
An Only Knowing Approah to DefeasibleDesription Logis (extended abstrat)Espen H. Lian and Arild WaalerDepartment of InformatisUniversity of Oslo, Norway,{elian,arild}�ifi.uio.no1 IntrodutionWe propose the only-knowing logi ORALC, based on the desription logi ALC.Only-knowing logis were originally designed as modal logis over a lassial on-sequene relation for the representation of autoepistemi reasoning [17, 18℄ anddefault logi [15℄. Only-knowing logis are worth onsidering for several reasons:They are monotoni logis with a lear separation between objet level andmeta level onepts, and they allow faithful and modular enodings of autoepis-temi and default theories whih do not inrease the size of the representations.The enodings thus provide autoepistemi and default logis with formal seman-tis and oneptual larity. Besides being ompletely axiomatized, propositionalonly-knowing logis support enodings of propositional autoepistemi and de-fault logis with nie omputational properties.{ There is a simple rewrite proedure that determines extensions. Some ofthe rewrite rules are preonditioned by SAT tests, and these are the onlyreferene to meta-logial onepts in the proedure.{ The extension problem for propositional only-knowing logis have the sameomplexity as for propositional autoepistemi and default logis.To our knowledge, no extension of only-knowing logis to desription logis haveyet been given. In this paper we take the desription logi ALC as the under-lying logi instead of lassial propositional logi and generalize the mahineryoriginally designed for propositional logis of only-knowing. The strength of theproposed only-knowing logi is the simple rewrite proedure that it admits foromputing extensions, and the fat that reasoning is not harder than in ALC.The logi ORALC proposed in this paper subsumes the propositional logi thatwe proposed in [20℄ and extends that work in a non-trivial way.The logi ALCKNF introdued by Donini, Nardi and Rosati [9℄ is loselyrelated to ORALC. It is onstruted by ombining MKNF with ALC. It is notobvious how this should be done, and in our adaptation of only-knowing logito ALC, we have been guided by ALCKNF . Unlike [9℄, we do not treat so-alledsubjetively quanti�ed expressions in this paper but the logi we present is strongenough to represent, e.g., default theories for ALC.In [9℄, a tableau proedure for ALCKNF is introdued. Although the proe-dure has been simpli�ed [13℄, the proedure does not seem to be well suited for



omputation of extensions of default theories. In this ase one will, it seems, haveto guess extensions and then use the proof proedure to hek whether or notthe guess was orret. In ontrast, the proedure that we propose determines allextensions diretly. Unlike the proof system for ALCKNF , we formalize inferenesteps that are suÆient for determining extensions but not for haraterizing thewhole semantis.2 ORALCThe language of ORALC is de�ned in two steps: �rst a onept language, thena modal formula language.Conept Language. The basis for the onept language is ALC [1, 29℄:C;D �! > j ? j Cat j :C j C uD j C tD j 9Rat:C j 8Rat:Cwhere Cat is an atomi onept andRat an atomi role. We will allALC oneptsobjetive onepts. The onept language for ORALC extends objetive oneptswith modal onept formation operators1 B (belief) and A (assumption):C;D �! CALC j :C j C uD j C tD j BC j ACwhere CALC is an objetive onept. A modal onept is of the form BC or AC;if C is objetive, the modal onept is prime. A onept is subjetive if everyobjetive subonept is within the sope of a modal onept formation operator.An interpretation I = (�; �I) over � onsists of a non-empty domain �and an interpretation funtion �I mapping atomi onepts and roles to subsetsof � and � � � resp. Following [9℄ we assume that the domain ontains allindividuals in the language, and that aI = a for eah individual a. Coneptdesriptions are interpreted relative to a pairM = (U; V ) and an interpretationI; we require that U and V are interpretations over � and that V � U , but wedo not require that I 2 U . ALC onepts evaluate relative to an I as usual, e.g.,(:C)M;I = � n CM;I , while modal onepts are interpreted as follows:(BC)M;I =\J2UCM;J (AC)M;I =\J2V CM;JAn ABox A is a �nite set of objetive membership assertions, i.e. onept asser-tions C(a) and role assertions R(a; b) for individuals a and b. OA is the set ofindividuals expliitly mentioned in A. A modal atom is an assertion of the formM(a), where M is a modal onept; M(a) is prime if M is prime. M satis�esC(a) in I if a 2 CM;I ; M satis�es R(a; b) in I if (a; b) 2 RM;I . As we willsee, modal atoms play an essential role in the rewrite system. A DBox is a �niteset of terminologial axioms, i.e. inlusions C v D for onepts C and D, while1 In the literature, K is sometimes used instead of B, and :M: instead of A. Forintuition about the modalities, onsult the literature about MKNF [9, 22, 23℄ andonly-knowing [15, 20℄.



