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Abstract. In the current paper we study the reasoning problem for
fuzzy SI (f-SI) under arbitrary continuous fuzzy operators. Our work
can be seen as an extension of previous works that studied reasoning
algorithms for f-SI, but focused on specific fuzzy operators, e.g. fKD-SI
and of reasoning algorithms for less expressive fuzzy DLs, like fL-ALC
and fP -ALC (fuzzy ALC under the Lukasiewicz and product fuzzy op-
erators, respectively). We show how transitivity can be handled for all
the range of continuous fuzzy DLs and discuss about blocking and cor-
rectness in this setting. Based on these analysis, we present a unifying
framework for reasoning over the class of continuous fuzzy DLs. Finally
use the results to prove decidability of several fuzzy SI DLs.

1 Introduction

Although, DLs are considerably expressive they have limitations especially when
it comes to modelling domains where imprecise or vague information is present,
thus fuzzy extensions to DLs have been proposed [13, 12, 8, 2]. Fuzzy DLs are
envisioned to be useful for several applications that face such knowledge and
today there is a great deal of effort to apply them in several domains like mul-
timedia analysis and interpretation [11], multimedia retrieval [7], and semantic
interoperability (ontology alignment) [3]. For example, in multimedia analysis
in order to use semantically rich technologies one has to map from the semanti-
cless numerical values that are extracted by analysis algorithms (e.g. the color,
the texture, the shape or other low-level related features) to more high level
(fuzzy/vague) concepts like blue, red, smooth, rough, long, small, overlapping,
etc. More precisely, we could say that region reg1 is blue to a degree 0.8 and
smoothly textured to a degree 0.7 [11]. Then we can use DL axioms deducing
high level assertions about the various image regions.

Up to now many reasoning algorithms for fuzzy DLs have been presented.
Straccia [13] presented a tableaux reasoning algorithm for fKD-ALC (fuzzy
ALC under the Zadeh fuzzy operators: x ∧ y Ã min(x, y), x ∨ y Ã max(x, y),
¬x Ã 1 − x and x → y Ã max(1 − x, y)). This was later extended to very
expressive fuzzy DLs, like fKD-SI and fKD-SHIN by Stoilos et al. [12], by
investigating and extending the classical rule for transitivity (∀+) in the fuzzy
setting. Then Straccia presented reasoning algorithms for fuzzy DLs that use



other fuzzy operators than the Zadeh ones. Firstly, a reasoning algorithm for fL-
ALCf (fuzzy ALCf under the Lukasiewicz operators: x ∧ y Ã max(0, x + y − 1),
x ∨ y Ã min(1, x + y), ¬x Ã 1 − x and x → y Ã min(1, 1 − x + y)) [14],
while finally Bobillo and Straccia extended the approach to fP -ALCf [2] (fuzzy
ALCf under the product logic operators: (x ∧ y) Ã x · y, x ∨ y Ã x + y − x · y,
¬x Ã 1−x and x → y Ã 1 if x ≤ y, y/x otherwise). These algorithms are based
on tableaux procedures, and its application creates a set of inequations that need
to be solved, which is different than fKD-DLs which are purely tableaux-based.
Obviously, a general framework for reasoning with fuzzy DLs allowing for a more
general class of fuzzy operators is required. A first such attempt for ALC had
already been made by Trest & Molitor [15], nevertheless they did not provide a
clear idea on how or if the system of inequations created can actually be solved
in practice. Recently, Bobillo and Straccia [1] have presented an algorithm for
reasoning with f-ALC over arbitrary left-continuous fuzzy operators.

Although the literature on fuzzy-DLs is flourishing it is quite evident that
several open issues exist. More precisely, there is currently no known algorithm
for (very) expressive fuzzy DLs, like fuzzy SI, that allow for transitive and
inverse roles, and at the same time allow for fuzzy operators other than the
Zadeh operators, needless to say a unifying framework for reasoning over all
continuous fuzzy DLs. In order to extend the algorithms to such fuzzy DLs the
semantics of the respective constructors, like transitivity and inverse roles need
to be studied and understood [12]. Furthermore, as we will see in Section 4.2,
our investigation has shown that there are some very difficult issues related to
termination (blocking condition) and correctness of the respective algorithms.
In this paper we try to tackle with these issue providing a unifying framework
for reasoning in fuzzy SI extended with arbitrary continuous fuzzy operators.

