
Building Ontologies Collaboratively Using ContentCVS

E. Jiménez-Ruiz1?, B. Cuenca Grau2, I. Horrocks2, and R. Berlanga1

1 Universitat Jaume I, Spain, {ejimenez,berlanga}@uji.es
2 University of Oxford, UK, {berg,ian.horrocks}@comlab.ox.ac.uk

1 Motivation

OWL Ontologies are already being used in many application domains. In particular,
OWL is extensively used in the clinical sciences; prominent examples of OWL on-
tologies are the National Cancer Institute (NCI) Thesaurus, SNOMED CT, the Gene
Ontology (GO), the Foundational Model of Anatomy (FMA), and GALEN.

These ontologies are large and complex; for example, SNOMED currently describes
more than 350.000 concepts whereas NCI and GALEN describe around 50.000 con-
cepts. Furthermore, these ontologies are in continuous evolution; for example the de-
velopers of NCI and GO perform approximately 350 additions of new entities and 25
deletions of obsolete entities each month [1].

Most realistic ontologies, including the ones just mentioned, are being developed
collaboratively. The developers of an ontology can be geographically distributed and
may contribute in different ways and to different extents. Maintaining such large on-
tologies in a collaborative way is a highly complex process, which involves tracking
and managing the frequent changes to the ontology, reconciling conflicting views of the
domain from different developers, minimising the introduction of errors (e.g., ensuring
that the ontology does not have unintended logical consequences), and so on.

In this setting, developers need to regularly merge and reconcile their modifications
to ensure that the ontology captures a consistent unified view of the domain. Changes
performed by different users may, however, conflict in complex ways and lead to errors.
These errors may manifest themselves both as structural (i.e., syntactic) mismatches
between developers’ ontological descriptions, and as unintended logical consequences.

Tools supporting collaboration should therefore provide means for: (i) keeping track
of ontology versions and changes and reverting, if necessary, to a previously agreed
upon version, (ii) comparing potentially conflicting versions and identifying conflicting
parts, (iii) identifying errors in the reconciled ontology constructed from conflicting
versions, and (iv) suggesting possible ways to repair the identified errors with a minimal
impact on the ontology.

In order to address (i), we propose to adapt the Concurrent Versioning— a success-
ful paradigm in collaborative software development— to allow several developers to
make changes concurrently to the same ontology (see Section 2). To address (ii) we
propose a notion of conflict between ontology versions and provide means for identify-
ing conflicting parts based on it (see Section 3). To address (iii) we propose in Section

? This work was partially funded by the PhD Fellowship program of the Generalitat Valenciana
and the Spanish National Research Program, contract number TIN2008-01825/TIN.

4 a framework for comparing the entailments that hold in the compared versions and
in the reconciled ontology, based on the notion of a deductive difference [2, 3] and
also describe techniques for helping users decide which of the reported entailments are
intended. Finally, to address (iv), we propose in Section 4 several improvements to ex-
isting techniques for ontology debugging and repair [4, 5, 6, 7] and adapt them to our
setting. In Sections 2, 3, and 4, we describe both our general approach and algorithmic
techniques as well as their implementation in our tool ContentCVS,3 a Protégé 4 plu-
gin freely available for download.4 We finally add an empirical evaluation showing that
our approach is useful and feasible in practice. Due to lack of space, certain details have
been included in an extended version of this paper, which is available online [8].

2 CVS-based collaboration

In software engineering, the Concurrent Versioning paradigm has been very success-
ful for collaboration in large projects. A Concurrent Versioning System (CVS) uses a
client-server architecture: a CVS server stores the current version of a project and its
change history; CVS clients connect to the server to create (export) a new repository,
check out a copy of the project, allowing developers to work on their own ‘local’ copy,
and then later to commit their changes to the server. This allows several developers to
make changes concurrently to a project. To keep the system in a consistent state, the
server only accepts changes to the latest version of any given project file. Developers
should hence use the CVS client to regularly commit their changes and update their
local copy with changes made by others. Manual intervention is only needed when a
conflict arises between a committed version in the server and a yet-uncommitted local
version. Conflicts are reported whenever the two compared versions of a file are not
equivalent according to a given notion of equivalence between versions of a file.

