Fair Cycle Detection using Description Logic Reasoning

Shoham Ben-David Jeffrey Pound, Richard Treflet, Dmitry TsarkoV, Grant
Weddell

1. David R. Cheriton School of Computer Science, University of Waterloo
2. School of Computer Science, University of Manchester

1 Introduction

Model checking ([12, 20], c.f.[11]) is a technique for verifying finite-state systems, that
has been proven to be very effective in the verification of hardware and software pro-
grams. In model checking, a mod&f, given as a set of state variabl&sand their
next-state relations, is verified against a temporal logic formul/henyp holds on all
computation paths aif we write M |= ¢. The most commonly used temporal logics
are Linear Temporal Logic (LTL) [19] and Computation Tree Logic (CTL) [12].

Temporal logic specifications, whether given in LTL or in CTL, are roughly divided
into two basic categories [16, 1]: formulas that spesiifetyproperties and formulas
that specifylivenessproperties. Informally, a safety formula states that “something)
never happens”, and a violation of it can be shown by a finite prefix of a computation
path, reaching a bad state. A liveness formula asserts that “somejbmaiyvill even-
tually happen”, and a counterexample for it must contain an infinite path where a good
state never appears ¢gcle in case of a finite model). A simple example of a liveness
property is the CTL formulaAFp asserting that the propositignmust appear even-
tually on every computation path of the model. In many cases, a liveness fogmula
is accompanied by a set tdirness constraintsBoolean events that must appear infi-
nitely often on a path to make fair. When fairness constraints are presenghould
only be verified on fair paths, and a counterexample should demonsfeiteycle an
infinite computation path on which fails to hold, but each fairness constraint appears
infinitely often.

Symbolic model checking is performed using two main approaches. The first is
based on BDDs (e.g. SMV [17]), and the second is based on satisfiability solving (SAT)
technology [6]. For both methods, liveness formulas are considered more difficult to
verify than safety ones. Special attention has been devoted to detecting fair cycles in
recent years, both using BDDs methods [7, 8], and using SAT-based techniques [2, 14].

We consider a different approach for fair cycle detection, that makes use of Descrip-
tion Logic (DL) technology. We cast a modil and the negation of the given liveness
specificationy as a satisfiability query in DL, such that if an interpretation is found, it
indicates an error il/. While a model and a liveness formula can be easily encoded as
a terminology inALC, this is not the case with fairness constraints. In order to express
fairness, more expressive dialects are needed (see, for example [15, 10]). We propose
a modification to thedLC reasoning technique based on tableau construction, that al-
lows us to detect a fair cycle. When constructing a tableaux, cycles are represented by
blocking A nodez is said to be blocked by a nogef there exists a path of nodes from
y to z, and the label of is a subset of the label gf Given a cycle in the tableau, and

a fairness constraiiC, we attempt to make the cycle fair by addiRg to the label of
a node in the cycle. To accomplish this, we extend the tableaux algorithm with a new
rule that we call dairness rule We show that our method is sound and terminating, and
discuss how completeness can be achieved.
We have implemented our method in the Description Logic readea@ii++ [22],
and we present experimental results comparing our method with runs using the model
checker VIS [9]. Although running on a few examples only, the results demonstrate the
potential of our method, as they significantly outperform VIS on some of the examples.
The rest of the paper is organized as follows. In the next section we give the neces-
sary definitions, and in Section 3 we present the translation of a liveness model checking
problem into a DL satisfiability query. Section 4 is the main section of the paper, where
we present our algorithm for fair cycle detection. Section 5 presents experimental re-
sults, and Section 6 concludes the paper.

2 Background and Definitions
2.1 Description Logic

Definition 1 (Description Logic ALC) LetNC andNR be disjoint sets céitomic con-
cepts{A1, Ay, ...} and atomic roles{ R, R, ...} respectively. The set abncepts
C is the smallest set includingC such that ifC, D € C and R € NR, then so are
-C,CnDand3R.C.

Additional concepts are defined as syntactic sugaring of those above:
eCUD=—=(-Cn-D) eVR.C=-3JR.-~Cand e T = AL —A for some atomic
conceptA.

A general concept inclusiofGCI) is an expression of the for = D, where
C andD are arbitrary concepts. ferminology(or TBox) 7 consists of a finite set of
concept inclusions.