2 Fuzzy Set Theory

While in classical set theory an element either belongs to a set or not, in fuzzy set
theory elements belong only to a certain degree. More formally, let X be a set of
elements. A fuzzy subset A of X, is defined by a membership function µA(x), or
simply A(x) [6]. This function assigns any x ∈ X to a value between 0 and 1 that
represents the degree in which this element belongs to X. In this new framework
the classical set theoretic and logical operations are performed by special math-
ematical functions. More precisely fuzzy complement is a unary operation of the
form c : [0, 1] → [0, 1], fuzzy intersection and union are performed by two binary
functions of the form t : [0, 1]× [0, 1] → [0, 1] and u : [0, 1]× [0, 1] → [0, 1], called
t-norm and t-conorm operations [6], respectively, and fuzzy implication also by
a binary function, J : [0, 1] × [0, 1] → [0, 1]. In order to produce meaningfull
fuzzy complements, conjunctions, disjunctions and implications, these functions
must satisfy certain mathematical properties. For example the operators must
satisfy the following boundary properties, c(0) = 1, c(1) = 0, t(1, a) = a and
u(0, a) = a. Due to space limitations we cannot present all the properties that
these functions should satisfy, but rather the reader is referred to [6]. Some,



examples of fuzzy operators are the Lukasiewicz negation, cL(a) = 1 − a, t-
norm, tL(a, b) = max(0, a + b − 1), t-conorm, uL(a, b) = min(1, a + b), and
implication, JL(a, b) = min(1, 1 − a + b), the Gödel norms tG(a, b) = min(a, b),
uG(a, b) = max(a, b), and implication JG(a, b) = b if a > b, 1 otherwise, the
products norms, tP (a, b) = a · b, uP (a, b) = a + b − a · b the Goguen impli-
cation JP (a, b) = b

a if a > b, 1 otherwise, and the Kleene-Dienes implication
(KD-implication), JKD(a, b) = max(1 − a, b).

In the following we will refer to a collection of fuzzy operators 〈c, t, u,J 〉 as
a fuzzy quadruple and 〈c, t, u〉 as a fuzzy triple.

3 A Fuzzy Extension of the SI DL

In this section, we briefly introduce a fuzzy extension of the SI DL, which we
call f-SI.

As usual we have an alphabet of distinct concept names (C), role names (R)
and individual names (I). Following [13, 12], we only extend classical assertions
by allowing for degrees of truth, thus creating fuzzy assertions, while no other
syntactic extensions are performed. This has the effect that f-SI-roles and f-SI-
concepts are defined by the usual abstract syntax: C,D −→ ⊥ | ⊤ | A | C ⊓ D |
C ⊔ D | ∃R.C | ∀R.C, R −→ S | S−.

The semantics are provided by the means of fuzzy interpretations [13]. A
fuzzy interpretation as a pair I = (ΔI , ·I), which maps

1. an individual a ∈ I to an element aI ∈ ΔI ,
2. a concept name A ∈ C to a membership function AI : ΔI → [0, 1],
3. a role name R ∈ R to a membership function RI : ΔI × ΔI → [0, 1].

For example, if a ∈ ΔI then AI(a) gives the degree that the object a belongs
to the fuzzy concept A, e.g. AI(a) = 0.8. The notions of a TBox, RBox and
knowledge base are defined in the usual way. On the other hand An f-SI ABox
is a finite set of fuzzy assertions [13] of the form (a : C)⊲⊳n or ((a, b) : R)⊲⊳n,
where ⊲⊳ ∈ {≥,≤} and n ∈ [0, 1]. In the following ⊲⊳− denotes the reflection of
inequalities; e.g., the reflection of ≥ is ≤ and that of ≤ is ≥. Table 1 summarizes
the semantics of f-SI-concepts, f-SI-roles and satisfiability of TBox, RBox and
ABox axioms.

An f-SI knowledge base Σ = 〈T ,R,A〉 is satisfiable (unsatisfiable) iff there
exists (does not exist) a fuzzy interpretation I which satisfies all axioms in
Σ. An f-SI-concept C is n-satisfiable w.r.t. Σ iff there exists a model I of Σ
in which there exists some a ∈ ΔI such that CI(a) = n, and n ∈ (0, 1]. A
fuzzy concept C is subsumed by D w.r.t. Σ iff in every model I of Σ we have
∀d ∈ ΔI , CI(d) ≤ DI(d). An f-SI ABox A is consistent (inconsistent) w.r.t. a
TBox T and an RBox R if there exists (does not exist) a model I of T and R
which satisfies every assertion in A. Given a concept or role axiom or a fuzzy
assertion, Ψ , we say that Σ entails Ψ , writing Σ |= Ψ iff every model I of Σ
satisfies Ψ . The greatest lower bound of an assertion Φ w.r.t. Σ is defined as,
glb(Σ,Φ) = sup{n | Σ |= Φ ≥ n}, where sup ∅ = 0.