Our tool ContentCVS closely follows this paradigm. The most recent version OR
of the ontology, which represents the developers’ shared understanding of the domain,
is kept in a server’s shared repository. Each developer with access to the repository
maintains a local copyOL, which can be modified at will. This local copy can be either
in conflict with OR (conflict = true) or not in conflict (conflict = false). The system
also maintains version numbers vR and vL forOR andOL respectively as well as a local
‘backup’ copyOLbak of the latest local version that was ‘written’ to the repository. At any
time, a developer can access the repository using the basic operations export, check-out,
update and commit. In ContentCVS, these operations often involve checking whether
two ontology files O and O′ are ‘equivalent’ under a specific notion of equivalence
between ontology files which will be introduced in Section 3 (denoted O ∼ O′).

As an illustration, Figure 1 provides the semantics of the commit operation in Con-
tentCVS. For the semantics of the other CVS operations we refer the reader to [8].
In Figure 1, note that if OLbak v OL then there are no meaningful local changes and
no action is required. Otherwise, the commit process only succeeds if OL is up-to-date
(vL = vR) and not in conflict (conflict = false). In case of success, the commit involves
replacing OR with OL and incrementing the version number.

3 A Collaborative ONTology ENgineering Tool.
4 ContentCVS: http://krono.act.uji.es/people/Ernesto/contentcvs

OL ∼ OL
bak

vL = vR conflict?

Do Nothing Update is Necessary Fail

OL
bak := OL
OR := OL

vL, vR := +1

OL

No Yes

false

Yes No true

Fig. 1. Semantics of the commit operation in ContentCVS

3 Change and conflict detection

As mentioned in Section 2, change or conflict detection amounts to checking whether
two compared versions of a file are not ‘equivalent’ according to a given notion of
equivalence between versions of a file.

A typical CVS treats the files in a software project as ‘ordinary’ text files and hence
checking equivalence amounts to determining whether the two versions are syntacti-
cally equal (i.e., they contain exactly the same characters in exactly the same order).
This notion of equivalence is, however, too strict in the case of ontologies, since OWL
files have very specific structure and semantics. For example, if two OWL files are
identical except for the fact that two axioms appear in different order, the correspond-
ing ontologies should be clearly treated as ‘equivalent’: an ontology contains a set of
axioms and hence their order is irrelevant [9].

Another possibility is to use the notion of logical equivalence. This notion of equiv-
alence is, however, too permissive: even if O ≡ O′—the strongest assumption from a
semantic point of view—conflicts may still exist. This might result from the presence
of incompatible annotations (statements that act as comments and do not carry logical
meaning) [9], or a mismatch in modelling styles; for example, O may be written in a
simple language such as the OWL 2 EL profile [9, 10] and contain α := (A v B uC),
while O′ may contain β := (¬B t¬C v ¬A). Even though α ≡ β, the explicit use of
negation and disjunction means that O′ is outside the EL profile.

Therefore, the notion of a conflict should be based on a notion of ontology equiva-
lence ‘in-between’ syntactical equality and logical equivalence. We propose to borrow
the notion of structural equivalence from the OWL 2 specification [11]. Intuitively, this
notion of equivalence is based solely on comparing structures by using the definition of
the modeling constructs available in OWL and OWL 2; for example, several modeling
constructs are defined as sets of objects (e.g., ontologies are defined as sets of axioms,
conjunction of concepts as a set of conjuncts, and so on); hence changes in the order in
which these set elements appear in the ontology file should be seen as irrelevant. For a
definition of structural equivalence in DL syntax, we refer the reader to [8].

The use of the notion of structural equivalence as a formal basis for detecting con-
flicts between ontology versions presents a number of compelling advantages. First, it
rules out irrelevant syntactic mismatches based solely on the structure of the OWL lan-
guage. Second, structurally equivalent ontologies are also logically equivalent. Third,
it preserves species and profiles [10] of OWL and OWL 2 respectively; for example

if O and O′ are structurally equivalent and O is in OWL Lite (respectively in any of
the profiles of OWL 2), then O′ is also in OWL Lite (respectively in the same OWL
2 profile as O). Fourth, it takes into account extra-logical components of an ontology,
such as annotations. Finally, it is an agreed-upon notion, defined within the W3C OWL
Working Group during the standardisation of OWL 2 and therefore it is supported by
mainstream ontology development APIs, such as the OWL API.

