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Abstract. It is by now widely accepted that a number of tasks in
natural language understanding (NLU) require the storage of and
reasoning with a vast amount of background (commonsense)
knowledge. While several efforts have been made to build such
ontologies, a consensus on a scientific methodology for ontological
design is yet to emerge. In this paper we suggest an approach to
building a commonsense ontology for language understanding
using language itself as a design guide. The idea is rooted in
Frege’s conception of compositional semantics and is related to
the idea of type inferences in strongly-typed, polymorphic
programming languages. The method proposed seems to (4)
resolve the problem of multiple inheritance; (i) suggest an
explanation for polysemy and metaphor; and (7i) provide a step
towards establishing a systematic approach to ontological design.

1 Introduction

Recent work in natural language understanding (NLU) seems to be slowly
embracing what we like to call the ‘understanding as reasoning’ paradigm,
as it is quite clear by now that understanding natural language is, for the
most part, a commonsense reasoning process at the pragmatic level, for
example in such tasks as reference resolution, plan recognition, lexical
disambiguation, prepositional phrase attachments, temporal coherence,
and the resolution of quantifier scope ambiguities. For instance, consider
the resolution of ‘He’ in the following:

John shot a policeman. He immediately
a) fled away. (1)
b) fell down.

It is quite difficult to imagine how children effortlessly resolve such
references, if not by recourse to the commonsense facts that, typically,
when shot(z,y) holds between some z and some y, z is the more likely
subject to flee and y is the more likely subject to fall down. Other
examples of commonsense reasoning in language understanding involve the
resolution of quantifier scope ambiguities. Consider the following:
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We argue that the plausibility of wide scope a (implying a single paper)
increases as the number of students involved in the relation decreases.
Lacking a syntactic or a semantic explanation, this inference must be a
function of our commonsense knowledge of how the ‘submit’ relation
between students and ‘papers’ is typically manifested in the real world.
Specifically, this inference is based on our commonsense belief that the
submit relation between a student and a paper is typically [1..m]-to-1,
where m is some small number. Moreover, different individuals seem to
have a slightly different value for m, which is consistent with the findings
of Kurtzman and MacDonald (1993) that different individuals seem to
have different scope preferences in the same textual context.!

The ‘understanding as reasoning’ paradigm is certainly not entirely
new in NLU research. Within the AI community, this paradigm was
implicitly embraced by a number of authors (e.g., see Charniak, 1986;
Hirst, 1986; Wilks, 1975; Schank, 1982). Unfortunately, however, these
approaches were largely based on ad hoc algorithms built on top of
informal knowledge representations. Due to the lack of formality, these
procedures were hopelessly unscalable, and scalability was for the most
part attempted by pushing the problem from the procedures to the data;
which consequently led to the so-called knowledge bottleneck. The lack of
progress in solving the knowledge bottleneck problem generally led Al
researchers to either abandon inferential and knowledge-based approaches
in favor of more quantitative approaches (e.g., Charniak, 1993), or to
focus almost exclusively on the development of large commonsense
knowledge bases (e.g., Lenet and Ghua, 1990). Within linguistics and
formal semantics, one the other hand, little or no attention was paid to
the issue of commonsense reasoning at the pragmatic level. Indeed, the
prevailing wisdom (which might be partly due to lack of progress in Al-
based NLU) was that a number of NLU tasks require the storage of and
reasoning with a vast amount of background knowledge (van Deemter,
1996), an opinion that led some (e.g., Reinhart, 1997) to conclude that
pragmatic approaches are ‘highly undecidable’.

In our view both trends were partly misguided. In particular, we hold
the view that while language understanding is for the most part a
commonsense reasoning process at the pragmatic level, this reasoning
process and the underlying knowledge structures that it utilizes must be
formalized if we ever hope to build scalable systems. In this light we
believe the work on integrating logical and commonsense reasoning in
language understanding (e.g., Allen, 1987; Pereira & Pollack, 1991;
Zadrozny & Jensen, 1991; Hobbs, 1985; Hobbs et al., 1993; and more
recently Asher & Lascarides, 1998; and Saba & Corriveua, 1997) is of
paramount importance.