The semanticof expressions is defined with respect to a strucfire (A%, -7),
called aninterpretation where AZ is a non-empty set of individuals, arfg) is an
interpretation function that maps atomic concept® a subset ofA” and atomic roles
R to a subset ofA” x AT. The interpretation function is extended to arbitrary concepts
in a way that satisfies each of the following:

- (CnD)f =0*TnD?,
— (AR.C)E ={e € AT : J(e,¢’) € RT s.t.¢’ € CT}, and
- (=C)F = AT\ C7.

An interpretatiorn satisfies a GC{C C D) if CZ C DZ, and a TBox7 if it satisfies
each concept inclusion ih.

Theconcept satisfiability probleris to determine, for a given TBoX and concept
C, if there exists an interpretatidh that satisfies” and for whichC? is non-empty,

written7 =4 C.

Tableaux Algorithms for Concept Satisfiability in ALC. The tableaux algorithm
works on a labeled tree, calledcampletion tregethat has a close correspondence to
an interpretation. For a conceft we write nnf(C') to denote the Negation Normal

Form (NNF) ofC, write -C to denote the NNF of:C, and writesub(C') to denote the
set of all subconcepts @ (including C) and their negation. For a TBAk we define
sub(7) = U ccpyer sub(C) Usub(D).

Definition 2 Let7 be anALC TBox andC is a concept in NNF. AZompletion tree
for C' with respect tdf” is a directed graplG = (V, E, L) where each node € V is
labelled with a sef.(z) C sub(7) Usub(C') and each edgér, y) € E is labelled with
a role namel ({(z,y)) € Ry .

If (x,y) € E, theny is called asuccessoof = and x is called apredecessoof y.
If, in addition, R = L({x,y)), theny (x) is called anR-successofR-predecessprof
z (y). Ancestoris the transitive closure of predecessor, atescendaris the transitive
closure of successor.

G is said to contain alashif for someA € NC and noder of G, {A, - A} C L(z).

The tableaux algorithm for checking concept satisfiability’ofv.r.t. 7 starts with
the completion tre&s = ({ro}, 0, L) wherel(rg) = {nnf(C)}. G is then expanded
by repeatedly applying the expansion rules given in Figure 1, stopping if a clash occurs.
In order to ensure termination we need to restrict the creation of new nodes in the

C-rule:if 1.C; C Cy € 7, and
2.{~C1,nnf(C2)} NL(z) =0
then setl (x) = L(z) U {C} for someC € {-C1,nnf(C2)}
M-rule: if 1.C1 N C> € L(z), and
2. {01, CQ} g L(l’)
then setl(z) = L(x) U {C1, C2}

U-rule: if 1.C1 U Cs € L(x), and
2.{C1,Co}NL(z) =10
then setl (z) = L(z) U {C} for someC € {C1,C>}
F-rule: if 1.3R.C € L(z), x is not blocked, and
2.z has noR-successoy with C' € L(y),
then create a new nodewith L ((z,y)) = R
andL(y) = {C}
V-rule: if 1.VR.C € L(x), and
2. there is arR-successoy of z such thatC' ¢ L(y)
then setl(y) = L(y) U {C}

Fig. 1. Tableaux expansion rules fot£C

completion tree. The notion dflockingis used for this purpose.

Definition 3 (Blocking) A nodez is label blockedif it has an ancestor; such that
L(xz) C L(y). Inthis case, we say thgtblocksz. A node islockedif either it is label
blocked or its predecessor is blocked.

When nodes in a branch of the completion tree resemble ancestor nodes, a block is
established to ensure that further applications-ofile are not applied to the blocked
nodes (and therefore ensure termination).

Definition 4 A completion tredG is called completeif no expansion rule can be ap-
plied. G is clash-fredf no node contains a clash.

A tableaux algorithnfor checking concept satisfiability of adLC conceptC w.r.t.
a TBox 7 builds a completion tree fo€. If a complete and clash-free tree can be
obtained, the algorithm returns “satisfiable”; otherwise, if it was unable to build such a
tree, it returns “unsatisfiable”.