Finally, the identification of the conflicting parts in O and O′ using the notion of
structural equivalence can be performed by computing their structural difference.

Definition 1. The structural difference between O1 and O2 is the set Λs of axioms
α ∈ Oi for which there is no β ∈ Oj s.t. α and β are structurally equivalent with
i, j ∈ {1, 2} and i 6= j.

4 Conflict resolution

Conflict resolution is the process of constructing a reconciled ontology from two on-
tology versions which are in conflict. In a CVS, the conflict resolution functionality is
provided by the CVS client. Our approach is based on the principle that a CVS client
should allow users to resolve the identified conflicts at two different levels: (i) struc-
tural, where only the structure of the compared ontology versions is taken into account
to build the reconciled ontology (see Section 4.1); (ii) structural and semantic, where
both the structure and the logical consequences of the compared ontology versions as
well as of the reconciled ontology are considered (see Sections 4.1—4.4).

Our approach is summarised in Table 1. The steps marked with (X) require human
intervention. We next describe in detail each of the steps in Table 1. To illustrate our
techniques, we use as a running example the collaborative development of an ontology
about arthritis, which is a real use case that we have encountered within the Health-
e-Child (HeC) project.5 We consider the case were two developers, John and Anna,
independently extend a version of the arthritis ontology by describing types of systemic
arthritis and juvenile arthritis respectively. Both John and Anna define a kind of arthritis
called JRA (Juvenile Rheumatoid Arthritis). Hence, even if largely distinct, the domains
described by John and Anna overlap, which leads to conflicts.

4.1 Selection of axioms using structural difference

Conflict resolution in text files is usually performed by first identifying and displaying
the conflicting sections in the two files (e.g., a line, or a paragraph) and then manually
select the desired content. Analogously, our proposal for structural conflict resolution
involves the selection of the conflicting axioms S (i.e., those in the structural difference)
to be included in a (provisional) version OLtemp of OL (Step 1). The ontology OLtemp is
obtained from the non-conflicting part of OL plus the selected axioms S (Step 2).

After constructing OLtemp, the user may declare the conflict resolved (Step 3), in
which case conflict resolution remains a purely syntactic process—as in the case of
text files. Otherwise, ontology developers can use a reasoner to examine the semantic
consequences of their choices and make sure that OLtemp is error-free.

5 Health-e-Child project: http://www.health-e-child.org

Input: OL,OR: ontologies with OL 6v OR, conflict = true and structural difference Λs

Output: OL: ontology; conflict: boolean value;
1: (X) Select S ⊆ Λs

2: OL
temp := (OL \ Λs) ∪ S

3: (X) if OL
temp is satisfactory return OL := OL

temp, conflict := false
4: (X) Select approximation function appr
5: Compute diff≈(OL

temp,OL), diff≈(OL
temp,OR) diff≈(OL,OL

temp) and diff≈(OR,OL
temp)

6: (X) Select =+ ⊆ diff≈(OL
temp,OL) ∪ diff≈(OL

temp,OR)
7: (X) Select =− ⊆ diff≈(OL,OL

temp) ∪ diff≈(OR,OL
temp)

8: Compute minimal plans P for OL
temp given =+, =−, O+ := Λs \ S, and O− := S

9: (X) if no satisfactory plan in P, return OL, conflict := true
10: (X) Select P = 〈P+,P−〉 ∈ P
11: return OL := (OL

temp ∪ P+) \ P−, conflict := false

Table 1. Conflict Resolution Method.

Fig. 2. GUI for Structural Differences in ContentCVS

ContentCVS implements a simple GUI to facilitate the selection of axioms from
the structural difference, which is shown in Figure 2 for our running example, where
John’s and Anna’s versions are respectively shown on the left-hand-side and on the
right-hand-side of the figure. The left-hand-side (respectively the right-hand-side) of
the figure shows the axioms in Λs ∩ OL (respectively in Λs ∩ OR).