! An inferencing strategy that models individual preferences in the resolution of scope
ambiguities at the pragmatic level has been suggested in (Saba and Corriveau, 2001).



Much of this work is directed towards formulating commonsense
inferencing strategies to resolve a number of ambiguities at the pragmatic
level. Although it has been shown (see Saba & Corriveau, 2001) that these
inferences do not always require the storage of and reasoning with a vast
amount of background knowledge, it is clear that a number of tasks do
require such a knowledgebase. Indeed, substantial effort has been made
towards building ontologies of commonsense knowledge (e.g., Lenat &
Ghua, 1990; Mahesh & Nirenburg, 1995; Sowa, 1995), and a number of
promising trends that advocate ontological design based on sound
linguistic and logical foundations have started to emerge in recent years
(e.g., Guarino & Welty, 2000; Pustejovsky, 2001). However, a systematic
and objective approach to ontological design is still lacking. In particular,
we believe that an ontology for commonsense knowledge must be
discovered rather than invented, and thus it is not sufficient to establish
some principles for ontological design, but that a strategy by which a
commonsense ontology might be systematically and objectively
designed must be developed. In this paper we propose such a strategy.

2 Language Use as Guide to Ontological Design

Our basic strategy for designing an ontology of commonsense knowledge is
rooted in Frege’s conception of Compositionality. According to Frege (see
Dummett, 1981, pp. 4-7), the sense of any given sentence is derived from
our previous knowledge of the senses of the words that compose it,
together with our observation of the way in which they are combined in
that sentence. The cornerstone of this paradigm, however, is an
observation that has not been fully appreciated regarding the manner in
which words are supposed to acquire a sense. In particular, the principle of
Compositionality is rooted in the thesis that ”our understanding of [those]
words consists in our grasp of the way in which they may figure in
sentences in general, and how, in general, they combine to determine the
truth-conditions of those sentences.” (Dummett, 1981, pp. 5).

This simple idea forms the basis of our strategy in designing an
ontology for commonsense knowledge: what language allows one to say
about a concept, tells us a lot about the concept under consideration. In
other words, the meanings of words (i.e., the concepts), can be discovered
from the manner in which the words are used in everyday language. As
Bateman (1995) has suggested, language is the best-known theory on
everyday knowledge. Assuming that language reflects thought, therefore,
analyzing patterns of everyday language ‘use’ should provide useful clues
to the structure of commonsense knowledge. As a motivating example,
consider the nouns table and elephant, and the adjectives smart and large,
out of which four syntactically well formed and semantically valid
adjective-noun combinations can be made. One of these combinations,
namely smart table, is typically rejected on pragmatic grounds, as it is at
odds with our commonsense view of what tables are?. In particular, while
it is sensible to say large elephant and large table, a table is not the kind of

2 For the moment we are not concerned with metaphor.



object for which smart applies. This analysis results in the fragment
hierarchy shown in figure in 1 below. Note that this kind of analysis is not
much different from the type inferencing process that occurs in strongly
typed, polymorphic programming languages?.

m

{elephant ,table}

%art\

{table} {elephant }

Figure 1. A simple analysis of four adjective-noun combinations.

For example, consider the linguistic patterns and the corresponding type
inferences shown in table 1. From z + 3, for example, one can infer that z
is a number since numbers are the ”kinds of things” that can be added to
3. In general, the most generic type possible is inferred (i.e., these
operations are assumed to be polymorphic).

Linguistic Type

Patternlnference

T+ 3 7 is number

reverse(z)  xis a sequence

insert(z,y) xis an object; y is sequence of z objects
head(z 7 is a sequence

even(z)z is number

Table 1. Linguistic patterns and the corresponding type inferences.