a TBox is an objetive DBox. M satis�es C v D in I if CM;I � DM;I . Wede�ne a knowledge base (KB) as a tuple (T ;A;D), where T is a TBox, A anABox, and D is a DBox. The DBox will typially (but not neessarily) ontainrepresentation of default rules. We assume standard notions and notations fordefault theories. Let �, �k for 1 6 k 6 n and  be ALC-onepts. Below is anALC-default and its representation (following Konolige [14℄; note that [9℄ has aB in front of ) as an inlusion statement:� : �1; : : : ; �n =  ; B� u :A:�1 u � � � u :A:�n v B� denotes that � is believed, while :A:� denotes that � is onsidered possible,or that � is onsistent with ones beliefs. B is stronger than A in the sense thatevery M satis�es BC v AC in every interpretation I.Interpretation of an objetive onept is independent of M, hene we maywrite CI for CM;I and say that I satis�es C(a), written I  C(a), if a 2 CI ;similarly for roles, role assertions and inlusion statements. Hene we may writeI  A and I  T if every element in the respetive ABox and TBox is satis�edby I. We also write I  (T ;A) if I  T and I  A. For an objetive assertion �,we write T ;A  � if I  � for every I suh that I  (T ;A). Similarly, T ;A  A0if I  A0 for every I suh that I  (T ;A).Formula Language. Formulae are de�ned as follows. Conept and role assertions,T and F are atomi formulae. :', ' ^  and ' _  are formulae if ' and  are.B, A, �B and O are modal operators. B and A orrespond to their oneptformation operator ounterparts, O is an \only knowing"-operator [17, 33, 20℄,while �B is a \knowing at most"-operator, orresponding to C: of [20℄. L' is aformula if L is a modal operator and ' is a formula without any ourrene of�. �' is a formula if ' is a subjetive formula, i.e. every atomi formula thatours as a subformula in ' is either a subjetive assertion or within the sopeof a modal operator. Note in partiular that if C is an objetive onept, BC(a)is a modal atom, and hene an atomi formula, while B(C(a)) is not an atomiformula. Abbreviations: ' )  and ' ,  are de�ned as usual; �3' is :�:';OR' is O' ^�:O'. Let L be a modal operator. A formula is L-free if it doesnot ontain L (neither as a modal operator nor as a onept formation operator)and L-basi if it is subjetive and ontains no other modality than L.Relative to the universal set U of all interpretations over � that satisfy T ,a model is a pair (U; V ) suh that V � U � U . The � modality quanti�esover models by means of a binary relation >. Let M = (U; V ). M0 > M ifM0 = (U 0; U) for some U 0 � U ; in whih ase we say that M0 is larger thanM. Truth onditions are given relative to an interpretation I, whih needs notbe in V . Atomi formulae and onnetives are interpreted as one would expet,e.g., M j=I C(a) i� a 2 CM;I , M j=I T and M 6j=I F. The modal operatorsare interpreted as follows:{ M j=I B' i� M j=J ' for eah J 2 U ;{ M j=I A' i� M j=J ' for eah J 2 V ;{ M j=I �B' i� J 2 U for eah J 2 U suh that M j=J ';



{ M j=I O' i� (M j=J ' if and only if J 2 U) for eah J 2 U ;2{ M j=I �' i� M0 j=I ' for every M0 >M.We write M j= ' if M j=I ' for eah I 2 U . Relative to a model M, k'kMdenotes the truth set of ' in M, i.e. fI 2 U j M j=I 'g. Note that if ' isobjetive, k'kM is given independently of M, as it only depends on the pointsin U . For any objetive ':{ U = k'k i� (U; V ) j= O';{ V � k'k i� (U; V ) j= A'. { U � k'k i� (U; V ) j= B';{ U � k'k i� (U; V ) j= �B';Also note that in the lauses that de�ne truth for the modal operators, theinterpretation I plays no ative role in the de�nition. When ' is subjetive, itis immediate that M j=I ' i� M j= ', i.e. we an safely skip the referene toI. This is also the reason why the following observation holds.Lemma 1. For any subjetive onept M ,either M j= M(a), >(a) or M j= M(a), ?(a).It is also the ase that M j= ' or M j= :', for any subjetive formula '. Aformula ' is strongly valid, written j� ', if M j= ' for every model M. Thereis also a weaker notion of validity, whih is the notion of validity that we areprimarily interested in. It is de�ned relative to the set of weak models : (U; V ) isa weak model if U = V . ' is valid, written j= ', ifM j= ' for every weak modelM. Clearly, strong validity implies validity, but not onversely.Lemma 2. j� B') A' and j= A') B'.Proof. Follows from the onditions V � U (for arbitrary models) and V = U(for weak models). utWe are interested in models M of OR', thus we want M to satisfy O' butnot �3O', i.e. no larger model than M should also satisfy O'. The �gure belowillustrates the truth onditions relative to M2 >M1, where M1 = (U1; V1) foran objetive ' and an arbitrary V1 � U1 � k'k, andM2 = (U2; V2) = (k'k; U1).