To facilitate the comparison, axioms are sorted and aligned according to the entities
they define. Axioms not aligned with others are shown last in a distinguished position.
The selected axioms are indicated in the GUI using a highlighted (X). Furthermore,
ContentCVS provides additional functionality for determining the origin of each ax-
iom in the structural difference. In particular, ContentCVS, indicates whether an axiom
appears in the difference as a result of an addition or a deletion by comparing OL and
OR to the local ‘backup’ copy OLbak of the latest local version that was ‘written’ to the
repository. For example, the axiom (Poly JRA v AbnormalRA) on the left-hand-side
of Figure 2 was added to OLbak in the local ontology (see icon representing a user with
a ‘+’), whereas the axiom (Systemic Disease v Disease u ∃affects.Whole Body) was
deleted in the repository (see icon representing the Globe with a ‘×’).

4.2 Deductive differences

Errors in the reconciliation process can be detected using a reasoner, by computing the
logical consequences of the reconciled ontologyOLtemp and comparing them to those of
OL and OR. Errors in OLtemp could manifest themselves, however, not only as unsatis-
fiable concepts or unintended (or missing) subsumptions between atomic concepts, but
also as unintended (or missing) entailments involving complex concepts. To help users
detect such errors, we propose to compare the entailments that hold inOLtemp with those
that hold in OL and OR by using the notion of deductive difference [2, 3].

Definition 2. The deductive difference diff(O,O′) between O and O′ expressed in a
DL DL is the set of DL-axioms α s.t. O 6|= α and O′ |= α.

Intuitively, this difference is the set of all (possibly complex) entailments that hold
in one ontology but not in the other. These may be entailments that (i) hold in OLtemp

and not in OL; (ii) hold in OLtemp but not in either OL or OR; (iii) hold in OL but not
in OLtemp, and (iv) hold in OR but not in OLtemp. Therefore, we argue that the relevant
deductive differences between OLtemp, OL and OR capture all potential errors that may
have been introduced in the reconciliation process.

Considering complex entailments obviously comes at a price, both in terms of
computational cost and of complication of the GUI. In particular, checking whether
diff(O,O′) = ∅ is undecidable in expressive DLs [2]. Furthermore, the number of
entailments in the difference can be large (even infinite), and so likely to overwhelm
users. These practical drawbacks motivate the need for approximations— subsets of
the deductive difference (see Step 4 in Table 1).

Definition 3. A function diff≈(O,O′) is an approximation for diff(O,O′) if for each
pair O,O′ of DL-ontologies, diff≈(O,O′) ⊆ diff(O,O′).

A useful approximation should be easy to compute, yet still provide meaningful
information to the user. One possibility is to define an approximation by considering
only entailments of a certain form. Our tool ContentCVS allows users to customise
approximations by selecting among the following kinds of entailments, where A,B are
atomic concepts (including >, ⊥) and R,S atomic roles or inverses of atomic roles: (i)
A v B, (ii) A v ¬B, (iii) A v ∃R.B, (iv) A v ∀R.B, and (v) R v S. The smallest
implemented approximation considers only axioms of the form (i), which amounts to
comparing the classification hierarchy of both ontologies, while the largest considers
all types (i)—(v). Clearly, the larger the class of entailments presented to the user, the
more errors could be detected. The corresponding differences, however, are harder to
compute, harder to present to the user, and may be harder for the user to understand.

Although these approximations can be algorithmically computed, only the entail-
ments of the form (i) and (v) are typically obtained as standard output of classification.
Computing approximations based on entailments (ii)-(iv) can be expensive since it may
involve performing a huge amount of entailment tests. To reduce the number of tests,
ContentCVS uses the notion of a locality-based module [12]. When checking for all
entailments of the form (ii)-(iv), ContentCVS first extracts the locality-based module
for A and looks for entailments only within the module, which significantly reduces the
search space and makes the computation of these approximations practically feasible.

(a) Selection of Entailments (b) Justifications Poly JRA v ⊥

Fig. 3. GUI for Selection of Entailments in ContentCVS

4.3 Selection of entailments

While some entailments in the computed differences are intended, others reveal errors
in OLtemp. Steps 6 and 7 thus involve selecting entailments that: (i) are intended and
should follow from OLtemp (written =+ in Table 1), and (ii) are unintended and should
not follow from OLtemp (written =−).