For example, all that can be inferred from reverse(z) is that z is the
generic type sequence, which could be a list, a string (a sequence of
characters), a vector, etc. Note also that in addition to actions
(methods), properties (truth-valued functions) can also be used to infer
the type of an object. For example, from even(z) one can infer that z is a
number, since lists, sequences, etc. are not the kinds of objects which can
be described by the predicate even. In general, given a domain (a set of

concepts) C ={c¢,...,c,,} and a set of actions (and properties)
P ={p,,...,p,}, a predicate app(p,c) where ¢OC and pOP can be
defined such that the action (or property) p applies to (or makes sense of)
objects of type c. For each property pOP, a set C, ={c|app(p,c},

denoting all concepts ¢ for which the property p is applicable, can be
generated. A concept hierarchy is then systematically discovered by

3 This is reminiscent of (Montague, 1970): "I reject the contention that there is an
important theoretical difference between formal and natural languages”.



analyzing the subset relationship among the various sets generated. To
illustrate how this type of analysis could (systematically) yield a type
hierarchy, consider a set of concepts C' and a set P of properties (or
actions) that may or may not be sensibly applied to concepts in C:

C ={list,string, set}

P = {empty, member0f,size, tail, head, reverse, toUpperCas e}

Shown in figure 2 below is a number of sets that are generated by app(p,c)
(figure 2a) and the concept hierarchy implied by the subset relationship
among these sets (figure 2b). Note that each (unique) set corresponds to a
class in the hierarchy. Equal sets (e.g. C..;; and Cy..q) correspond to the

same class. A class could be given any meaningful label that intuitively
represents all the concepts in the class. For example, in figure 2b sequence
is used to collectively refer to sets, strings and lists.

— empty +"-

reverse = {1iSt, String} - member0f +\
—size +
={list,string}
sequence
head = {list,stringt

= i i + head —
size = 1list, set,string} / roead ~_ \

={list,set,string} ordered (lists) unordered (sets)

tail

memberOf

apty = {1ist, set,string} e e

_ . ¥ toUpperCas e -
toUpperCase {Strlng} /

string

(a) (0)
Figure 2. Sets generated by app(p,c) and the hierarchical structure implied by them.
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Clearly, there are a number of rules that can be established from the
concept hierarchy shown in figure 2. For example, one can state the
following:

(Oc¢)(app(reverse,c) O app(size,c)) 3)
(Oc) (app(size,c) O = app(reverse,c)) (4)
(Oc¢)(app(tail,c) = app(head,c)) (5)

Here (3) states that whenever it makes sense to reverse an object ¢, then it
also makes sense to ask for the size of ¢. This essentially means that an
object to which the size operation can be applied must be a parent of an
object to which the reverse operation can be applied. (4), on the other
hand, states that there are objects for which the size operation applies,
but for which the reverse operation does not apply. Finally, (5) states that
whenever it makes sense to ask for the head of an object then it also
makes sense to ask for its tail, and vice versa. Thus while there must be at
least one property that defines a concept, there could be many (we will
have more to say about this below.) Finally, it must be noted that in



performing this analysis we have assumed that the predicate app(p,c) is a
Boolean-valued function, which has the consequence that the type
hierarchy is a strict binary tree. In fact, this is one of the main
characteristics of our method, and has led to two important results: (i)
multiple inheritance is completely avoided; and (i) by not allowing any
ambiguity in the interpretation of app(p,c), lexical ambiguity, polysemy
and metaphor are explicitly represented in the hierarchy. This will be
discussed below.