Constructor Syntax Semantics

top ⊤ ⊤I(a) = 1

bottom ⊥ ⊥I(a) = 0

general negation ¬C (¬C)I(a) = c(CI(a))

conjunction C ⊓ D (C ⊓ D)I(a) = t(CI(a), DI(a))

disjunction C ⊔ D (C ⊔ D)I(a) = u(CI(a), DI(a))

exists restriction ∃R.C (∃R.C)I(a) = supb∈ΔI{t(RI(a, b), CI(b))}
value restriction ∀R.C (∀R.C)I(a) = infb∈ΔI{J (RI(a, b), CI(b))}
inverse role R− (R−)I(b, a) = RI(a, b)

concept subsumption C ⊑ D CI(a) ≤ DI(a)

concept equivalence C ≡ D CI(a) = DI(a)

transitive roles Trans(R) ∀a, c ∈ ΔIRI(a, c) ≥ sup
b∈ΔI

{t(RI(a, b), RI(b, c))}

concept assertion (a : C)⊲⊳n CI(aI)⊲⊳n, ⊲⊳ ∈ {≥, >,≤, <}
role assertion ((a, b) : R)⊲⊳n RI(aI , bI)⊲⊳n

Table 1. Semantics of f-SI-concepts and f-SI-roles

In the following we restrict our attention only to witnessed (un)satisfiability.
As it is known in the fuzzy DL literature [4, 1] when allowing for general fuzzy
operators, the resulting f-DL might lack the finite model property. A model
is called witnessed if for (∀R.C)I(a) = n there is some b ∈ ΔI such that
J (RI(a, b), CI(b)) = n, i.e. an object that witnesses the degree of a in (∀R.C)I .

Moreover, we will use the notation fJ -SI, where J is a fuzzy implication,
to refer to a fuzzy DL that uses specific fuzzy operators. For example, fL-SI
denotes the fuzzy SI DL that uses the set of Lukasiewicz operators. On the
other hand with f∗-SI we refer to all the family of continuous fuzzy-SI.

4 Reasoning with Expressive Fuzzy DLs

In the current section we will investigate two of what we believe are the most
difficult problems in the development of a correct (sound and complete) reasoning
algorithm for expressive fuzzy DLs, that also allow for arbitrary continuous fuzzy
operators. Firstly, we investigate how to handle transitivity, i.e. how to extend
the ∀+-rule [5] in f∗-SI. Thus, our investigation has extends the one in [12]
for fKD-SI. Secondly, we also investigate on blocking conditions [5] and their
applicability in the fuzzy setting. The latter one is a very difficult issue and it
was the main reason that reasoning algorithms for expressive DLs using arbitrary
continuous norms have not been presented until now.

4.1 Transitivity and role hierarchies in Fuzzy Description Logics

Stoilos et al. [12] presented a reasoning algorithm for fKD-DLs that allow for
transitive roles by extending the classical results for handling transitivity [5].



More precisely, they show that in fKD-DLs if (∀R.C)I(aI) ≥ n and R transitive,
then (∀R.(∀R.C))I(aI) ≥ n. Using this property they proposed the ∀+-rule for
fKD-SI. In order to provide a similar rule for f∗-SI this result needs to be
extended. By using properties of fuzzy operators the following can be shown:

Lemma 1. If (∀R.C)I(a) ≥ n, Trans(R) then, (∀R.(∀R.C))I(a) ≥ n if the fuzzy
implications is either

– an R-implication, or
– an S-implications and the fuzzy triple 〈c, t, u〉 satisfies the De Morgan laws.

From this Lemma we can note that in the case of S-implications, the fuzzy triple
must additionally satisfy the De Morgan laws in order for the respective ∀+-rule
to work properly.

Furthermore, Stoilos et al. [12] show that in the case of fuzzy DLs, apart
from value restrictions a similar property holds for existential restrictions as
well. More precisely they show that in fKD-DLs if (∃R.C)I(a) ≤ n and R is
transitive, then (∃R.(∃R.C))I(a) ≤ n. It is straightforward to expect that a
similar property would generally hold for f∗-SI. Again, by using properties of
fuzzy operators we obtain the following:

Lemma 2. If (∃R.C)I(a) ≤ n and Trans(R) then, (∃R.(∃R.C))I(a) ≤ n holds.

As can be seen in this case no distinction between R- and S-implications has to
be made since the type of fuzzy implication now is irrelevant.

4.2 Blocking in Fuzzy Description Logics

In [12] the authors show how to extend the classical blocking condition to the
family of fKD-DLs with transitive roles. More precisely, the expansion is ter-
minated when two individuals on some path of roles are asserted to belong
to the same set of fuzzy assertions. They also show that this blocking condi-
tion is sufficient when reasoning with fKD-DLs since we can restrict our at-
tention only to a finite set of degrees. For example, from (a : C ⊓ D) ≥ 0.8
one can safely infer (a : C) ≥ 0.8 and (a : D) ≥ 0.8, since ⊓ is interpreted
as min and min(0.8, 0.8) ≥ 0.8. Finally, they show that the cycle creation
technique [5] can also be used: More precisely, to create a correct model from
(a : C) ≥ 0.8, (a : ∃R.C) ≥ 0.8, ((a, b) : R) ≥ 0.8, (b : C) ≥ 0.8, (b : ∃R.C) ≥ 0.8,
one can discard b (since it is blocked by a) and create the cycle RI(aI , aI) ≥ 0.8.