M2 j= O' ^ : �3O'V2U2 = k'k

M1 j= :O' ^ �3O'U1k'k�=Examining M1, we seethat U1 � k'k, thus�B' does not hold in M1,hene neither does O'.O' is, however, true inM2, and sine M2 >M1, �3O' is true in M1.Examining M2, we seethat U2 = k'k, thus O'is true. But as there is noM >M2 that makes O' true, �3O' is not true. Hene OR' holds in M2.2 We ould have de�ned O in terms of B and �B (syntatially), as M j=I O' ,(B' ^ �B') but beause of its speial role in the rewrite system, this is not done.



The idea underlying the next lemma an be illustrated with the help of themodelM1: Any model of �3O' must have the shape ofM1, in whih there mustbe a point I 62 U1 at whih ' is true. Note that B' and : �B' are both truein M1. Conversely, any model of B' ^ : �B' must also have the shape of M1,satisfying �3O'.Lemma 3. j� �3O', (B' ^ : �B') if ' is objetive.For formulae in the A-free fragment of the language, the two notions of validityoinide. It is easy to see that in this ase the weak models of OR' are exatlythe models (U;U) with the largest belief state U that satisfy O'.Let [�℄ denote the funtion that replaesA with B, and (for the servie of therewrite rules) puts the resulting formula on negation normal form, i.e. [A'℄ =B['℄, [:A'℄ = :B['℄, [::'℄ = ['℄, [:(' ^  )℄ = [:'℄ _ [: ℄, and so forth.Lemma 4. j� �3') ['℄ if ' is A-basi.Proof. Let M = (U; V ). If M j= �3', then M0 j= ' for some M0 > M. Byde�nition, M0 = (W;U) for some W � U . Sine ' is A-basi, it is interpretedin M0 only relative to U . But if we substitute B for all ourrenes of A in ',the resulting formula ['℄ is B-basi and is hene interpreted in M relative to Uin exatly the same way as ' is interpreted in M0. Hene M j= ['℄. utWe employ the onvention that when a �nite set of formulae X ours in plaeof a formula, this is to be read as the onjuntion of its elements, i.e. VX ; forX = ; this amounts to T. Hene we will refer to a onjuntion of objetiveassertions as an ABox. Next we show under whih onditions OA, for someABox A, implies a prime modal atom or its negation. As we will see, this givesus the side onditions for the ollapse rules in the rewrite system.Lemma 5. Let C and R be objetive.1. j� OA ) BC(a) if T ;A  C(a);2. j� OA ) :(BC(a)) if T ;A 6 C(a).Proof. Let M = (U; V ) be a model suh that M j= OA. Then U = kAk. 1.Assume that T ;A  C(a). Then I  C(a) for every I s.t. I j= T and I j= A.Hene U � kC(a)k. It follows that M j= BC(a). 2. Assume that T ;A 6 C(a).Then I  :C(a) for some I s.t. I j= T and I j= A, hene there is someinterpretation J 2 U \ k:C(a)k. Hene M j= :(BC(a)). utCorollary 1. Let C and R be objetive.1. j� OA ) AC(a) if T ;A  C(a);2. j= OA ) :(AC(a)) if T ;A 6 C(a)Proof. By Lemmata 2 and 5. utLemma 6. Let A and A0 be ABoxes.1. j� OA ) �BA0 if T ;A0  A.2. j� OA ) :BA0 if T ;A 6 A0.