Theorem 5. (decision procedure, [21]) The tableaux algorithm always terminates for
a givenALC conceptC' and TBox7Z', and returns “satisfiable” iffC' is satisfiable w.r.t.
a TBox7.

2.2 Model Checking

Definition 6 (Kripke Structure) LetV be a set of Boolean variables.Kxipke struc-
ture M overV is a quadrupleM = (S, I, R, L) where

1. Sis afinite set of states.

2. I C Sis the set of initial states.

3. R C S x Sis atransition relation that must be total, that is, for every state S
there is a state’ € S such thatR(s, s').

4. L: S — 2V is afunction that labels each state with the set of variables true in that
state.

We view each state as a truth assignment to the variable¥inWe view a set of states
as a Boolean function ovdr, characterizing the set. For example, the set of initial
states,/, is considered as a Boolean function oVerThus, if a states belongs tol,
we write s |= I. Similarly, if v; € L(s) we write s |= v;, and ifv; € L(s) we write
s = —w;.

In practice, the full Kripke structure of a system is not explicitly given. Rather, a
model is described by a set of Boolean variabifes= {vy, ..., v, }, their initial values
and their next-state assignments. The definition we give below is an abstraction of the
input language oMV [17].

Definition 7 (Model Description) LetV = {vy, ..., v, } be a set of Boolean variables.
Atuple MD = (Iyp,[{c1,€}), ... {cn,ch,)]) IS @ Model Descriptionover V' where
Iyp, ¢, ¢, are Boolean expressions ovEr

The semantics of a model description defines a Kripke strudtlye = (S, Iy, R, L),
whereS =2V, L(s) = s, Iy = {s|s = Iyp},andR = {(s,s') : V1 <i<n, s = ¢;
impliess’ = —w; ands = ¢; A —¢; impliess’ | v;}.

Intuitively, a pair{c;, ¢;) defines the next-state assignment of variabl@ terms of the
current values of vy, ..., v, }. That s,

0 if C;
next@;) =} 1 if ¢, A —¢;
{0,1} otherwise

where the assignme#0, 1} indicates that for every possible next-state value of vari-
ablesvy, ...v;_1,v;41, ..., v, there must exist a next-state with= 1, and a next-state

Computation Tree Logic (CTL) [12]. Given a finite set AP of atomic propositions,
formulas of CTL are recursively defined as follows:

— Every atomic proposition is a CTL formula.
o epAY o AXp
EXe e AlpUy] o E[pUy)]

Additional operators are defined as syntactic sugaring of those above:
o AFp = Aftrue Uy] e EFp = Eftrue Uy]
e AGp = —Eftrue U-p] o EGyp = —Aftrue U—y]

The formal semantics of a CTL formula are defined with respect to a Kripke struc-
ture M = (S,I, R, L) over a set of variable$ = {vy,...,v;}. A path in M is an
infinite sequence of statésy, s1, ...) such that each successive pair of st§tess; 1)
is an element oR. The notationM, s = ¢, means that the formula is true in states
of the modelM .

- M,sEpiff skEp

— M,s = —oiff M,sl~

- M,sEpAYiff M,slEqpandM,s =1

— M, so = AXp iff for all paths(sg, s1,...), M,s1 Ep

— M, sy = EXpiff there exists a patiiso, s1,...), M,s1 = p

— M, s¢ = AlpUy] iff for all paths (s, s1, ...), there exists such thatM, s; = ¢
andforall0 < j <i,M,s; =

— M, so = E[pUy] iff there exists a patlfso, s1, ...), and there exist$ such that
M,s; =y andforalld <j<iM,s; =@

We say that a Kripke structu®/ = (S, I, R, L) satisfies a CTL formule (M E ¢)
if there exists a state; such thats; = I andM, s; = .

— If ¢ andy are CTL formulas then so aré:

Linear Temporal Logic (LTL) [19]. Linear temporal logic uses the same temporal
operators as CTL, but has no path quantifiers. An LTL formula is thus evaluated with
respect to a given path rather than a Kripke structure. A formauksaid to hold in a
Kripke structureM if it holds along all paths that start from an initial stateldt

Fairness constraints and LTL model checking.Different definitions of fairness con-
straints exist in the literature [13]. The fairness definition used for model checking can
be presented as the LTL formuldp, describing a fair path as one on which the propo-
sitionp occurs infinitely often (or at least once in a loop).