On the other hand, when reasoning with f∗-DLs one has to consider all possi-
ble membership degrees. More precisely, from (a : C ⊓D) ≥ 0.8 we cannot infer
(a : C) ≥ 0.8 and (a : D) ≥ 0.8, since for example under the product t-norm,
0.8 · 0.8 < 0.8. To the contrary we have to infer (a : C) ≥ n1 and (a : D) ≥ n2,
with the constraints t(n1, n2) ≥ 0.8 and 0 ≤ n1, n2 ≤ 1. Straccia and Bobillo
presented reasoning algorithms for fL-ALC and fP -ALCf that allow for GCIs [14,
2] revising the blocking condition from [12]. Roughly speaking, an individuals c
is blocked by a if they share fuzzy assertions with the same concepts and the



degrees are either both the same rational from [0, 1] or (variable) degree n from
[0, 1]. Similarly as before, if for some individual b, (b, c) : R ≥ n′, then in the
constructed model one has to create a new edge RI(bI , aI) = rnew that points
from bI to the node that blocks cI . At the current point we argue that this
condition alone might not be sufficient to show the correctness of the procedure.
More precisely, the constrains on the degrees that have been created by the ap-
plication of the algorithm might be such that no degree rnew could be selected
in order for all the constraints to be satisfied.

Suppose for example that in an application of the tableaux algorithm for
a specific KB the following assertions have been created for some individual
b: (b : C) ≥ n1, (b : ∃R.C) ≥ n2 and (b : ∀R.(∃R.C)) ≥ n3. Moreover, sup-
pose that there is also another node c with similar assertions, thus blocked
by b, and that the algorithm has computed the following values: n1 = 0.6,
n2 = 0.4, n3 = 0.3. To create a model we discard c and create the cycle
RI(bI , bI) = rnew. It is not difficult to see that, in the constructed model, if
we use the values that have been computed by the algorithm for degrees of
CI(bI), (∃R.C)I(bI) and (∀R.(∃R.C))I(bI), then no degree rnew can be found
that satisfies all constraints. More precisely, for (∀R.(∃R.C))I(bI) = 0.3 (and
considering R-implications)1 it should hold that: 0.3 = J (rnew, (∃R.C)I(bI)) =
sup{x | t(rnew, x) ≤ t(rnew, CI(bI))} = sup{x | x ≤ CI(bI)} = CI(bI) = 0.6,
which is absurd. Consequently, when we construct a model out of a set of blocked
fuzzy assertions in f∗-SI it might be the case that different degrees than the ones
computed by the algorithm have to be used. In the previous case the degrees
have to be such that n1 ≥ n3. Nevertheless, it is currently not clear whether such
new degrees can always be safely assumed. More precisely, it might the case that
the relation n3 < n1 is imposed by other assertions (constraints) in the ABox
and thus we cannot select other values in the construction of the model.

Intuitively, the only assertions that can affect the membership degrees of
individuals to concepts are those that exist originally in the ABox and that
contain specific values from [0, 1]. Taking this into consideration we propose
a more safe approach to blocking in f-SI. Intuitively, our blocking condition
is such that the at the point that blocking is allowed the set of inequalities is
sufficiently unconstrained in order to ensure that the correct membership degrees
in the constructed model can indeed be found. The formal condition that gives
this property is the depth of the node in the tree w.r.t. the nested quantifiers that
exist in our original KB. More precisely, if k is the largest number of consecutive
nested quantifiers in our KB, then the depth of the node should be at least k+1.

5 A Framework for Reasoning with Fuzzy SI

In the current section we will provide a general framework for reasoning in
f∗-SI. The fuzzy tableau we present here can be seen as an extension of the
fuzzy tableau presented in [12] for fKD-SI, in the sense that we do not make

1 Can also be shown for many S-implications.



specific assumptions about the fuzzy operators used but we use arbitrary ones.
One consequence is that we cannot make usual assumption, like for example that
concepts exist in their negation normal form (NNF). For a fuzzy concept D we
use sub(D) to denote the set of subconcepts of D. Finally, for a KB Σ we define:
sub(Σ) = ∪

(a:D)≥n∈A
sub(D) ∪

CvD∈T
sub(C) ∪ sub(D).