3 The Rewrite SystemGeneralizing the rewrite system for the underlying propositional language in[20℄, the system in Fig. 1 onsists of two rewrite relations on formulae. Therules of the � relation are based on strong equivalenes, whereas the �̂ relationextends � with rules whose underlying equivalenes are merely weak. We saythat ' redues to  if ' �  , where � is the reexive transitive losure of �.Redution an be performed on any subformula. A formula ' is on normal formwrt. � if there is no formula  suh that ' �  . The same notation is used forthe �̂ relation. Redution is performed modulo ommutativity and assoiativityof ^ and _, and ' is identi�ed with ' ^ T and ' _ F; this implies that T andF behave as empty onjuntion and disjuntion resp. We de�ne � to be the setof rules l � r in Fig. 1, while �̂ is the union of � and the set of rules l �̂ r.Applying the � relation exhaustively before the �̂ is applied guarantees a orretrewrite proess.For formulae � and �, h�=�i is a substitution funtion: 'h�=�i denotes theresult of substituting every ourrene of � in ' with �. Substitution is performedstritly on the formula level for the reason that assertions do not onsist ofsubassertions in the sense that formulae onsist of subformulae. A substitutionof a value for an assertion C(a) will not apply to, e.g., the assertion C t D(a)but will apply to the equivalent formula C(a)_D(a). The substitution funtionhM(a)=V (a)i for a prime modal atom M(a) and V 2 f>;?g is a binding, whihbinds M(a) to V (a).The expand rule works by binding prime modal atoms in O', assuming nosubformula of ' is of the form B or A for an objetive formula  . A formulawith this property is objetive if no prime modal atoms our in it. Observethat the prime modal atom BC(a) has this property, whereas B(C(a)) do not.Bindings might break this property, e.g., B(BC(a))hBC(a)=>(a)i = B(>(a)).For this reason we have theM4 rules whih regain the property, should it be lostin the ourse of a binding operation, i.e. after the expand rule has been applied:B(>(a)) � (B>)(a). When there are no prime modal atoms left in O', one mayapply the ollapse rules to redue (or ollapse) O' ^M(a) to either O' or F.The last two rules of C1 are stritly in �̂. These do not preserve strongequivalene and are hene not sound in all ontexts. Applying the � relationexhaustively to a formula OR' results in formulae of a form whih reets thatthe last two rules of C1 have not been applied. To haraterize this we say that aformula is semi-normal if it is of the form OA^� for an ABox A and a possiblyempty set � of formulae of the form AC(a) and :(AC(a)) with C objetive andT ;A 6 :C(a).Lemma 7. For eah semi-normal OA^ �,1. OA ^ � is on normal form wrt. �;2. either OA^ � �̂ OA or OA ^ � �̂ F.The primary funtion of the system is to redue formulae of the form O' andOR' for a onjuntion of assertions ', into a disjuntion where eah disjunt is



Rules for reduing OThe expand rule:(M1) O' � (O'hM(a)=>(a)i ^M(a)) _ (O'hM(a)=?(a)i ^ :(M(a)))for any prime modal atom M(a) ourring in 'The domination and distribution rules:' ^ F � F(M2) (' _ �) ^  � (' ^  ) _ (� ^  )(M3)The assertional rules:(M4) :(C(a)) � (:C)(a)B(C(a)) � (BC)(a)A(C(a)) � (AC)(a) C(a) ^D(a) � (C uD)(a)C(a) _D(a) � (C tD)(a)For �B = BC(a) and �A = AC(a):(C1) OA^ �B � OAOA^ :�B � FOA^ �A � OAOA^ :�A � F if T ;A  C(a)if T ;A  C(a)if T ;A  C(a)if T ;A  C(a) OA^ �B � FOA ^ :�B � OAOA^ �A �̂ FOA ^ :�A �̂ OA if T ;A 6 C(a)if T ;A 6 C(a)if T ;A 6 C(a)if T ;A 6 C(a)For an ABox A0:(C2) OA ^ �BA0 � OAOA^ :BA0 � F if T ;A0  Aif T ;A  A0 OA^ �BA0 � FOA ^ :BA0 � OA if T ;A0 6 Aif T ;A 6 A0Rules for reduing OR and �OR' � O' ^�:O'(R1) �:(' _  ) � �:' ^�: (R2) �:F � T(R3) �:(OA ^ �) � :BA _ �BA _ [:�℄ for semi-normal OA ^ �(R4)If � in rule R4 is empty, we get�:OA � :BA _ �BA(R04)Fig. 1: The rules. A is an ABox, C and D objetive onepts, and R an objetiverole. The rules in Ck are alled ollapse rules. R1 is not a proper rule, as the lefthand side is an abbreviation of the right. We inlude it for readability reasons.