Model checking of an LTL formula is commonly done by first building aiihi
automatonA-,, that accepts-p [23]. The composition ofd—, (presented as a state-
machine) with the model/ (denotedA-, || M) should then be empty: a path, if found,
satisfies—p, and therefore demonstrate a counterexample-fddote that the accep-
tance condition of a Bchi automaton requires that an accepting state is visited infi-
nitely often. Translated into model checking notation, the forntiffalse) is verified
on A-,||M, with fairness constraints that are th&dhi acceptance conditions. Thus
model checking of any LTL formula is reduced to model checking of a sirfRplor-
mula on fair paths.

Note that the LTL formuld&p and the CTL formula\Fp are equivalent. We some-
times use the CTL notation, since the description of an erroneous gé&thpj is not
possible in LTL.

2.3 Model description as a DL terminology

We show how a model description can be encoded as a TBox over the Description
Logic dialect ALC. This translation is taken from [3], where it was used for bounded
model checking of safety formulas. In Section 3 we demonstrate how unbounded model
checking of liveness formulas can be achieved.

LetMD = (I,[{c1,c}), ..., {cn, c,)]) be amodel description for the modely,p =
(S,I,R,L),overV = {vy,...,v,}. We generate a TBdX,,p, linear in the size o/ D.
For each variable;; € V we introduce one primitive concept, whereV; denotes
v; = 1 and—V; denotesy; = 0. We introduce one primitive rol& corresponding
to the transition relation of the model. Given a Boolean expresgiomer the state
variablesvy, ..., v, we denoteD(p) the concepP derived fromp by replacing each;
in p with V;, andv, A, = with M, L, — respectively. For example,if= (—v; A vz), then
D(p) = (_\Vl |_|V2).

We define the concef$, to represent the set of initial stat&: = D(7). We define
C = D(¢;), C. = D(c}), forall 1 < i < n. We then introduce concept inclusions

K2

describing the model: for each pédir;, ;) we introduce the inclusions

C C VRV
(-GiNC) C YRV,

The first inclusion ensures that in any interpretation, an individual that belofigstm
be related byr only to individuals that do not belong ¥. As we show in the sequel,
individuals correspond to states in the modi&l;p. This means that whet) holds in a
states, all neighbor states of must havev; = 0. The above inclusions thus restrict the
role Rto agree with the definition ak in the model description.

The TBox built above describes the model only, and does not consider the specifi-
cation to be verified. Legal interpretations include for example the empty interpretation,
and are not necessarily useful for verification. In order to use DL reasoning for model
checking we need to add axioms to the terminology, to stand for the specification. The
method we describe below adds concept inclusions that descrirecarin the model.
Interpretations will therefore be legal sub-models that demonstrate an erroneous behav-
ior.

3 Model Checking Liveness Formulas using DL

We first consider a liveness formula of the tydE(p), with p being a Boolean expres-
sion. For our method to work, we need to defineuggypath, that is, a path on which
p never happens. We thus look for a representatideGif-p).

The following is a known equation [12], that we use for our translation into DL.:

EG(—p) = —-p A EX(EG(—p)) 1)

Let MD = (I,[{c1,c}), ..., {en, cl,)]) be a model description for the model,,p =
(S,I,R,L) overV = {uy,...,v,}, and letTyp be the terminology built for it as
described in Section 2.3. Let = AF(p) be the formula to be verified, with being

a Boolean expression over the variablgs...,v,. Let P= D(p) the corresponding

concept. We introduce a new concept callg@notP, and add the following concept
inclusion to7p:
EGnotP C —P M dREGhotP (2)

Note that the expressiaiR.C can be seen as taking one step throRgand thus corre-
sponds, in a sense, to the CTL expresdiiC).

Let 7,,, be the terminology we get by adding Equation (2¥t@p. We define the
conceptC, by C, C Sy M EGnotP. In order to verifyp, we now check whethet,, is

satisfiable with respect to our terminolodj,, =4 C, ? A positive answer from the
DL reasoning tool will be accompanied by an interpretatioriify;, in which C,, is not
empty. This interpretation can serve as a withedsG6-p), or as a counterexample to
AF(p). The following proposition states our result formally.