Definition 1. If Σ is an f∗-SI knowledge base, RA is the set of roles occurring
in A and R together with their inverses and IA is the set of individuals in A,
a fuzzy tableau T for Σ, is defined to be a quadruple (S, L, E, V) such that: S
is a set of elements, L : S × sub(Σ) → [0, 1] maps each element and concept,
that is a member of sub(Σ), to the membership degree of that element to the
concept, E : RA × S× S → [0, 1] maps each role of RA and pair of elements to
the membership degree of the pair to the role, and V : IA → S maps individuals
occurring in A to elements in S. For all s, t ∈ S, C,D ∈ sub(Σ), n, n1, n2 ∈ (0, 1]
and R ∈ RA, T satisfies:

1. L(s,⊥) = 0 and L(s,⊤) = 1 for all s ∈ S,
2. if L(s,¬C)⊲⊳n, then L(s, C)⊲⊳−n′, where n′⊲⊳−c(n),
3. if L(s, C ⊓ E) ≥ n then L(s, C) ≥ n1, L(s,E) ≥ n2 with t(n1, n2) ≥ n,
4. if L(s, C ⊔ E) ≤ n then L(s, C) ≤ n1, L(s,E) ≤ n2 with u(n1, n2) ≤ n,
5. if L(s, C ⊔ E) ≥ n then L(s, C) ≥ n1, L(s,E) ≥ n2 with u(n1, n2) ≥ n,
6. if L(s, C ⊓ E) ≤ n then L(s, C) ≤ n1, L(s,E) ≤ n2 with t(n1, n2) ≤ n,
7. if L(s,∀R.C) ≥ n, then E(R, 〈s, t〉) ≤ n1, L(t, C) ≥ n2 with J (n1, n2) ≥ n,
8. if L(s,∃R.C) ≤ n, then either E(R, 〈s, t〉) = n1 ≤ n or L(t, C) ≤ n2 with

t(n1, n2) ≤ n,
9. if L(s,∃R.C) ≥ n, then there exists t ∈ S such that E(R, 〈s, t〉) ≥ n1,

L(t, C) ≥ n2 with t(n1, n2) ≥ n,
10. if L(s,∀R.C) ≤ n, then there exists t ∈ S such that E(R, 〈s, t〉) ≤ n1,

L(t, C) ≤ n2 with t(n1, n2) ≤ n,
11. if L(s,∀R.C) ≥ n and Trans(R), then E(R, 〈s, t〉) ≤ n1 and L(t, ∀R.C) ≥ n2

with J (n1, n2) ≥ n,
12. if L(s,∃R.C) ≤ n and Trans(R), then E(R, 〈s, t〉) = n1 ≤ n or L(t,∀R.C) ≤

n2 with t(n1, n2) ≤ n,
13. E(R, 〈s, t〉) ≥ n iff E(Inv(R), 〈t, s〉) ≥ n,
14. if (a : C)⊲⊳n ∈ A, then 〈L(V(a), C)⊲⊳n,
15. if ((a, b) : R)⊲⊳n ∈ A, then E(R, 〈V(a),V(b)〉)⊲⊳n,
16. if C ⊑ D ∈ T , then for all s ∈ S, L(s, C) ≤ L(s, D).

Lemma 3. An f∗-SI KB Σ is satisfiable by a witnessed model, iff there exists
a fuzzy tableau for Σ.

5.1 An Algorithm for Constructing an f∗-SI Tableau

As it is obvious in order to decide f∗-SI knowledge base satisfiability a procedure
that constructs a tableau for a Σ has to be determined.



Definition 2 (Completion-Forest). A completion-forest F for an f∗-SI KB
Σ = 〈T ,A,R〉 is a collection of trees whose distinguished roots are arbitrarily
connected by edges and which also allows for a set of inequality constraints X .
Each node x is labelled with a set L(x) = {〈C, ⊲⊳, n〉}, where C ∈ sub(Σ), ⊲⊳ ∈ {≥
,≤} and n is either a degree from [0, 1] or a variable degree, i.e. a variable taking
values in [0, 1]. Each edge 〈x, y〉 is labelled with a set L(〈x, y〉) = {〈R, ⊲⊳, n〉},
where R ∈ RA are (possibly inverse) roles occurring in A.

If nodes x and y are connected by an edge 〈x, y〉 with 〈R, ⊲⊳, n〉 ∈ L(〈x, y〉),
then y is called an R⊲⊳n-successor of x and x is called an R⊲⊳n-predecessor of y.
If y is an R⊲⊳n-successor or an Inv(R)⊲⊳n-predecessor of x, then y is called an
R⊲⊳n-neighbour of x. As usual, ancestor is the transitive closure of predecessor.

