(D u∃R4−.>)(x2)∧∃R4.(D u∃R5−.>)(Rome),
which corresponds to the following graph.

Theorem 4. Given an OWL DL ontology Os and an arbitrary non-boolean query q,
Sq,Os

⊆ SFR(q),Os
⊆ SFC0(q),ES(Os,DL-LiteR).

Theorem 4 shows that SFR(q),Os
is a more fine grained completeness guaranteed

answer set.



3.3 Approximation Based on Enriched Entailment Sets

Given an OWL DL ontology Os and a non-boolean query q, this sub-section investi-
gates how to to answer FR(q) over Os. In particular, we will show this can be done
based on enriched entailment sets of Os.

According to Def 4, these descriptions are of the form

∃R1.(C1 u ∃R2.(...∃Rm−1.(Cm−1 u ∃Rm.Cm))) (1)

where C1, ...Cm are conjunctions of named concepts, and R1, ...Rm are either named
roles or their inverse. Intuitively, we first introduce fresh named concepts to represent
concept descriptions in the labels of proxy nodes, then query against the extended on-
tology. Formally, given an ontology Os and a non-boolean query q, we can extend Os
to q-enriched ontologyOqs as follows: for each proxy node concept description P of the
form (1) in FR(q), add an axiom AP ≡ P into Os, where AP is a fresh named con-
cept. We use FN (FR(q)) to denote the resulted query of rewriting FR(q) by replacing
all concept descriptions P of the form (1) with the corresponding named concepts AP .

Lemma 5. LetOs be an ontology, q a non-boolean query. SFR(q),Os
= SFN (FR(q)),Oq

s
=

SFN (FR(q)),ES(Oq
s ,DL-LiteR).

Proof: (Sketch) The first equivalence is trivial. The second equivalence is due to Theo-
rem 2 and the fact that FR(q) does not contain any non-distinguished variables.

We call ES(Oqs ,DL-LiteR) an enriched entailment set of Os w.r.t. the query q. In
the next section, we will investigate query independent enriched entailment sets.

4 Anytime Reasoning Approximation

In this section, we introduce a strategy to incrementally construct enriched entailment
sets. For a concept description P of the form (1), we use depth(P ) to denote the maxi-
mal number of serial existential quantifiers in it; e.g., depth(∃R1.(C1 u ∃R2.>)) = 2.
We define the depth of a query q as the maximal length of proxy paths in it.

For an OWL DL ontology Os, let Ei = {ei1, · · · , eik} (i ≥ 1) be the set of DL-
LiteR axioms that a) contain some of the representative named concepts for the con-
cept descriptions of the form (1) that are with depth i, and b) are entailed by Os. Ac-
cordingly, a serial of i-entailment set Πi (i ≥ 1), are defined as followings: Π0 =
ES(Os,DL-LiteR), Π1 = Π0 ∪ E1, ..., Πi = Πi−1 ∪ Ei. Let 0 ≤ i ≤ m be an in-
teger, we define the function Fi to rewrite FR(q) by a) replacing all concept descrip-
tions ∃R1.(C1 u ∃R2.(...∃Rm−1.(Cm−1 u ∃Rm.Cm))) with the representative named
concept (of depth i) for ∃R1.(C1 u ∃R2.(...∃Ri−1.(Ci−1 u ∃Ri.>))). For example,
F1(FR(q2)) is q2R(x1, x2)← C(x1)∧R2(x1, Rome)∧A∃R1.>(x1)∧A∃R5−.>(x2)∧
A∃R4.>(Rome).

Theorem 5. Given an OWL DL ontologyOs and a query q overOs. Let j ≥ i ≥ 0, we
have:

1 SF0(FR(q)),Π0 = SFC0(q),Π0 ;



Table 1. Ontologies used and time required to calculate Ci (in minutes)

Ontology C1 C2 C3

SEMINTEC 1 11 47 119
VICODI 1 16 94 422
WINE 4 14 46 342
LUBM 1 17 57 421

2 SFi(FR(q)),Πi
⊇ SFj(FR(q)),Πj

⊇ SFR(q),Os
⊇ Sq,Os

.

Theorem 6. Let Os be an ontology, q a non-boolean query of depth i, SFR(q),Os
=

SFi(FR(q)),Πi
.

It should be noted that the above theorems are for arbitrary queries. For OWL DL
ontology Os and a query q, an anytime reasoning for query answering is a set of com-
puting jobs {SF0(FR(q)),Π0 , · · · ,SFi(FR(q)),Πi

, · · · }. Fig. 1 shows the intuitive hierarchy
of the set of solutions in anytime reasoning for query q onOs. We note when i increases,
the curve is approaching to the middle red line, which is Sq,Os .

Fig. 1. Hierarchy of the set of solutions for query q on Os.

5 Implementation and Evaluation

We have implemented both soundness guaranteed and completeness guaranteed ap-
proximations in our TrOWL ontology reasoning infrastructure, which is based on the
infrastructure used in the ONTOSEARCH2 system. As Theorem 5 indicates, soundness
guaranteed and completeness guaranteed semantic approximations can be implemented
in a similar manner. The main difference is that, the form one is based on Π0, while the
latter one is based on Πi(≥ 1). All these (i-)entailment sets are stored in the database.
As it could be quite time consuming to computeΠi(≥ 1), we apply some optimisations
and produce some relaxed completeness guaranteed approximations Ci (instead ofΠi).
All the tests were done on an Apple Macbook, with 2.0 Ghz Dual Core and 2Gb ram.