The development of techniques to help users understand the relevant deductive dif-
ferences and subsequently select the sets of intended and unintended entailments is
especially challenging. First, a tool should explain why, on the one hand, the new en-
tailments that hold in OLtemp do not hold in OL and OR alone and, on the other hand,
the lost entailments that hold in OL and OR do not hold in OLtemp. The notion of a
justification—that is, a minimal subset of the ontology for which the given entailment
holds— has proved very useful in ontology debugging [5, 6]. In order to explain a given
entailment, ContentCVS presents all its justifications. Computing all justifications is
expensive, so ContentCVS uses the infrastructure and optimisations already available
in Protégé [7] and implements those in [13].

Second, the potentially large number of relevant entailments may overwhelm users.
These entailments should be presented in a way that makes them easier to understand
and manage. ContentCVS extends known ontology debugging techniques by identi-
fying dependencies between entailments. Intuitively, an entailment β depends on α if
whenever α is invalidated by removing axioms from OLtemp, then β is also invalidated.

Definition 4. Let O |= α, β. The axiom β depends on α w.r.t. O, written α . β iff for
each Jβ ∈ Just(β,O) there is Jα ∈ Just(α,O) such that Jα ⊆ Jβ . We say that α is a
.-minimum (respectively .-maximum) if there is no β s.t. α depends on β (respectively
β depends on α).

The relation . is consistent with our intuitions as shown next:

Proposition 5. Let O |= α, β, O′ ⊂ O and α . β. Then: 1) O′ 6|= α implies O′ 6|= β,
and 2) O′ |= β implies O′ |= α.

Figure 3(a) shows the GUI for selecting=−. A similar interface is used to select=+.
The left-hand-side of the figure displays the dependency tree, which can be expanded
and contracted in the usual way; on the right-hand side, users can select an entailment
to remove and show its justifications. The justifications for the entailment highlighted
in Figure 3(a) are shown in Figure 3(b). The GUI indicates which axioms in these
justifications were selected in Step 2 from OL and from OR, marking them with ‘L’
and ‘R’ respectively. Unmarked axioms occur in both ontologies.

4.4 Plan generation, selection and execution

Changing the set of entailments involves modifying the ontology itself. In general, there
may be zero or more possible choices of sets of axioms to add and/or remove in order
to satisfy a set of requirements. We call each of these choices a repair plan (or plan).

Definition 6. Let O, =+, =−, O+ and O− be finite sets of axioms such that O− ⊆ O,
O+∩O = ∅,O |= =−,O∪O+ |= =+, andO 6|= α for each α ∈ =+. A repair plan for
O givenO+,O− =+ and=− is a pair P = 〈P+,P−〉 such that P+ ⊆ O+, P− ⊆ O−
and the following conditions hold: 1) (O ∪ P+) \ P− |= α for each α ∈ =+, and 2)
(O ∪ P+) \ P− 6|= β for each β ∈ =−. P is minimal if there is no P1 s.t. P+

1 ⊂ P+

and P−1 ⊂ P−.

Definition 6 extends the notion of a plan proposed in the ontology repair literature
(e.g., see [4]). In particular, the goal of a plan in [4] is always to remove a set of axioms
so that certain entailments do not hold anymore; hence, a plan is always guaranteed to
exist. In contrast, a plan as in Definition 6 also involves adding axioms so that certain
entailments hold; therefore, possibly conflicting sets of constraints need to be satisfied.

Step 8 involves computing all minimal plans (denoted P). In our case, the ontology
O to be repaired is OLtemp from Step 3. The intended and unintended entailments (=+

and=−) are those selected in Steps 6 and 7. We assume that a plan can add any subset of
the axioms inΛs not originally selected in Step 2 (i.e.O+ = Λs\S). A plan can remove
any subset of the selected axioms (i.e., O− = S). Hence, we assume that plans should
not remove axioms outside Λs, which are common to both versions of the ontology.

In Step 9 users can select from P a plan to be applied. If no plan matches their
intentions, the conflict resolution process ends as it started; that is, by returning the old
version of OL in a conflicting state (Step 9). In contrast, if a plan P is selected, then
P is applied by returning the ontology (OLtemp ∪ P+) \ P− in a non-conflicting state
(Steps 10–11), which is then ready to be committed.