A node x is blocked iff it is not a root node and it is either directly or
indirectly blocked. A node x is directly blocked iff none of its ancestors are
blocked, it has an ancestor y such that L(x) and L(y) are equivalent, written
L(x) ≈ L(y), i.e. 〈Ci, ⊲⊳, ni〉 ∈ L(x) iff 〈Ci, ⊲⊳, n′

i〉 ∈ L(y), for all 1 ≤ i ≤ k and
both ni and n′

i are variable degrees or the same rational from (0, 1] and the level
of y is greater than the largest number of consecutive nested quantifiers found in
concepts of Σ. Finally, a node x is indirectly blocked iff one of its predecessor
is blocked.

A completion-forest F is said to contain a clash iff the system X of inequa-
tions has no solution, or for some node x, L(x) contains one of the following
triples 〈⊥,≥, n〉, 〈⊤,≤, n〉, with n > 0 or n < 1, respectively.

For an f∗-SI KB Σ = 〈T ,A,R〉, the algorithm initialises a forest F to
contain (i) a root node xai , for each individual ai ∈ IA occurring in A, la-
belled with L(x) such that 〈Ci, ⊲⊳, n〉 ∈ L(xai) for each assertion of the form
(ai : Ci)⊲⊳n ∈ A, (ii) an edge 〈xai , xaj 〉, for each assertion ((ai, aj) : Ri)⊲⊳n ∈ A,
labelled with L(〈xai , xaj 〉) such that 〈Ri, ⊲⊳, n〉 ∈ L(〈xai , xaj 〉), and (iii) a system
of inequations X to contain u(xai

,xaj
):R⊲⊳n for each ((ai, aj) : Ri)⊲⊳n ∈ A. Fur-

thermore, the algorithm expands R by adding an axiom Trans(Inv(R)) for each
Trans(R) ∈ R. F is then expanded by repeatedly applying the completion rules
from Table 2 stopping when none of them is applicable (saying that F is com-
plete) and adding necessary constraints 0 ≤ n ≤ 1 for each new degree n that
is created during expansion, as well as constraints 0 < ɛ ≤ 1 for any degree ɛ
added due to normalization. The application of expansion rules adds inequalities
in X which after F is complete should be solved by a suitable solution method,
computing a value for each variable degree ua:A, u(a,b):R and n that appears in
X , respectively. The algorithm answers ‘Σ is satisfiable’ iff the completion rules
can be applied in such a way that they yield a complete and clash-free completion-
forest (a completion-forest that is both complete and no clash condition appears),
and ‘Σ is unsatisfiable’ otherwise.

Lemma 4. Let Σ be an f∗-SI KB. Then, (i) when started for Σ the tableaux
algorithm consisting of the expansion rules of Table 2 terminates; (ii) Σ has a
fuzzy tableau if and only if the expansion rules of Table 2 can be applied to Σ
such that they yield a complete and clash-free augmented completion forest.



Rule Description
eq if 1. 〈A, ⊲⊳, n〉 ∈ L(x) (〈R, ⊲⊳, n〉 ∈ L(〈x, y〉)) and

2. ux:A⊲⊳n 6∈ X (u(x,y):R⊲⊳n 6∈ X )
then X → X ∪ {ux:A⊲⊳n} (X → X ∪ {u(x,y):R⊲⊳n})

¬ if 1. 〈¬C, ⊲⊳, n〉 ∈ L(x)

2. and 〈C, ⊲⊳−, n′〉 6∈ L(x) with n′ ≤ c(n) ∈ X
then L(x) → L(x) ∪ {〈C, ⊲⊳−, n′〉} and X → X ∪ {n′⊲⊳−c(n)}

u≥ if 1. 〈C1 u C2,≥, n〉 ∈ L(x), x is not indirectly blocked, and
2. {〈C1,≥, n1〉, 〈C2,≥, n1〉} * L(x) with t(n1, n2) ≥ n ∈ X

then L(x) → L(x) ∪ {〈C1,≥, n1〉, 〈C2,≥, n2〉} and X → X ∪ {t(n1, n2) ≥ n}
t≤ dually to the u≥-rule, i.e. replace ≥ by ≤ and the t-norm (t) with a t-conorm u.
t≥ if 1. 〈C1 t C2,≥, n〉 ∈ L(x), x is not indirectly blocked, and

2. {〈C1,≥, n1〉, 〈C2,≥, n2〉} ∩ L(x) = ∅ with u(n1, n2) ≥ n ∈ X
then L(x) → L(x) ∪ {C} for some C ∈ {〈C1,≥, n1〉, 〈C2,≥, n2〉}

and X → X ∪ {u(n1, n2) ≥ n}
u≤ dually to the t≥-rule, i.e. replace ≥ by ≤ and t with u.
∃≥ if 1. 〈∃R.C,≥, n〉 ∈ L(x), x is not blocked, and