In [6], Motik et al used four ontologies to evaluate the performance of ABox an-
swering across several different reasoning systems. To evaluate the performance of our



Table 2. Source Queries

Ontology Query

SEMINTEC q(x, y, z)←Man(x) ∧ isCreditCardOf(x, y) ∧Gold(y) ∧ livesIn(x, z) ∧ Region(z)
VICODI q(x, y, z)←Military − Person(x) ∧ hasRole(y, x) ∧ related(x, z)
WINE q(x, y, z)← Winery(x) ∧ producesWine(x, y) ∧ locatedIn(y, z)
LUBM q(x, y, z)← Student(x) ∧ Faculty(y) ∧ Course(z) ∧ advisor(x, y) ∧ takesCourse(x, z) ∧ teacherOf(y, z)

Table 3. Results of Queries

Pellet Π0 C1 C2 C3
Ontology NDVs cd t (ms) cd t (ms) cd t (ms) cd t (ms) cd t (ms)

WINE
2 0.45 981 0.57 121 410.1 388 18.1 297 1.0 288
1 0.86 922 0.86 132 22.8 224 1.0 224 1.0 236
0 1.0 1015 1.0 127 1.0 152 1.0 163 1.0 174

LUBM
2 0.68 1593 1.0 189 5421.4 1068 30.2 401 1.0 396
1 0.94 1499 1.0 210 168.1 521 1.0 282 1.0 348
0 1.0 1464 1.0 193 1.0 243 1.0 264 1.0 288

VICODI
2 0.31 1202 0.8 225 118.2 294 9.4 358 1.0 423
1 0.97 1320 1.0 222 14.4 258 1.0 301 1.0 387
0 1.0 1278 1.0 237 1.0 252 1.0 287 1.0 305

SEMINTEC
2 0.45 2022 0.69 182 37.2 389 6.8 356 1.0 410
1 0.67 2121 1.0 180 4.5 286 1.0 266 1.0 339
0 1.0 2221 1.0 195 1.0 212 1.0 234 1.0 258

query tool we will use the same ontologies, but we change the queries to include non-
distinguished variables. Table 1 lists the four ontologies, together with the time spent
on computing C1− C3, which only needs to be computed once. In [6], each ontology
is queried twice, a simple instance retrieval query, and a more complex query contain-
ing three distinguished variables. We have modified these complex queries to produce
queries with zero, one, or two non-distinguished variables, so that each combination of
distinguished and non-distinguished variable can be tested.

Table 3 presents the average completeness degrees (cd, with cd = 1.0 indicating
being the exact answer set) and average time (ms) spent on querying each set of queries
(one with zero NDVs, three with one, and three with two) of over Π0, C1, ..., C3. Com-
pleteness degree is defined as |ta||ea| , where ta is the total answers returned, while ea is the
exact answer set. Since all the queries were tree-shape queries, the exact result set was
calculated semi-automatically. For comparison, we also list the average completeness
degrees and average time (querying over the original ontology) spent for Pellet, which
treats all variables in the query as distinguished when query answering over ontologies.

Our evaluation shows (see also Table 3): (1) Query with Pellet and overΠ0 are both
soundness preserving; moveover, our soundness preserving approximation based onΠ0

is more complete than Pellet. (2) Querying over Π0 is much more efficient than Pellet.
(3) Querying over C1, C2, C3 is also more efficient than over Pellet, while slightly less
efficient than over Π0. (4) The refinement from of the completeness preserving ap-
proximations is effective. The completeness preserving answer sets over C3 are much
smaller than those over C2, which in turn are much smaller than those over C1. In fact,



Fig. 2. Graph of results for each complete entailment set for queries with two non-distinguished
variables

for all the tested queries, answer sets over C3 are both sound and complete. Figure 2
shows the convergence of each complete entailment set, as the complexity of the set
increases. This shows the result for each query using two non-distinguished variables.
It can clearly be seen how using anytime reasoning over increasingly large entailment
sets can improve the precision of a query, as the additional entailment sets are calculated
from the source ontology.

6 Discussion and Outlook

In this paper, we investigate a completeness guaranteed approximation, based on trans-
formations of both the source ontology and input queries. Based on this approach and
the results from [8], we have implemented both soundness preserving and complete-
ness preserving approximations in our TrOWL ontology infrastructure. To the best of
our knowledge, this is the first scalable OWL DL query engine supporting both sound-
ness preserving and completeness preserving approximations.

From the literature, the closest approach is SCREECH-ALL [3, 11], which pro-
vides complete approximations for ABox reasoning (rather than conjunctive query an-
swering) on SHIQ ontologies, based on the KAON2 reasoner. While SCREECH-ALL
could produce many unsound answers for atomic and defined concepts, our approach is
very precise on atomic concepts. In Fig. 1 the position of SCREECH-ALL is at point
A or B or C, it depends on the ontology used. It should be noted that Fig. 1 illustrates
an interesting advantage of our approach: when i is increasing our approach produces
smaller completeness preserving answer sets; i.e., our anytime approach is monotonic.
SCREECH-NONE [3, 11], on the other hand, simply removes all disjunctive rules and
it guarantees sound by not complete reasoning. Unfortunately the result is that some
instance of named concepts might be lost. The semantic approximation approach, how-
ever, is based on least upper bound approximation, i.e. the strongest weaker approxima-
tion w.r.t. DL-LiteR. Thus, it will never lose any instances of DL-LiteR basic concepts,
let alone named concepts.

One immediate future work is to further test this approach on variant application
ontologies. Study more optimization techniques in order to build more efficient systems
will be one of the important future works.
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