3 Language and Commonsense Knowledge

The work described here was motivated by the following two assumptions:
(i) the process of language understanding is for the most part a
commonsense reasoning process at the pragmatic level; and (i) since
children master spoken language at a very young age, children must be
performing commonsense reasoning at the pragmatic level, and
consequently, they must posses all the commonsense knowledge required
to understand spoken language!. In other words, we are assuming that
deciding on a particular app(v,c) should not be controversial, and that
children can easily and consistently answer simple questions such as do
elephants fly, do mountains talk, do books run, etc. Note that in answering
these questions it is clear that one has to be coconscious of metaphor. For
example, while tables, people, and feelings can be strong (i.e., it is quite
meaningful to say strong table, strong person, strong feeling), it is clear
that the senses of strong in these three cases are quite distinct. In fact, the
various metaphorical derivations of a lexeme are eventually discovered by
the process we describe here, as will become evident in the next sections.
The point here is that all that matters, initially, is to consider posing
queries such as app(smart,elephant) to a five-year old. Furthermore, in
asking such a query we are not asking whether or not every elephant is
smart, nor how smart elephants can be, but whether or not it is
meaningful to say ‘smart elephant’. We believe that such queries are
binary-valued. In other words, while at the quantitative (or a data-level) it
could be a matter of degree as to how smart a specific elephant might be,
for example, the qualitative question of whether or not it is meaningful to
say ‘smart elephant’ is not a matter of degree’. With this in mind, our

1Tt may very well be the case that ”everything we know we learned in kindergarten”!

5 We will not dwell on this issue too much here except to say that as Elkan (1993) has
convincingly argued, to avoid certain contradictions logical reasoning must at some
level collapse to a binary logic. While Elkan’s argument seemed to be susceptible to
some criticism (e.g., Dubois et al. (1994)), there are more convincing arguments
supporting the same result. For example, consider the following:

(1) John likes every famous actress
(2) Liz is a famous actress

(3) John likes Liz

Clearly, (1) and (2) should entail (3), regardless of how famous Liz actually is. Using



basic approach to discovering the ontology of commonsense knowledge can
be summarized as follows:

= Select a set of adjectives and verbs, V ={v,...,v,,} .

¥ m

= Select a set of nouns C ={cy,...,¢,} -
» Generate sets C;, ={cOC | app(v,,c)},1 < i< m for every v, OV
= Analyse the subset relationship between all sets C;, O{C,,...,C,.,}

As an initial example, consider the set of verbs V = {move, walk, run,
talk, reason} and the set of nouns C = {Rational, Bird, Elephant,

Shark, Animal, Ameba}. By repeatedly applying app(v,c) the following sets
are generated:

Cove ={Rational, Animal, Bird, Elephant, Shark, Ameba}
C.aix ={Rational}
C ={Rational}

Cipine = {Animal}
C..1x ={Rational,Bird, Elephant}
C.. ={Rational,Bird, Elephant}

First we note that while some decisions could ‘technically’ be questioned
(say by a biologist), our strategy was to simply consider the question from
the point of view of commonsense. In deciding on a particular app(v,c) we
considered the query poised to a five-year old: do elephants fly, do they
run, do they talk, etc. Questionable situations were simply ignored. This
initial process resulted in the hierarchy shown in figure 3 below. Some of
the sets indicating positive left and right attributes are given in figure 4
below. Note that some powerful inferential patterns that can be used in
language processing are implicit in the structure shown in figure 3. For

example, what does not think does not hurt (L, ), what walks also runs

(Lg ), anything that lives evolves (L; and L,), etc.

4 Knowledge-Level: Being Locked to a Property

Motivating our approach to discovering (as opposed to inventing) the
structure of commonsense knowledge is the idea that common language
must reflect commonsense, and thus, differences and similarities between
concepts must be reflected in our everyday conversation. Technically, the

any quantitative model (such as fuzzy logic), this intuitive entailment cannot be
produced (we leave the details of formulating this in fuzzy logic as an exercise!) The
problem here is that at the qualitative level the truth-value of famous(z) must
collapse to either true or false, since at that level all that matters is whether or not
Liz is famous, not how famous she actually is.



claim we are making here can be stated as follows: every concept at the
knowledge- (or commonsense-) level must ’own’ some unique property,
and this must also be linguistically reflected by some verb or adjective.
This might be similar to what Fodor (1998, p. 126) meant by ”having a
concept is being locked to a property.” In fact, it seems that this is one
way to test the demarcation line between commonsense and domain
specific knowledge. In particular, it seems that domain-specific concepts

are those concepts that are not uniquely locked to any word in the
language.
Thing