2. x has no R≥n1 -neighbour with 〈C,≥, n2〉 ∈ L(y) and t(n1, n2) ≥ n ∈ X
then create a new node y with L(〈x, y〉) = {〈R,≥, n1〉}, L(y) = {〈C,≥, n2〉},

and X → X ∪ {t(n1, n2) ≥ n}
∀≤ dually to the ∃≥-rule, i.e. replace ≥ by ≤ (except for 〈R,≥, n1〉) and t with J .
∀≥ if 1. 〈∀R.C,≥, n〉 ∈ L(x), x is not indirectly blocked, and

2. x has an R≥n′ -neighbour y with 〈C,≥, n2〉 6∈ L(y) and
{u(x,y):R ≤ n1,J (n1, n2) ≥ n} ⊆ X

then L(y) → L(y) ∪ {〈C,≥, n2〉}, and X → X ∪ {u(x,y):R ≤ n1,J (n1, n2) ≥ n}
∃≤ if 1. 〈∃R.C,≤, n〉 ∈ L(x), x is not indirectly blocked,

2. x has an R≥n1 -neighbour y with 〈C,≤, n〉 6∈ L(y), t(n1, n2) ≤ n ∈ X and
then L(y) → L(y) ∪ {〈C,≤, n2〉}, and X → X ∪ {t(n1, n2) ≤ n}

∀+ if 1. 〈∀R.C,≥, n〉 ∈ L(x), with Trans(R), x is not indirectly blocked, and
2. x has a R≥n′ -neighbour y with, 〈∀R.C,≥, n2〉 6∈ L(y), and

{u(x,y):R ≤ n1,J (n1, n2) ≥ n} ⊆ X
then L(y) → L(y) ∪ {〈∀R.C,≥, n〉}, and X → X ∪ {u(x,y):R ≤ n1,J (n1, n2) ≥ n}

∃+ if 1. 〈∃R.C,≤, n〉 ∈ L(x), with Trans(R), x is not indirectly blocked,
2. x has a R≥n1 -neighbour y with, 〈∃R.C,≤, n2〉 6∈ L(y), t(n1, n2) ≤ n ∈ X and

then L(y) → L(y) ∪ {〈∃R.C,≤, n2〉}, and X → X ∪ {t(n1, n2) ≤ n}
v if 1. C v D ∈ T , x is not indirectly blocked, and

2. {〈C,≤, n1〉, 〈D,≥, n2〉} * L(x), with n1 ≤ n2 ∈ X
then L(x) → L(x) ∪ {〈C,≤, n1〉, 〈D,≥, n2〉} and X → X ∪ {n1 ≤ n2}

Table 2. Tableaux expansion rules for f∗-SI

5.2 On the Decidability of Continuous Fuzzy DLs

As is if obvious from the above, the application of expansion rules creates a
system of inequations. Straccia [14] proposed the use of optimisation techniques
for solving such a system:

Definition 3. An optimization problem can be formalized as follows:

minimize f(x)
subject to gi(x) ≤ bi, 1 ≤ i ≤ m

where x = (x1, . . . , xn), xi ∈ R is a vector of variables, f is called the objective
function and gi are the constraint functions.

Depending on the form of f and gi, as well as the constraints imposed on x we
obtain different types of optimization problems. If for all xi, a ≤ xi ≤ b holds,
then the problem is called bounded ; if xi ∈ Z it is called integer ; If xi ∈ Z, xj ∈ R,



with 1 ≤ i 6= j ≤ m, the problem is called mixed integer. On the other hand
depending on the form of f, gi we obtain a (i) linear programming problem, if
f, gi are linear functions, (ii) quadratic, (iii) convex if some gi is an arbitrary non-
quadratic function but still convex, or (iv) non-convex. These characterizations
are essential in order to determine the difficulty of the problem. For example, the
Simplex algorithm [9] is a very successful method for solving mixed integer linear
systems. On the other hand for arbitrary functions the problem becomes highly
complex and usually one requires that all gi are convex in order to guarantee
that the method will reach a global minimum.

Straccia [14] showed that reasoning in fL-ALC and fKD-ALC can be for-
malized as a bounded Mixed Integer Linear Programming (bMILP) problem
[10]. This is because, for example, under the Lukasiewicz t-norm from t(x, y) =
max(0, x+y−1) ≥ n we (roughly) obtain a linear constraint x+y−1 ≥ n together
with some integer contrains which analyze the “max ” function. Subsequently,
Straccia and Bobillo [2] showed that reasoning in fP -ALC could be formalized as
a bounded Mixed Integer Quadratic Programming (bMIQP) problem [10]. These
methods can still be used in our framework as long as the norm operators used
can be analyzed to form a bMILP or a bMIQP problem. Moreover, all inference
problems can be reduced to KB (un)satisfiability as follows:

C is n-satisfiable w.r.t. Σ iff min x = 0 under 〈T ,R,A ∪ {(a : C) ≥ n}〉

C ⊑ D w.r.t. Σ iff min x = 0 under 〈T ,R,A ∪ {(a : C) ≥ x1,
(a : D) ≤ x2}〉 and X = {x ≥ x1 − x2}.