of the form O for some objetive  . When ' is the formula representation ofa knowledge base, eah disjunt represents a Reiter extension of ' (when ORis used) or an autoepistemi extension (when O is used). To ahieve this, therewrite system needs rules for reduing formulae pre�xed with O and �:, andwhatever they are redued to.Note that an objetive formula may or may not be an assertion. C(a) _:C(a) is, for instane, not an assertion, but an be transformed to an equivalentassertion if we \push the a outward" and hange _ to t. Below we address thereverse operation of \pushing the a inward." We do this to get prime modalatoms as subformulae, so that the expand rule may be applied. This operation,J�K, is de�ned as follows. For role assertions, JR(a; b)K = R(a; b), and for oneptassertions, JC(a)K = C(a) for C 2 f>;?g or atomi, andJLC(a)K = (LC(a) if C is objetiveL̂JC(a)K otherwise for L 2 f:;B;Ag;JC ? D(a)K = (C ? D(a) if C ? D is objetiveJC(a)K ?̂ JD(a)K otherwise for ? 2 fu;tg;where û = ^ and t̂ = _, and L̂ = L for L 2 f:;B;Ag. Inlusions are instanti-ated and translated into formulae as follows: For an individual a, JC v DKa =JC(a)K ) JD(a)K.Example 1. Let us address the default C : > = C, whih is represented as BC vC. Let ' = JBC v CKa = BC(a) ) C(a). To redue O', we �rst apply theexpand rule and then rules from the C1 group. The same redutions also applyin a boxed ontext. As the formula is A-free, the �̂ relation will not be needed.O(:BC(a) _ C(a)) � (OC(a) ^BC(a)) _ (O>(a) ^ :BC(a)) (M1)� OC(a) _O>(a) (C1)�:O(:BC(a) _ C(a))� �:(OC(a) _O>(a))� �:OC(a) ^�:O>(a) (R2)� (:BC(a) _ �BC(a)) ^ (:B>(a) _ �B>(a)) (R4)Having redued O' and �:O', we redue OR'.OR' � O' ^�:O'� (OC(a) _O>(a)) ^ (:BC(a) _ �BC(a)) ^ (:B>(a) _ �B>(a))� (OC(a) ^ (:BC(a) _ �BC(a)) ^ (:B>(a) _ �B>(a))) _(O>(a) ^ (:BC(a) _ �BC(a)) ^ (:B>(a) _ �B>(a))) (M3)Distributing onjuntions over disjuntions, using M3, we obtain a formula onDNF, whih redues to O>(a). This orresponds to the unique Reiter extension.ut



4 The Modal Redution TheoremThe Modal Redution Theorem forORALC states that whenever a formulaOR'enodes a knowledge base, it is logially equivalent to a disjuntion, where eahdisjunt is of the form OA for some ABox A. In fat, eah of these disjunts hasan essentially unique weak model. It is hene possible, within the logi itself, todeompose a formula OR' into a form whih diretly exhibits its models.We translate an entire knowledge base � = (T ;A;D) into a formula as fol-lows: J�KJ = A ^ JDKJ , where JDKJ = fJC v DKa j a 2 J & C v D 2 Dg forsome non-empty set of individuals J � �. Observe that the TBox T seeminglydisappears. It does, however, reappear in the side onditions of the ollapse rules.The Modal Redution Theorem. For eah � = (T ;A;D), there are ABoxesA1; : : : ;An for some n > 0, suh that A � Ak for 1 6 k 6 n, andj= ORJ�KOA , (OA1 _ � � � _OAn):Proof. By ompleteness (Theorem 1) and soundness (Theorems 2 and 3). utWe de�ne the extensions3 of � to be exatly the ABoxes A1; : : : ;An in TheModal Redution Theorem. Hene the notion of extension makes no appeal tothe formula language, only the onept language.The rewrite system is just strong enough for establishing the Modal Re-dution Theorem: It is sound and omplete for redutions of OR-formulae intodisjuntions of the appropriate type. It is, however, not omplete for the logiof OR itself. From the point of view of omputing default extensions this isenough, beause only a subset of the logi of OR is