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Abstract. We have developed a class of mobile applications that monitor and 
assist users with their tasks in time and space. The applications provide users 
with suggestions and reminders based on derived user intent. User intentions 
are derived from calendar and to-do list entries and are placed in time and space 
based on user context and availability for the suggested tasks, and the 
availability of resources in their environment that are critical to task 
accomplishment. 
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1   Introduction 

Today, the proliferation of mobile applications has greatly increased both the 
opportunity and challenges of offering personalized services. On one hand, mobile 
devices allow applications to know more about the user’s immediate context (e.g., 
current location). On the other hand, the time window and user attentiveness present a 
challenge to applications that offer time sensitive advice and assistance. 

It is widely agreed that efforts aiming at providing computer applications with the 
ability to infer one’s intention for the purposes of text or speech understanding, for 
example, showed that the problem is complex and highly context sensitive. Research 
in Artificial Intelligence and related areas uncovered the usefulness of constructing 
hierarchies for organizing commonly used goals, plans scripts, or frames. These 
knowledge structures provided the context and inference capabilities required for the 
interpretation of individual actions. User intentions can then be derived from their 
actions by matching these actions into pre-defined plans and associated goals. Often, 
when predefined knowledge structure is not known or available, applications attempt 
to detect behavioral patterns using various machine learning techniques that are then 
matched with known plans and goals (e.g., [1]). 

The need to infer user intentions became more pronounced with the construction of 
interactive personalized applications where the value of the application is based on 
offering a unique user experience using knowledge about user intent. In the context of 
Web applications this requirement translated, for example, to ecommerce sites 
providing personalized suggestions to their visitors. In most cases, since it was close 



to impossible to figure out what the user was looking for, the user was assigned to a 
cluster of “similar” individuals and the application employed, in one form or another, 
a statistical collaborative filtering approach. 

In this paper, we describe a class of mobile assistant applications that offer users 
personalized reminders and suggestions. These applications monitor user activities 
and look for the right time and location to provide useful advice based on user 
intentions and priorities. To enable these applications, we took the approach that user 
intentions can be derived from the calendar and to-do list (i.e., productivity) 
applications users interact with. In addition, the applications also monitor in real time 
whether or not the user schedule is on track and suppress suggestions if they may 
cause further schedule disruptions. 

2 Technologies of Mobile Reminders 

In order for a mobile service (and its backend) to effectively exploit the personal 
contextual and productivity resources associated with a user (e.g., her schedule and 
to-do items), it is necessary to be able to: i) access this information on an ongoing 
asynchronous basis, ii) understand it, and iii) trigger effective actions from what is 
discovered from the resources. Open APIs and Internet-connected services address 
‘access’ and the ability to run mobile applications in the background on some new 
platforms satisfies the long-running requirement. 

Understanding and exploiting information – though it may be easily accessible – is 
often most difficult. Syntactic formats (e.g., iCalendar) help but free text is a mode 
used often for the “description” or “action” part calendar and to-do entries. 
Understanding when it is appropriate to trigger a user interaction is a challenge that 
requires understanding of the particular user’s habits and current context. Thus, there 
are several broad requirements for productivity application-driven mobile reminders 
(beyond user location) including: 

• Understanding deeply the languages and formats used by the user’s calendar 
and productivity applications; 

• Understanding user context to support reminder generation; 
• Using the semantics of time and location to build better reminder systems [2]. 
Compromises are acceptable but tend to decrease value or efficiency in some way 

or another; thus a cost-benefit analysis is sometimes applied (for example, 
constraining user selections to a preset vocabulary or style increases system efficacy 
but decreases user experience). 

3 High-level Architecture 

User intent is deduced by noticing events associated with the user, such as creation of 
new calendar entries or to-do tasks, examining current user context, and matching 
noticed events against potential actions. In this section, we describe the platform used 
for building the mobile assistant applications mentioned on this paper. Our platform 
employs an event stream approach to matching incoming events to potential actions 



based on user context, as shown in Figure 1. Connectors are used (not shown here) for 
interacting with external information sources and applications (e.g., Google Calendar, 
Microsoft Outlook, Web portal) for the purpose of retrieving events and injecting 
these events into the platform. 
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Figure 1: High-level platform architecture 

In the remainder of this section, we describe some of the main platform 
components illustrated in Figure 1, “walk through” a to-do entry creation event, and 
illustrate a Web-based approach to action notifications. 

Event Manager: Responsible for pre-processing incoming events, such as location 
updates, and determining whether to forward these events to the context manager, 
inject them into the event stream engine, or ignore them. The decision to process 
incoming events is based on user context, and information registered with the 
schedule and location managers. 