Proposition 8. Myp = ¢ ifand only if 7}, =4 C,.

The proof can be found in [4].

Example. Consider a model of a buggy three-bit counter, for which the least and most

significant bits behave as expected, but the middle bit has a bug: when its current value
is 0, it may assume any value in the next state, and when its current value is 1 it keeps
its value in the next state. This behavior can be described as a model description (using

Sy C (—|V1 M =Va I —|V3) J‘
Vi C VR-V; @\
Vi C YRV, @
Vo C VRV,
(ViMVeMVs) C VRAVs i o
(—\V3 M (—\V1 L _\VQ)) C VR—V;3
(ViMVeM—Vs) C VRVs I I
(V3 M (—|V1 (] —|V2)) C VRV;3 @ o

Fig. 2. Terminology and Kirpke Structure for “Counter”

T for vy V —wy and L for v; A —v1) in the following way.

Counter = (I, [<’U1, T>, <J_, ’U2>, <(1}1 A vy A ’Ug) vV ("’Ug A (_\1}1 V _"Ug)), T>]) with
I = —v; A —we A —ws. Figure 2 describes the Kripke structure @wounter . Note that
in the figurev; is the right-most bit.

The description of the model as a TB@gqunter Over.ALC has three concepts
V3, V3,V and one roldR. The concept inclusions féicounter are given in Figure 2.
For convenience we broke the concept inclusions describing the behawvipmib two
parts. Note that there is only one concept inclusion describing the behawgy sifice
it is free to change when its value is 0.

Let the formula to be verified bg = AF(v; A —vs A v3), asserting that the state
(101) should be reachable on every path. Translated into DL, we add the following

inclusion toZ¢unier (Presented in Fig. 2):
EGnotP C (=V; UV, U —V3) M3IREGNOtP

and defineC, C Sy MEGNotP . Note that since the formula does not hold in the model,

running the DL querycounter =ai C, is €xpected to be satisfiable. A possible model
(or counterexample to the formula) could be the loop (000),(001),(000)...

As discussed in Section 2.2, liveness formulas are usually accompanied by one or
more fairness constraints, and need to be verified on fair paths only. In our example, let
the fairness constraint b&irness (v, A2 Aws), asserting that only paths on which
the state (111) occurs infinitely often should be considered. The loop (000),(001),(000)
is not a fair counterexample, and a different path should be sought . A fair counterex-
ample will then be (000),(011),(110),(111),(010),(011). In the section below we discuss
how fairness can be implemented in DL.

4 Realizing Fairness in Tableaux Reasoning

While a model and a liveness formula can be encoded as a terminologyl@éktthis

is not the case for a fairness proposition. If, as in our case, the proposition is mapped to
a primitive conceptC and we are using tableaux reasoning, then no bound is known
a-priori on the depth in which the concepf may appear in a completion tree. Thus
expressing the existence of a fairness condition can be seeadsbility, which can

not be expressed in first order logic.

We propose a modification to the tableaux procedure to support fairness. Our proce-
dure is both terminating and sound: if a fair cycle is found, it is a correct one. However,
the procedure is not complete, that is, there are cases where a fair cycle exits, but our
procedure fails to find it. We show that by an iterative application of the algorithm,
completeness can also be achieved. In the remainder of this section we discuss the the-
oretical and implementation considerations for realizing fairness in DL reasoning.

Recall from Section 2.2 that fairness constraints in model checking are variables
that should be satisfied over all cycles in the model. In tableaux reasoning, a model is
represented by a completion tree, and cycles in the model are represented by blocked
nodes. If node: is blocked by the node, then there exists a path of nodes ..., =,
such that® ((zg, z1)) = Ro, ..., L({z,,x)) = R, andR; are the roles occurring in a
terminology. This represents the blocking lo@p, . .., z,)*.

In order to implement reasoning with fairness, we need to reject those completion
trees that corresponds to unfair computations.H&be a fairness constraint. Comple-
tion treeG is unfair w.r.t. FC if there is loop(zy, . . ., z,)* such thatC ¢ L(z;) for
all 0 < ¢ < n. G is calledfair modelof a conceptC w.r.t. fairness constrairitiC if G
is a model ofC which is not unfair w.r.tFC.