atually needed for theModal Redution Theorem.Example 2. The ALC-default Employee : :Manager = Engineer tMathematiian(adapted from [9℄) is represented as BEmployee u :AManager v (Engineer tMathematiian). Let D onsist of this inlusion, and let J = fBobg:OR(A ^ JDKJ )= OR(A ^ JBEmployee u :AManager v Eng tMatKBob)= OR(A ^ (JBEmployee u :AManager(Bob)K ) JEng tMat(Bob)K)= OR(A ^ (JBEmployee(Bob)K ^ J:AManager(Bob)K ) JEng tMat(Bob)K)= OR(A ^ (BEmployee(Bob) ^ :AManager(Bob)) Eng tMat(Bob)))This formula an be redued to a simpler form, depending on the ABox A andthe TBox. Let T = fManager v Employeeg, and let �1 = BEmployee(Bob),�2 = AManager(Bob) and  = Engineer tMathematiian(Bob). For any A suhthat A  Employee(Bob), OA ^ �1 � OA and OA^ :�1 � F, heneO(A ^ (�1 ^ :�2 ) ))� (OA ^ �1 ^ �2) _ (O(A ^ ) ^ �1 ^ :�2) _3 Extensions are here taken in the sense of default logi, i.e. Reiter extensions; au-toepistemi extensions (stable expansions) an be de�ned from the Modal RedutionTheorem for O in the same way.



(OA ^ :�1 ^ �2) _ (OA^ :�1 ^ :�2)� (OA ^ �2) _ (O(A ^ ) ^ :�2):For the ABox A1 = fEmployee(Bob)g, the redut is on normal form wrt. � butnot for the ABox A2 = fManager(Bob)g:(OA1 ^ �2) _ (O(A1 ^ ) ^ :�2) �̂ O(A1 ^ )(OA2 ^ �2) _ (O(A2 ^ ) ^ :�2)� OA2In the former ase, Bob is an engineer or a mathematiian, in the latter Bob isonly a manager. Reduing OR(A ^ JDKJ ) produes the same extensions. ut4.1 Soundness and CompletenessLemma 8. For eah � = (T ;A;D), there is a set �1 = fO(A^Ak)^�kg16k6nof semi-normal formulae for some n > 0 suh that for some set �2 � �1(a) OJ�KJ �_�1 and (b) ORJ�KJ �_�2:Theorem 1 (Completeness). For eah � = (T ;A;D), for some n > 0, thereare ABoxes A1; : : : ;An suh that for some set � of semi-normal formulae,ORJ�KOA �_� �̂ (O(A ^A1) _ � � � _O(A^ An)):Proof. By Lemmata 7 and 8. utLemma 9. If M j=I (� , �) and � does not our within the sope of � in ',then M j=I (', 'h�=�i):The previous result state the ondition under whih substitution of equivalentsis valid. For substitution within the ontext of � we need the stronger notion ofvalidity. From the point of view of formula rewriting, the signi�ane of strongvalidity is that it is required for general substitution of equivalents.Lemma 10. j� (', 'h�=�i) if j� (� , �).Theorem 2 (Soundness of �). If '�  then j� ',  .Proof. By Lemma 10, it is suÆient to show that j� l , r for eah rule l � r, inwhih ase we say that the rule is strongly valid. Rule R1 is trivial. R2 followsfrom the fat that j� �(' ^  ) , (�' ^ � ) and De Morgan's law, while R3follows from the fat that j� �T. M2 and M3 are propositionally valid, M4 isleft to the reader. C1 follows from Lemma 5 and Corollary 1, while C2 followsfrom Lemma 6. The two remaining ases are treated in detail.R4 : We show that j� �:(O' ^ �) , ((B' ^ : �B') ) [:�℄) for any semi-normal O' ^ �. By Lemma 3, j� �3O' , (B' ^ : �B'), hene by Lemma 10,we have to show that j� �:(O' ^ �) , ( �3O' ) [:�℄). ()) Assume thatM j= �(O') :�) andM j= �3O'. ThenM j= �3(O'^:�), thusM j= �3:�,