Σ |= a : C ≥ n iff min x under 〈T ,R,A ∪ {a : C ≤ n − ɛ}〉, where
ɛ is an arbitrary small degree, be solved

glb(Σ, a : C) = n iff min x = n under 〈T ,R,A ∪ {a : C ≤ x}〉

Consequently, we have the following:

Theorem 1 (Decidability of fL-SI and fP -SI). The tableaux algorithm
together with a bMILP (resp. bMIQP) solver consist of a decision procedure for
the inference problems of fL-SI (resp. fP -SI).

Let fRei-SI be the fuzzy SI DL that uses the Lukasiewicz negation, the
product t-norm the probabilistic sum and the Reichenbach S-implication.

Theorem 2 (Decidability of fRei-SI). The tableaux algorithm together with
a bMIQP solver consist of a decision procedure for the inference problems of
fRei-SI.

Nevertheless, in the current paper we have given an overall framework for
reasoning in expressive fuzzy DLs extended with arbitrary continuous t-norms.
Unfortunately, most norm functions have a very complex form which cannot be
analyzed into linear or quadratic functions. Consider for example the family of
Frank t-norms: t(x, y) = logs

(
1 + (sx−1)(sy−1)

s−1

)
, s > 0, s 6= 1. As we can note

the parameters appear as exponents inside a logarithm.



Operator Weber Yu Schweizer & Sklar
complement cL cL cL

t-norm max
“

0, x+y+λxy−1
1+λ

”

max[0, (1 + λ)(x + y − 1) − λxy] max[0, (x2 + y2 − 1)
1
2 ]

t-conorm min
“

1, x + y − λ
1+λ xy

”

min (1, x + y + λxy) 1-max[0, ((1 − x)2 + (1 − y)2 − 1)
1
2 ]

S-impl. min(1, 1 − x + y
1+λ + λxy

1+λ ) min[1, 1 − x + (λ + 1)y − λxy] 1-max[0, (x2 + (1 − y)2 − 1)
1
2 ]

R-impl. min(1,
1−x+(1+λ)y

1+λx ) min[1,
(1+λ)(1−x)+y

1+λ−λx ] min[1, (1 − x2 + y2)
1
2 ]

Table 3. The fuzzy logic resulting by the Weber, Yu and Schweizer & Sklar operators.

Nevertheless, there are still some norms or restrictions of them whose function
can be analyzed into mixed integer linear constraints. Table 3 summarizes a few
that we were able to identify. Note that different fuzzy implications define a
different fuzzy DL. Consequently, we have the following results.

Theorem 3 (Decidability of fWS
-SI, fWR

-SI, fYS
-SI, fYR

-SI, fSS2
S
-SI

and fSS2
R
-SI). The tableaux algorithm together with a bMIQP solver consist

of a decision procedure for the inference problems of fWR
-SI, fWS

-SI, fYR
-SI,

fYS
-SI, fSS2

S
-SI and fSS2

R
-SI.

6 Conclusions

In the current paper we attempt to tackle with the problem of reasoning with ex-
pressive fuzzy DLs that used arbitrary fuzzy operators. To accomplish our goals
firstly, we have investigated the properties of the semantics of transitive roles
when these are used in value and existential restrictions. This greatly extends
the results that have been presented in [12] for transitivity in fuzzy DLs which
use the min−max operators. Secondly, we have dealt with the non-termination
problem. We have seen that finding a correct and sufficient blocking condition
for such fuzzy DLs is considerably difficult, which justifies the fact that reasoning
with expressive fuzzy DLs was an open problem for many years. We have ana-
lyzed these difficulties and have proposed a safe blocking condition. Nevertheless,
it is still an open question whether a more relaxed condition can indeed be em-
ployed. Subsequently, using our investigations we developed a tableaux reasoning
algorithm for deciding the satisfiability problem for an f∗-SI KB. Subsequently,
we prove the soundness, completeness and termination of the algorithm. Finally,
we show how one can use this algorithm to provide practical reasoning by us-
ing bMILP and bMIQP solvers as suggested in [14, 2]. Overall, we have proved
decidability of the fuzzy DLs fL-SI, fP -SI, fWR -SI, fWS -SI, fYR -SI, fYS -SI,
fRei-SI, fSS2

S
-SI and fSS2

R
-SI.
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