Modifying Tableaux to Support Fairness Our approach to implementing fairness is

to build a complete and clash-free completion tree and, if it is unfair, to attempt to make
it fair by adding the fairness constraint to the label of some node involved in a cycle.
To accomplish this, the tableaux algorithm is extended with the new rule illustrated in
Figure 3. (Note that this new rule must also have a lower priority than all existing rules.)

fairness-rule: if 1.z is a node blocked by, (zo, ..., xn)" is a cycle corresponding to,
2.FCis a fairness constraint such that for every < : <n,FC ¢ L(x;)
then set(z;) = L(z;) U{FC} forsomei: 0 <i<mn

Fig. 3. Expansion rule for fairness

It might be the case that there is no fair model. For example, the coldtépt
satisfiable w.r.t. TBoxz; = {C' T 3IR.C N —~B} without any fairness constraint but
not satisfiable w.r.t. fairness constraii = B. Indeed, every node of the completion
tree forC will be labeled with—B, and it is not possible to ad#& to a cycle without a
resulting clash.

Theorem 9. The tableaux algorithm witlfairness-rule terminates and is sound (if a
complete clash-free fair completion tree 1@ris found therC is satisfiable).

Proof Outline Soundness is straightforward. To prove termination, assume WLOG that
the completion tree is a single path. There are three cases to consider after a first ap-
plication of fairness-rule to a given blocking loop: (1) it is subsequently possible
to compute a complete clash-free fair completion tree before a second application of
fairness-rule, (2) a clash occurs before a second application of theness-rule, or
(3) a subsequent application péirness-rule is required. Both cases (1) and (2) lead to
termination. Case (3) implies that the addition of&into a label inside the cycle breaks
the blocking condition and leads to a new cycle. The algorithm therefore proceeds by
adding anFC inside the next loop. Again, there are three possible outcomes, with two
resulting in termination. Ultimately, there is a sequence of case (3) that transpire for
which adding arFC forces unblocking the last node and moving the blocking loop for-
ward. However, after a finite number of occurrences of case (3), there must eventually
be two nodes labeled by the safefor which the labels are the same (since the TBox
is finite). One of these nodes will then block the other, and the fair loop must then be
established. O

Note that there is no guarantee of completeness, that is, if a concept is satisfiable
w.r.t. FC, that the tableaux procedure builds a complete clash-free fair completion tree.
This is a consequence of the way blocking is defined. To illustrate, consider a TBox
consisting of two GCIs7; = {C' C =B, T C JR.T}. ConceptC is satisfiable w.r.t.
7T, since there exists a complete and clash-free completioiGdree(V, E, L) such that
V= {{L‘, y}v E= {<xa y>}» L(l) = {Cv -B, EIRT}? L(y) = {HRT}a L(<$, y>) =R.
Here, nodey is blocked byx. However, the fair algorithm witlrC = B will return
“unsatisfiable” since the clash appears immediately following the additié® ob the
only possible node:. However, there is complete and clash-free fair completion tree
for this caseG’ = (V/, E', L") with V' = {x,y, 2}, E' = {{z,9),{y,2)},L/(z) =
{C,-B,3R.T},L'(y) = {B,3R.T},L'(z) = {IR.TLHLL ((z,y)) = L'({y,2)) =
R. Here, node: can be label blocked by eitheror y. To address this problem, we
introduce the notion ofi-blocking.

Definition 10 (n-Blocking) Letn be a non-negative integer. Nodeis n-blockedby
nodex, with blocking loopzy, . . . , z,, if = is blocked byrq by the same blocking loop
andn < m, that is, there are at least nodes in the blocking loop.

10

Observe that normal blocking can be viewed as a 0-blocking. Also note that re-
placing normal blocking witm-blocking in the (fair) tableaux algorithm will clearly
preserve termination, soundness and (in the unfair case) completeness.

In the example above the algorithm with 1-blocking will find tlfais satisfiable
w.r.t. 73, producing the completion tre@’, with nodez being blocked byt.

Theorem 11. Let C denote a concept] a TBox,FC a fairness condition and. a
non-negative integer. Then there is a tableaux-based decision procedure that returns
“satisfiable” iff C' is satisfiable w.r.t7 and FC with a fair blocking loop with length

not exceeding.