+L -
PhysicalThing -R, + AbstractThing

+Ly -
Formation -Ry + Substance
+Lg -
NaturalFormation “Ry + ManMadeFor mation
+L, — +Lg -
LivingThings -R, + InAnimate Artifacts — 5% Constructions
+Lg -
Plants  ~Ag+  Animallife
+L, -
MicroOrgs - R, + Animals
A /%\
Legged —Rg + NonLegged
+Ly -
Winged Ry + NonWinged
+Lly -
Rational —Ry + Irrational
+Lly -
Child -Ry, + Adult

Figure 3. An adult is a physical, living thing that is formed. It evolves, it grows, it
develops, moves, it can walk, run, hear, see, talk, think, reason, etc.

+ L,— ={develop, form} + L,— = {evolve}

+ L,— ={live,die,born, grow} + Ls— ={branch}

= R+ ={move} — R, + ={sleep,rest, eat, digest, bleed, hurt, think}
+ Ly— ={sit, jump, walk,run} — Ry+ ={roar,cry}

+ L,,— ={talk} - R, + ={reason}

Figure 4. Sets shown in figure 3.



To illustrate this point further let us analyse a fragment of the hierarchy
shown in figure 3 in some detail. The concept LivingThing, one can
argue, is the concept for which one can say the following:

app(LivingThing,Grow)
app(LivingThing,Develop)
app(LivingThing,Live)
app(LivingThingDie)

That is, living things grow, develop, live and die (the concept
LivingThing is actually ’locked’ to several other properties, and thus to
several other verbs and adjectives.) What is important to note here is that
in order to classify LivingThing further one must find some conceptual
difference between all living things; a difference which must be somehow
reflected in language. As it happens, the word 'move’ could be used on all
living things except plants. One could, therefore, suggest a classification
based on that verb, as shown in figure 3.

Thus all living things are either plant-like things (Plants), which are
the immobile living organisms, or animal-like things (AnimalLife), which
are the mobile living organisms. We are now again faced with the same
situation, namely further classification of Plants and AnimalLife. This in
turn requires us to find some conceptual difference between potential
subtypes of these two concepts, which must translate into a difference in
ordinary language. This process is repeated until no further classification
based on linguistic differences is possible. In figure 3, for example, Winged,
which is the class of animals that are legged and have wings was
introduced based on the property of flying, a difference that translates in
language to the lexeme ’fly’. While a biologist can list numerous
differences between all birds that fly, classification on such grounds is
domain-specific, and does not belong to the knowledge (or commonsense)
level, since there does not seem to be a linguistic difference between all
birds that fly. This must be, therefore, the knowledge-level, and any
further classification beyond this level is based on domain-specific
knowledge.

5 Polysemy and Metaphor

In our approach the occurrence of a verb/adjective at any place and at
any level in the hierarchy always refers to a wunique sense of that
verb/adjective. Therefore one expects similar senses of a lexeme to apply
to concepts along the same path, albeit at different levels in the hierarchy.
In particular, one would expect that highly ambiguous verbs to apply to
concepts higher-up in the hierarchy, where various similar senses of a verb
v should end-up applying at various levels below v.

Consider for example form and formulate, in the sense of forming and
formulating ideas. Since our method is based on the idea of using such
verbs to discover the nature of concepts, form and formulate must both
apply to ideas. Note that if everything that can be ’formed’ can be
formulated’ and vice versa, then these two verbs would be synonymous.



However, in this case this is not so, since there are things that can be
formed but not formulated. For example, consider the small fragment
shown in figure 5, where it is shown that ’developing’, ’formulating’,
forming’, etc. are all specific ways of 'making’ (in other words, one sense
of 'make’ is ’develop’). Note the eventual split however. In particular,
while we make, form, and develop both ideas and feelings, ideas are
formulated while feelings are fostered.

{ideas feelings}

+foster =
:Eormulate +
feelings ideas

Figure 5. An explanation of polysemy.