hene M j= [:�℄ by Lemma 4. (() We show that M j= (�:O' _ [:�℄) )�:(O' ^ �) for every M. Now there are two ases. If M j= �:O', thenM j= �:(O' ^ �). If M j= [:�℄, then M j= :[�℄, thus M j= �:� by Lemma4, thus M j= �:(O' ^ �).M1 : We show that j� O', (O'hM(a)=>(a)i^M(a))_(O'hM(a)=?(a)i^:(M(a))) for any prime modal atom M(a). Let M be an arbitrary model.Then either M j= (M(a) , >(a)) or M j= (M(a) , ?(a)) by Lemma 1. ByLemma 9, as ' is �-free, either M j= O' , O'hM(a)=>(a)i or M j= O' ,O'hM(a)=?(a)i, resp. In either aseM satis�es either (M(a), >(a))^(O',O'hM(a)=>(a)i) or (M(a) , ?(a)) ^ (O' , O'hM(a)=?(a)i); from whihthe equivalene follows. utTheorem 3 (Soundness of �̂). For any disjuntion ' of semi-normal formu-lae, if ' �̂  then j= ',  .Proof. As semi-normal formulae do not ontain �, by Lemma 9, it is suÆientto show that j= l , r for eah rule l �̂ r, in whih ase we say that the rule isvalid. That the rules of � are valid is obvious, given that they are strongly valid.The remaining rules are in the C1 group; validity follows from Corollary 1. ut4.2 ComplexityThe extension problem is determining whether a KB has an extension. A re-deeming feature of ORALC is that the extension problem is not harder than theALC problem of instane heking.Theorem 4. The extension problem of ORALC is PSpae-omplete.Proof (Sketh). The translation from � to J�KOA an be done in polynomialtime: jOAj � jDj. The orresponding extension problem when the underlyinglogi is propositional is in �p2 = NPNP as it an be solved nondeterministiallywith a polynomial number of alls to a propositional SAT orale [33℄. The maindi�erene here is that instead of a SAT orale, we need an orale that ando instane heks in ALC, whih is PSpae-omplete [1℄. Thus the extensionproblem is in NPPSpae, whih is equal to PSpae [25℄. ut5 Future WorkThe underlying onept language does not have to be ALC. Other onept lan-guages with lower omplexity like DL-Lite [4℄ might prove more useful in anatual implementation.An natural extension is to introdue a partial order (I;4), intuitively repre-senting on�dene levels, and for eah index k 2 I , adding modal operators Bk,Ak, �Bk, Ok, and �k to the signature of the logi, in order to represent ordereddefault theories. Another extension would be allowing subjetively quanti�ed ex-pressions, i.e. onepts of the form 8XR:YC and 9XR:YC for X;Y 2 fB;Ag,like [9℄ does.



Referenes1. Baader, F., Calvanese, D., MGuinness, D.L., Nardi, D., Patel-Shneider, P.F.(eds.): The Desription Logi Handbook: Theory, Implementation, and Applia-tions. Cambridge University Press (2003)2. Baader, F., Hollunder, B.: Embedding defaults into terminologial knowledge rep-resentation formalisms. Journal of Automated Reasoning 14(1), 149{180 (1995)3. Brewka, G., Eiter, T.: Prioritizing Default Logi. In: Intelletis and Computa-tional Logi, Papers in Honor of Wolfgang Bibel, Applied Logi Series, vol. 19, pp.27{45. Kluwer Aademi Publishers (2000)4. Calvanese, D., Giaomo, G.D., Lembo, D., Lenzerini, M., Rosati, R.: DL-Lite:Tratable Desription Logis for Ontologies. In: Proeedings, The Twentieth Na-tional Conferene on Arti�ial Intelligene and the Seventeenth Innovative Appli-ations of Arti�ial Intelligene Conferene, (AAAI'05), pp. 602{607 (2005)5. Chen, J.: Minimal Knowledge + Negation as Failure = Only Knowing (Sometimes).In: Logi Programming and Non-monotoni Reasoning, Proeedings of the SeondInternational Workshop, LPNMR 1993, pp. 132{150 (1993)6. Delgrande, J.P., Shaub, T.: Expressing Preferenes in Default Logi. Arti�ialIntelligene 123, 41{87 (2000)7. Donini, F.M., Nardi, D., Rosati, R.: Autoepistemi Desription Logis. In: Pro-eedings of the Fifteenth International Joint Conferene on Arti�ial Intelligene(IJCAI'97), pp. 136{141 (1997)8. Donini, F.M., Nardi, D., Rosati, R.: Ground Nonmonotoni Modal Logis. Journalof Logi and Computation 7(4), 523{548 (1997)9. Donini, F.M., Nardi, D., Rosati, R.: Desription Logis