ContentCVS implements a plan computation algorithm (see [8]) that reuses the
justifications already computed when obtaining the orderings from Definition 4. The
algorithm prunes the set of possible plans using the following principles: (i) in order for
an entailment α ∈ =+ to hold after the execution of a plan 〈P+,P−〉, (O ∪P+) \ P−
must contain at least one justification for α in O ∪ O+; (ii) in order for an entailment
β ∈ =− not to hold after the execution of a plan 〈P+,P−〉, it is sufficient to show that
no justification for β in O ∪O+ is contained in (O ∪ P+) \ P−.

ContentCVS also provides functionality for selecting the most suitable minimal
plan (Step 10). In particular, it identifies the axioms in the structural difference of OL

Input: O,O′: ontologies; approximation diff≈
Compute Λs and store its size (I) and computation time (II)
repeat

Randomly select S ⊆ Λs, and compute Oaux := O ∪ S
Compute diff≈(Oaux,O) ∪ diff≈(Oaux,O′) and store its size (III)
Compute diff≈(O,Oaux) and store its size (IV)
Compute all justifications for entailments in diff≈ and store avg. time per justification (V)
Compute ., and store the number of .-minimums (VI)
Randomly select =− from minimums of . and =+ from maximums of .
Compute P (minimal plans) and store number of plans (VII) and computation time (VIII)

until 200 iterations have been performed
Table 2. Synthetic Experiments

and OR that are shared by all minimal plans, and presents the remaining axioms in a
separate frame, allowing users to select which ones among them a plan must either add
or delete. The tool then filters the minimal plans according to the user’s selections.

5 Evaluation

We have evaluated the performance of the implemented algorithms by conducting a
number of synthetic experiments based on the evolution of a realistic ontology. We
have evaluated the usability of ContentCVS, and the adequacy of our approach for
ontology development by conducting a pilot user study.

5.1 Synthetic experiments

We have simulated the evolution of a medical ontology by using a sequence of 11 ver-
sions of an ontology developed at the University of Manchester6. Their size varies from
71 classes, 13 roles and 195 axioms in the first version to 207 concepts, 38 roles and
620 axioms in the last version. Their DL expressivity is SHIQ(D). The experiments
were performed on a laptop computer with a 1.82 GHz processor and 3Gb of RAM.

For each pairOi,Oi+1, i ∈ {1, . . . , 10} of consecutive versions, and both the small-
est and largest approximations of the deductive difference in ContentCVS, we have
performed the synthetic experiment in Table 2, where the Roman numbers refer to mea-
surements stored during the experiment, and presented in Table 3. These experiments
follow our approach for conflict resolution in Table 1, with the assumption that Oi is
the local ontology, Oi+1 is the repository ontology, and the steps in Table 1 requiring
manual intervention are performed randomly. Table 3 summarises our results7.

Several conclusions can be drawn. First the main computational bottleneck is the
computation of all the justifications for relevant entailments. Once the justifications
have been computed, the computation of the plans is relatively fast. Second, the amount

6 Thanks to Alan Rector for providing this test sequence.
7 http://krono.act.uji.es/people/Ernesto/contentcvs/
synthetic-study

Smallest diff≈ approximation Largest diff≈ approximation
I II III IV V VI VII VIII III IV V VI VII VIII

O &O′ avg avg avg avg avg/max avg avg avg avg avg avg/max avg

O1&O2 50 0.03 15 6 0.1 15 1 / 1 1.5 111 17 2.0 33 495 / 5508 10.3
O3&O4 82 0.02 13 4 0.26 13 3 / 18 1.7 128 90 0.9 30 46 / 896 3.6
O5&O6 93 0.02 31 14 0.1 29 3 / 32 1.2 267 48 5.9 49 2.7 / 6 30
O8&O9 110 0.03 19 15 0.02 18 1 / 4 0.07 216 78 1.2 47 488 / 3888 4
O9&O10 79 0.02 15 6 0.06 14 1 / 2 0.3 251 14 3.7 46 101 / 720 21.5
O10&O11 117 0.01 24 8 1.5 24 7 / 50 15.6 208 154 5.3 31 35 / 225 22.7