While the occurrence of similar senses of verbs at various levels in the
hierarchy indicates polysemy, the occurrence of the same verb (the same
lexeme) at structurally isomorphic places in the hierarchy indicates
metaphorical derivations. Consider the following:

app(run,LeggedThing) 6
app(run,Machine) 7
app(run,Show) 8

(6) through (8) state that we can speak of a legged thing, a machine and a
show running. Clearly, however, these examples involve three different
senses of the verb run. It could be argued that the senses of run that are
implied by (7) and (8) correspond to a metaphorical derivation of the
actual running of natural kinds, the sense implied by (6). It is also
interesting to note that these metaphorical derivations occur at various
levels: first from natural kinds to artifacts; and then from physical to
abstract. Moreover, the mass/count distinction on the physical side seems
to have a mirror image of a mass/count on the abstract side. For example,
note the following similarity between water (physical substance) and
information (abstract substance):

* water/information flows, can be diverted, filtered, processed, etc.
= we can be flooded by, or drown in water/information
= a little bit of water/information is (still) water/information

One interesting aspect of these findings is to further investigate the exact
nature of this metaphorical mapping and whether the map is consistent



throughout; that is, whether same-level hierarchies are structurally
isomorphic, as the case appears to be so far (see figure 6)".

Animal Machine
- _._ __________________ _..>
/ —run + / —run + \
LeggedLivi ngThing WheeledMac hine
+f1y _—“'_\_\ _____________ 7?‘:>+f1y —\
Wingedlegg edLivingTh ing WingedWhee ledMachine

Figure 6. Isomorphic structures explaining metaphors.

6 Negation, Immutable Features and Surprise

The model proposed here allows us to have a very interesting model of the
negation. To illustrate, consider the following propositions implied by the
concept hierarchy given in figure 3, namely that generally animals move,
and people talk:

app(Move,Animal) (9
app(Talk,Rational) (10

What is interesting to consider here is how one interprets the negation of
such propositions. In particular, there are two possible answers to the

query - app(Move,?X), i.e., to the query "what objects do not move?” One
can simply provide (U - Animal) as an answer, where U is the set of all
concepts in the universe of discourse. This is the set of all concepts
excluding those for which app(Move,Animal) holds. Thus, plants and all
non-living things do not move (see figure 7 below). This is strong
negation, since it simply returns the complement with respect to the entire
structure. However, we argue that there is a subtle difference between the
following queries:

Do mountains talk? 11
Do elephants talk? 12

Although a rational agent would answer "no” in both cases, one might
imagine a child replying ”nah, mountains do not talk” in response to (11).
This must be function of the following: elephants fall directly under the
negative polarity of talk; while this property is not even applicable to
mountains (see figure 7 below). From a Gricean point of view, it seems
that ”elephants do not talk” is somewhat more meaningful than
"mountains do not talk.” This subtle difference in the two cases of
negation is crucial in performing commonsense reasoning in language

6 Conservatively, the mapping might be a homomorphism and not an isomorphism.



understanding. This is also related to the notion of the immutability of a
feature (Sloman et al., 1998), which is thought to reflect the degree to
which a concept depends on a certain feature (or, conversely, how central
is a certain feature to the definition of a concept). For example, for some

person p, - Run(p) is arguably less surprising than - Walk(p), which in

turn is less surprising than = Move(p). That is, it is much harder to assume
the immobility of a person that to assume that a certain person might not
be able to walk, or run. In our model such measures (including a measure
of surprise) could be easily computed.

Physicalel ing Abs};ractTh ing

k()

LivingTh

- talk(z)
Non.Winged
’ /talk A

rational irrational

Figure 7. Mountains, elephants, and poems do not talk.