of Minimal Knowledge andNegation as Failure. ACM Trans. Comput. Log. 3(2), 177{225 (2002)10. Engan, I., Langholm, T., Lian, E.H., Waaler, A.: Default Reasoning with Preferenewithin Only Knowing Logi. In: Proeedings of LPNMR 2005, pp. 304{316 (2005)11. Gottlob, G.: Translating Default Logi into Standard Autoepistemi Logi. J.ACM 42(4), 711{740 (1995)12. Kaminski, M.: Embedding a default system into nonmonotoni logis. FundamemtaInformatiae 14(3), 345{353 (1991)13. Ke, P., Sattler, U.: Next steps for desription logis of minimal knowledge andnegation as failure. In: available eletronially at CEUR (ed.) Pro. of the 2008Desription Logi Workshop (DL 2008) (2008)14. Konolige, K.: On the relation between default logi and autoepistemi theories.Arti�ial Intelligene 35(3), 343{382 (1988)15. Lakemeyer, G., Levesque, H.J.: Only-Knowing: Taking It Beyond AutoepistemiReasoning. In: Proeedings, The Twentieth National Conferene on Arti�ial In-telligene and the Seventeenth Innovative Appliations of Arti�ial IntelligeneConferene, AAAI 2005, pp. 633{638 (2005)16. Lakemeyer, G., Levesque, H.J.: Towards an axiom system for default logi (Pro-eedings, The Twenty-First National Conferene on Arti�ial Intelligene and theEighteenth Innovative Appliations of Arti�ial Intelligene Conferene, AAAI2006)17. Levesque, H.J.: All I Know: A Study in Autoepistemi Logi. Arti�ial Intelligene42, 263{309 (1990)18. Levesque, H.J., Lakemeyer, G.: The Logi of Knowledge Bases. MIT Press (2001)19. Lian, E.H., Langholm, T., Waaler, A.: Only Knowing with Con�dene Levels: Re-dutions and Complexity. In: Proeedings of JELIA'04, Leture Notes in Arti�ialIntelligene, vol. 3225, pp. 500{512 (2004)



20. Lian, E.H., Waaler, A.: Computing Default Extensions by Redutions on OR.In: Priniples of Knowledge Representation and Reasoning: Proeedings of theEleventh International Conferene, KR 2008, pp. 496{506 (2008)21. Lifshitz, V.: Nonmonotoni Databases and Epistemi Queries. In: IJCAI, pp.381{386 (1991)22. Lifshitz, V.: Minimal Belief and Negation as Failure. Artif. Intell. 70(1{2), 53{72(1994)23. Lin, F., Shoham, Y.: A Logi of Knowledge and Justi�ed Assumptions. Artif.Intell. 57(2-3), 271{289 (1992)24. Motik, B., Rosati, R.: A Faithful Integration of Desription Logis with LogiProgramming. In: M.M. Veloso (ed.) Pro. of the 20th Int. Joint Conferene onArti�ial Intelligene (IJCAI 2007), pp. 477{482. Morgan Kaufmann Publishers,Hyderabad, India (2007)25. Papadimitriou, C.M.: Computational Complexity. Addison-Wesley, Reading, Mas-sahusetts (1994)26. Reiter, R.: A logi for default reasoning. Arti�ial Intelligene 13(1{2), 81{132(1980)27. Rosati, R.: On the deidability and omplexity of reasoning about only knowing.Artif. Intell. 116(1{2), 193{215 (2000)28. Rosati, R.: A Sound and Complete Tableau Calulus for Reasoning about OnlyKnowing and Knowing at Most. Studia Logia 69(1), 171{191 (2001)29. Shmidt-Shau�, M., Smolka, G.: Attributive onept desriptions with omple-ments,. Arti�ial Intelligene 48, 1{26 (1991)30. Segerberg, K.: Some modal redution theorems in autoepistemi logi. UppsalaPrints and Preprints in Philosophy. Uppsala University (1995)31. Waaler, A.: Logial studies in omplementary weak S5. Dotoral thesis, Universityof Oslo (1994)32. Waaler, A.: Consisteny proofs for systems of multi-agent only knowing. Advanesin Modal Logi 5, 347{366 (2005)33. Waaler, A., Kl�uwer, J.W., Langholm, T., Lian, E.H.: Only knowing with degreesof on�dene. J. Applied Logi 5(3), 492{518 (2007)