Proof Outline.Check the unfair satisfiability of’ using tableaux. If it is unsatisfi-
able, return “unsatisfiable”. Then, for eabh< k < n, run the fair algorithm with
k-blocking. Return “satisfiable” if the algorithm returns “satisfiable” for some such
otherwise return “unsatisfiable”. Termination and soundness are a simple consequence
of Theorem 9. Completeness follows from the fact that no fair blocking loops for any
possible length not exceedimgwere found. O

This approach can be used for detecting fair cycles in model checking. The length
of a cycle cannot exceed the number of states in the model. Since models are finite, for
every modelM and specificationp there must exist: such that ifA/ = ¢ then M
contains a fair cycle with length not exceedimgThus, it is possible to build the TBox
7T using the technique from Section 3 and run the procedure suggested in our proof
outline for Theorem 11 to get a decision procedure for fair model checking.

5 Experimental Evaluation

We implemented the modified tableaux reasoning procedure described in Section 4 on
top of FaCT++ [22], a state-of-the-art description logic reasoner. In order to run real
examples, we wrote a translator from the AIGER [5] format, that builds a terminology
as described in Section 3. Liveness formulas were translated in the AIGER models into
Biichi automata (see section 2.2), and the fairness constraints were paca€ite

using a new construct in the interface language.

The models we acquired were originally written in the VIS [9] input language, and
were translated into AIGER using different tools. We present results running three sets
of benchmarks with fairness constraints. The “amba” benchmark encodes an Advanced
High Performance Bus. The “vsa” benchmarks encode a simple architecture for a mi-
croprocessor. In each of the vsa benchmarks, the number indicates the datawidth of the
microprocessor. The “Vending” example is part of the VIS distribution.

Experimental Results. Figure 4 summarizes our proof-of-concept results. The exam-
ples were run on Intel CoreDuo computer, 3.4 HGz, 2Gb RAM, Linux SuSE 11.0.
Times reported are in seconds and a time of DNF indicates that the run did not finish in
the alloted time of 1 hour.

It is evident from Figure 4 that our approach is efficacious in certain scenarios. For
the “amba” benchmark, our system could not finish in the given time, while VIS was
easily able to handle it in a fraction of a second. However, the “vsaR"” benchmarks

11

[Benchmark [Result [Size (vars) || FaCT+4 VIS]
vsaR - 6 Fail 170 9.9s DNF
vsaR - 8 Fail 204 12.3s DNF
vending Pass 64 DNF 1.1s
amba2 - G3 Pass 63 DNF 0.7s
amba3 - G3 Pass 77 DNF 17.7s

Fig. 4. RUN TIMES FOR THE FAIRNESS VERIFICATION TASKS

proved simple for our reasoner while VIS was unable to finish in the given time. It
seems that our method works better when a fair cycle does exist in the model. This
can be explained by the fact that when a clash is found applying the fairness-rule, the
n-blocking algorithm should be applied again with increased

6 Conclusion

We have proposed a novel approach to fair cycle detection in model checking, using
tableaux-based DL technology. While encoding of fairness constraints can not be ex-
pressed as a terminology ovdiZC, we showed how the tableaux reasoning procedure
can be modified to support it.

Experiments, comparing our method to the model checker VIS [9], show mixed
results. On some models our method significantly outperform VIS, while other models
demonstrate the opposite. This is not too surprising. In the model checking community
it has been recognized that no single method can outperform others on all models [18].
State of the art model checkers invoke multiple algorithms for each model checking
problem, to speed up verification. Our method can fit nicely in such a platform, speeding
up verification time for part of the models.

Acknowledgements

We thank Armin Biere and Barbara Jobstmann for providing us the AIGER exam-
ples. Our work was partially supported by the SEALIFE project (IST-2006-027269),
by NSERC of Canada and by the Cheriton Scholarship Fund of the Cheriton School of
Computer Science.

References

1. M. W. Alford, J. P. Ansart, G. Hommel, L. Lamport, B. Liskov, G. P. Mullery, and F. B.
Schneider. Distributed systems: methods and tools for specification. An advanced course
Springer-Verlag New York, Inc., New York, NY, USA, 1985.