Table 3. Summary of Results. Roman numbers refer to Table 2. Time measures given in seconds

of information presented to the user largely depends on the selected approximation
for the deductive difference. For the smallest approximation, the average number of
axioms in the relevant differences (see III and IV) is in the range 4–31, and the average
number of minimal plans (see VII) is in the range 1–50. In contrast, in the case of
the largest approximation, these average numbers are in the ranges 14–267, and 6–
5508 respectively. The amount of information the user would need to consider is thus
much larger. Table 3 also shows that the use of the dependency relation . can lead to a
significant reduction in the amount of presented information (VI).

5.2 User study

We have conducted a pilot user study to evaluate the usability of ContentCVS, as well
as to show the adequacy of our approach in practice. The details of the study, including
the questionnaire and the test ontologies, are available online. 8

The study consists of three parts. Part 1 simulates a conventional debugging sce-
nario where a single developer changes his/her ontology O0 and, as a result, creates a
new version O1 of the ontology in which errors have been introduced. Part 2 simulates
the scenario where a single developer working with OL performs a CVS-update and
needs to reconcile OL with the version OR in the repository using our methodology
in Table 1 from Section 4. Finally, Part 3 simulates the collaborative development of
an ontology. Each participant extended an initial ontology by performing a-priori spec-
ified changes, and tried to execute a CVS-commit either after completing the changes,
or when explicitly indicated. If the commit failed, the participants had to update and
reconcile the changes using their ContentCVS client. In the end, users discussed the
final reconciled ontology among themselves and with the coordinator of the study.

We had eight participants in Parts 1 and 2, and conducted three collaborative tests
in Part 3. They were academic researchers, most of them working in fields other than
semantic Web. Most users evaluated their experience on DLs and OWL as either ‘inter-
mediate’ or ‘low’, but had used both Protégé and a CVS file system before.

Our results show that most users considered very useful the computation of struc-
tural differences between ontology versions, but found it difficult to detect errors by
examining only the structural difference.

Users liked the detection of errors using approximations of the deductive differ-
ence; when using ContentCVS, everyone could identify both new unintended entail-
ments and lost intended entailments. Most participants were satisfied with the smallest

8 http://krono.act.uji.es/people/Ernesto/contentcvs/user-study

approximation implemented in ContentCVS, and complained about excessive amount
of displayed information when using the largest implemented approximation. Interest-
ingly, by using our largest approximation they could detect errors other than unsatisfi-
able concepts and atomic subsumptions. The computation of the dependency relation
(.) was evaluated very positively, but users complained about the response time.

Most users were satisfied with the functionality for computing repair plans as well as
with the ontology obtained after the execution of the selected plan. Users also described
the CVS functionality in ContentCVS as either ‘very useful’ or ‘useful’ and evaluated
the tool’s workflow very positively. In particular, most of them evaluated the GUI as
‘good’ and the ontology development workflow as either ‘very good’ or ‘good’.

The main points of criticism were, on the one hand, the excessive amount of infor-
mation displayed when using ‘large’ approximations of the deductive difference and,
on the other hand, slow response of the tool when computing all justifications of cer-
tain entailments and/or computing large approximations of the deductive difference. We
consider addressing these deficiencies as a part of our future work.

6 Related and future work

There have been several recent proposals for facilitating collaboration in ontology en-
gineering tools. Collaborative Protégé [14, 15] allows developers to hold discussions,
chat, and annotate changes. The authors of [16] present an ontology change manage-
ment system which works similarly to a CVS. The change history is stored in a server
and the system can identify differences in the change sets from different clients. The
functionality described in [14, 15, 16] and our techniques naturally complement each
other. For example, discussion threads and annotations could be used in ContentCVS
to assist users in selecting intended and unintended consequences (i.e. in Steps 9 and
10 of Table 1), and for recording the rationale behind their selections.

The authors of [17] propose a ‘locking’ mechanism that allows a user, for example,
to establish a lock over a concept, meaning that other users are not allowed to make
changes that ‘affect’ that concept until the lock has been released. Although errors can
still occur, the idea is that these locks would mitigate them. The precise guarantees
provided by locks are, however, not clear. Conflicts are likely to arise, and the approach
in [17] does not provide means for detecting and resolving them if they do.