7 Reasoning with Commonsense Knowledge

What we are suggesting in this paper is a process that would hopefully
lead to the discovery of the ontology of commonsense knowledge. This
alone would clearly do little to building natural language understanding
systems unless an inferencing strategy that utilizes this ontology is
properly formulated. While the ontology provides the synthetic knowledge
that an NLU system might need, an NLU system must clearly use quite a
bit of analytic knowledge. A typical example would be the following:

(Op, ¢y, ¢y) (app(p, cy) Disalcy, ¢y) O app(p,c,)) (13)

That is, any property that applies to a concept applies to all its subtypes.
Clearly there are numerous other such rules that could be added. Another
important observation here is that the system that will eventually emerge
will yield a much richer type structure than the (flat) type systems
typically assumed in formal semantics (e.g., Montague, 1973). For
example, form the hierarchy in figure 3 one can clearly establish the
following:



Walk : (eLeggedThing - t)

Write : (€gyan — (Ccontent — 1))

That is, ’write’ is not simply a relation between two entities, but a
relation between two specific types of entities. Note the importance of this
step (of combining formal semantics with a rich type hierarchy), however.
For example, (15) states that write(z,y) is well-typed as long as
isa(z,Human) and isa(y,Content). In general,

well Typed(v(e)) =, type(v,(e,, — t)) Otype(e,a) Disa(a,m)
well Typed(v(ey, ;) =4 type(v,(e,, ~ (e, — 1)) Dtype(e;,a) Otype(e,, b)
Oisa(a,m) Oisa(b,n)

More importantly, however, the combination of a rich type hierarchy and
a rigorous semantics should shed some light on the semantics of compound
nominals. For instance, type information might explain why removing the
middle noun form (16) changes the subject considerably while the same is
not true in (17).

Computer book sale 16
Information management system 17

Such rules are important in a variety of language processing tasks, and in
particular in topic-based information retrieval. A compositional semantics
that exploits a rich type hierarchy should therefore facilitate the
development of a meaning algebra; for example to explain why fake gun is
not (exactly) a gun, whereas imported gun is very much a gun. These are
precisely the kinds of issues that have prompted this work, and much of
this is currently under development.

8 Concluding Remarks

In this paper we argued for and presented a new approach to the
systematic design of ontologies of commonsense knowledge. The method is
based on the basic assumption that “language use” can guide the
classification process. This idea is in turn rooted in Frege’s principle of
Compositionality and is similar to the idea of type inference in strongly-
typed, polymorphic programming languages. The experiment we
conducted shows this approach to be quite promising as it seems to have
answered a number of questions simultaneously. In particular, the
approach seems to (i) completely remove the need for multiple inheritance;
(#) provide a good model for lexical ambiguity and polysemy; and (iii)
suggest a plausible explanation of metaphor in natural language.

Much of what we presented here is work in progress, more so than a
final result. Therefore, we are well aware that it might be quite ambitious
to expect this process to yield a complete classification in a strict binary
tree (no multiple inheritance, and no lexical ambiguity). We must also



note that a number of other aspects of this work were not discussed here,
such as the part-whole relationship. In particular, it seems that some, but
not all, verbs that apply to a concept apply to their parts. For example,
grow in app(grow,leg) and app(grow,arm) is very much related to grow in
app(grow,person). That is, when we refer to a person growing, aging, etc.
we are indirectly referring to the growing or aging of the parts. Another
important part of this work is to also discover the nature of the
relationship between (genuine) types (e.g., Human) and roles that concepts
play (e.g., Teacher, Father, etc.) In this regard a number of temporal
aspects must also be formalized.

A great deal of work is still needed to formalize the entire approach as
well as work out the various inference rules that will eventually be needed
in a natural language understanding system. We have already successfully
used some of the ideas presented here in NLU tasks, such as developing an
efficient and cognitively plausible inferencing strategy to resolve quantifier
scope ambiguities at the pragmatic level (see Saba & Corriveau, 2001).
While our immediate goal is to discover the ontology of commonsense
knowledge, our ultimate goal is to build systems that can wunderstand
spoken language. This task has proven to be more challenging than has
ever been imagined. Turing might have had it right all along: a machine
that can converse in spoken language, must be an intelligent machine!
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