2. Mohammad Awedh and Fabio Somenzi. Proving more properties with bounded model
checking. INCAYV, pages 96-108, 2004.

3. S. Ben-David, R. Trefler, and G. Weddell. Bounded model checking with description logic
reasoning. InAutomated Reasoning with Analytic Tableaux and Related Methaddal
4548-0060, pages 60—-72, July 2007.

12

N

o Ol

10.
11.
12.
13.
14.

15.

16.

17.
18.

19.

20.

21.

22.

23.

Shoham Ben-David, Richard Trefler, Dmitry Tsarkov, and Grant Weddell. Checking in-
evitability and invariance using description logic technology, 2008. Technical report CS-
2008-28, University of Waterloo.

A. Biere. The AIGER And-Inverter Graph (AIG) Format, 2007. http://fmv.jku.at/aiger/.

A. Biere, A. Cimatti, E. Clarke, and Yunshan Zhu. Symbolic model checking without BDDs.
In TACAS 1999.

. Roderick Bloem, Harold N. Gabow, and Fabio Somenzi. An algorithm for strongly con-

nected component analysis in n log n symbolic stepsolmal Methods in Computer Aided
Design pages 37-54. Springer-Verlag, 2000.

. Roderick Bloem, Harold N. Gabow, and Fabio Somenzi. An algorithm for strongly con-

nected component analysis in log symbolic steparmal Methods in System Desjgn
28(1):37-56, 2006.

. R. K. Brayton, G. D. Hachtel, A. Sangiovanni-Vincentelli, F. Somenzi, A. Aziz, S. Cheng,

S. Edwards, S. Khatri, Y. Kukimoto, A. Pardo, S. Qadeer, R. K. Ranjan, S. Sarwary, T. R.
Shiple, G. Swamy, and T. Villa. VIS: A system for verification and synthesi€AW, 1996.

D. Calvanese, G. De Giacomo, and M. Lenzerini. Reasoning in expressive description logics
with fixpoints based on automata on infinite treeslJ@AI, pages 84-89, 1999.

E. M. Clarke, O. Grumberg, and D. Pelddodel CheckingThe MIT Press, 2000.

E.M. Clarke and E.A. Emerson. Design and synthesis of synchronization skeletons using
branching time temporal logic. IRroc. Workshop on Logics of PrograpidNCS 131, pages
52-71. Springer-Verlag, 1981.

Nissim Francezrairness Springer-Verlag New York, Inc., New York, NY, USA, 1986.

Malay K. Ganai, Aarti Gupta, and Pranav Ashar. Beyond safety: customized sat-based model
checking. INDAC, pages 738-743, 2005.

Giuseppe De Giacomo and Fabio Massacci. Combining deduction and model checking into
tableaux and algorithms for converse-PDInformation and Computatiqril62(1-2):117—

137, 2000.

Leslie Lamport. Proving the correctness of multiprocess progréaisE Transactions on
Software EngineeringSE-3(2):125-143, 1977.

K. McMillan. Symbolic model checking, 1993.

Ziv Nevo. User-friendly model checking: Automatically configuring algorithms with rule-
base/pe. " Haifa Verification ConferengeDctober 2008.

Amir Pnueli. The temporal logic of programs. 168th IEEE Symposium on Foundation of
Computer Sciencgages 46-57, 1977.

J. Quielle and J. Sifakis. Specification and verification of concurrent systems in cestar. In
International Symposium on Programmjri$82.

Manfred Schmidt-Schaul3 and Gert Smolka. Attributive concept descriptions with comple-
ments.Atrtificial Intelligence 48(1):1-26, 1991.

Dmitry Tsarkov and lan Horrocks. FaCT++ description logic reasoner: System description.
In Proc. of the Int. Joint Conf. on Automated Reasoning (IJCAR 20@8)me 4130 of
Lecture Notes in Atrtificial Intelligen¢cgages 292—-297. Springer, 2006.

M. Y. Vardi. An automata-theoretic approach to linear temporal logic. In F. Moller and
G. Birtwistle, editorsLogics for Concurrency: Structure versus Automatalume 1043 of
Lecture Notes in Computer Scienpages 238—266. Springer-Verlag, Berlin, 1996.