The OWLDiff tool 9 provides a GUI for computing the deductive differences be-
tween pairs of OWL 2 EL ontologies. The tool, however, does not provide means for
explaining these differences, resolving conflicts or constructing the reconciled ontology.

In the future, we plan to improve the system’s performance and in particular the
computation of justifications. We also aim at integrating in our tool some of the func-
tionality provided by Collaborative Protégé for holding discussions and annotate changes.
Finally, given the encouraging output of the evaluation, we are planning to apply our
results in a real-world scenario in the context of the HeC project.

9 OWLDiff: http://sourceforge.net/projects/owldiff

References

[1] Hartung, M., Kirsten, T., Rahm, E.: Analyzing the evolution of life science ontologies and
mappings. In: Proc. of DILS. (2008) 11–27

[2] Konev, B., Walther, D., Wolter, F.: The logical difference problem for description logic
terminologies. In: Proc. of IJCAR. (2008) 259–274

[3] Kontchakov, R., Wolter, F., Zakharyaschev, M.: Can you tell the difference between DL-
Lite ontologies? In: Proc. of KR, AAAI Press (2008) 285–295

[4] Kalyanpur, A., Parsia, B., Sirin, E., Cuenca Grau, B.: Repairing unsatisfiable concepts in
OWL ontologies. In: Proc. of ESWC. (2006) 170–184

[5] Schlobach, S., Huang, Z., Cornet, R., van Harmelen, F.: Debugging incoherent terminolo-
gies. J. Autom. Reasoning 39(3) (2007) 317–349

[6] Kalyanpur, A., Parsia, B., Sirin, E., Hendler, J.A.: Debugging unsatisfiable classes in OWL
ontologies. J. Web Semantics 3(4) (2005) 268–293

[7] Kalyanpur, A., Parsia, B., Horridge, M., Sirin, E.: Finding all justifications of OWL DL
entailments. In: Proc. of ISWC. (2007)

[8] Jimenez-Ruiz, E., Cuenca Grau, B., Horrocks, I., R.Berlanga: Conflict detection and
resolution in collaborative ontology development. Technical report (2009) Available at:
http://krono.act.uji.es/people/Ernesto/contentcvs.

[9] Cuenca Grau, B., Horrocks, I., Motik, B., Parsia, B., Patel-Schneider, P., Sattler, U.: OWL
2: The next step for OWL. J. Web Semantics 6(4) (2008) 309–322

[10] Motik, B., Cuenca Grau, B., Horrocks, I., Wu, Z., Fokoue, A., Lutz, C.: OWL 2 Web
Ontology Language: Profiles. W3C Working Draft (2009) http://www.w3.org/TR/owl2-
profiles/.

[11] Motik, B., Patel-Schneider, P., B.Parsia: OWL 2 web ontology language struc-
tural specification and functional-style syntax. W3C Working Draft (2009)
http://www.w3.org/TR/owl2-syntax/.

[12] Cuenca Grau, B., Horrocks, I., Kazakov, Y., Sattler, U.: Just the right amount: extracting
modules from ontologies. In: Proc. of WWW. (2007) 717–726

[13] Suntisrivaraporn, B., Qi, G., Ji, Q., Haase, P.: A modularization-based approach to finding
all justifications for OWL DL entailments. In: Proc. of ASWC. 1–15

[14] Noy, N.F., Tudorache, T., de Coronado, S., Musen, M.A.: Developing biomedical ontolo-
gies collaboratively. In: Proc. of AMIA 2008. (2008)

[15] Noy, N.F., Chugh, A., Liu, W., Musen, M.A.: A framework for ontology evolution in
collaborative environments. In: Proc. of ISWC. (2006) 544–558

[16] Redmond, T., Smith, M., Drummond, N., Tudorache., T.: Managing change: An ontology
version control system. In: Proc. of OWLEd. (2008)

[17] Seidenberg, J., Rector, A.L.: A methodology for asynchronous multi-user editing of se-
mantic web ontologies. In: Proc. of K-CAP. (2007) 127–134