Context Manager: Responsible for efficient management of user context based on 
observed context events and user preference and policy enforcement (e.g., privacy 
rules, notification preferences, profile information). This component is responsible for 
parsing of the information present in context events (e.g., to-do task description), 
inferring user intent, and determining how to satisfy the intent (e.g., “buy milk” to-do 
task is mapped to “grocery store”). This is achieved by identifying the ontology 
associated with the event and then selecting the appropriate taxonomy within this 
ontology. Currently, the ontology identification is achieved by parsing the text 
associated with appointments or tasks. 

Event Stream Engine: Offers content-based publish-subscriber functionality. 
Since the intelligence of our platform relies on user context management and efficient 
pre-processing of incoming events, the event stream engine component can be an 
existing complex event processing engine (e.g., Esper). 

Location Manager: Responsible for the efficient representation and management 
of location information associated with user context entities, such as calendar entries, 
and location update events. For scalability, a hierarchical representation of location 
information is being used. Here, non-leaf nodes contain aggregate information about 
the location information present in the leaves, allowing efficient identification of 
location events that can be ignored (e.g., traffic accident along a route that does not 
impact any of the users). 

Schedule Manager: Responsible for the efficient representation and management 
of deadlines associated with user context entities, such as calendar entries and to-do 
tasks, and predictive escalations for cases where deadlines may not be met (e.g., late 
for appointment). 



Filtering / Matching: Consumer of notification generated by the event stream 
engine. It interacts with the context manager for determining how to process these 
notifications and select those that will be presented to the user. 

The following use case illustrates the steps taken when a new to-do entry event is 
detected, either via explicit registration (e.g., Web portal, SMS) or via a “pull” from 
the appropriate productivity application (e.g., Microsoft Outlook). 

� To-do task connector retrieves new task and forwards it to the event manager; 
� Event manager receives new to-do task and follows the steps below: 

� Interacts with security manager to authenticate and authorize data; 
� Interacts with context manager to update user context;  

� Context manager follows the steps below upon receipt of new to-do task: 
� Parses the task in order to identify the ontology associated with the 

information present in it and select an appropriate taxonomy (e.g., 
grocery store for “buy milk”).  

� Interacts with schedule manager in order to register time information 
associated with the task, if any; 

� Interacts with location manager in order to register location 
information associated with the task, if any; 

� Registers appropriate event subscriptions (i.e., filters) with the event 
stream engine. 

Figure 2 illustrates two ways in which the platform can inform a user about actions 
related an observed to-do task (i.e., buy milk), current user location, and user context. 

 

You’re near a 
grocery store - 
Remember to buy 
milk. 
Stop and Shop – 
Get $1 off 

 

Figure 2: Example actions (reminders) generated by the platform; a purely SMS 
interaction mode (left), and a smartphone application or Web-based portal (right). 

4 Related Work 

Natural Language Processing (NLP) is an ongoing research challenge addressed 
principally by either knowledge or statistical approaches. Determining parts of speech 
is a key part of NLP and resolving the ambiguities of language use is particularly 
difficult.  As an example, the mapping of language to intent is very difficult [4] [6]. 



Microsoft Research [3] and Google, among others, have studied the cost-benefit of 
mobile reminders in order to effectively choose the best reminder at a given moment. 
Typically, these approaches rely upon a Bayesian learning phase in which users 
“train” the system. Other approaches lean heavily on exploiting timing and temporal 
nature of appointments, tasks and activities. In [5], with the help of profiles, the 
authors focus on the current time of day to infer users’ interests and requirements at 
the given moment (e.g., for food, travel, etc.). 

Startups like Hakia.com allow freely structured search queries and deliver results 
tailored to the derived meaning of the search terms. Google Calendar and AskSandy-
like systems parse limited natural language phrases such as “meet with bob in New 
York today at 5-7am” while the new mobile devices now ship with onboard 
applications that assist in productivity in innovative new ways: e.g., Palm Pre and 
Android G1 can easily enable location-based reminders. 

However, greater algorithmic complexity tends to require a server based system; 
contextual and learning capabilities tend to require a (costly) learning phase in which 
the system and the user are in a feedback loop. Page-views and ad banner click-
through rate (e.g. a metric Google uses) is used to infer interest in products. Text 
search term auto-complete is a well-used technique that infers search terms by 
looking at a community’s – or a given user’s – past searches. 

5 Conclusions 

In this paper, we have presented our work [2][7] in the area of mobile assistant 
applications that exploit user context information present in calendar and to-do task 
entries in order to suggest actions at specific times and locations. Our approach to 
using calendar entries and to-do list tasks for inferring user intent and, thus, offer 
more relevant and personalized services is unique. Currently, a number of mobile 
operators are planning to pilot one of the applications we have built on top of the 
platform outlined in Section 3 to their pre- and post-paid subscribers. 
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