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7th Workshop on Large-Scale Distributed Systems for Information Retrieval (LSDS-IR’09)

Preface

The Web is continuously growing. Currently, it contains more than 20 billion pages (some sources suggest more than 100
billion), compared with fewer than 1 billion in 1998. Traditionally, Web-scale search engines employ large and highly
replicated systems, operating on computer clusters in one or few data centers. Coping with the increasing number of user
requests and indexable pages requires adding more resources. However, data centers cannot grow indefinitely. Scalability
problems in Information Retrieval (IR) have to be addressed in the near future, and new distributed applications are likely to
drive the way in which people use the Web. Distributed IR is the point in which these two directions converge.

The 7th Large-Scale Distributed Systems Workshop (LSDS-IR’09), co-located with the 2009 ACM SIGIR Conference,
provides a space for researchers to discuss these problems and to define new research directions in the area. It brings together
researchers from the domains of IR and Databases, working on distributed and peer-to-peer (P2P) information systems to
foster closer collaboration that could have a large impact on the future of distributed and P2P IR.

The LSDS-IR’09 Workshop continues the efforts from previous workshops held in conjunction with leading conferences:

• CIKM’08: Workshop on Large-Scale Distributed Systems for Information Retrieval - LSDS-IR’08

• SIGIR’07: Workshop on Large-Scale Distributed Systems for Information Retrieval - LSDS-IR’07

• CIKM’06: Workshop on Information Retrieval in Peer-to-Peer Networks - P2PIR’06

• CIKM’05: Workshop on Information Retrieval in Peer-to-Peer Networks - P2PIR’05

• SIGIR’05: Workshop on Heterogeneous and Distributed Information Retrieval - HDIR’05

• SIGIR’04: Workshop on Information Retrieval in Peer-to-Peer Networks - P2PIR’04

This year’s program features two keynotes, six full and three short papers covering a wide range of topics related to Large
Scale Distributed Systems.

The first keynote speaker, Leonidas Kontothanassis (Google Inc.), discusses access patterns and trends in video information
systems pertaining to YouTube. The second keynote speaker, Dennis Fetterly (Microsoft Research), talks about experiences
with using the DryadLINQ system, a programming environment for writing high performance parallel applications on PC
clusters, for Information Retrieval experiments.

As in the past years, the workshop features several papers on P2P-IR. Bockthing et al. present an approach for collection
selection based on indexing of popular term combinations. Esuli suggests using permutation prefixes for similarity search.
Ke et al. study the clustering paradox for decentralized search. Finally, Dazzi et al. discuss the clustering of users in a P2P
network for sharing browsing interests.

Another cluster of papers deals with efficiency of large scale infrastructures for information retrieval. Nguyen proposes a
new static index pruning approach. Capannini et al. propose a sorting algorithm that uses CUDA. McCreadie et al. discuss
how suitable the MapReduce paradigm is for efficient indexing. Lin addresses the load-balancing issue with MapReduce.
Finally, on the search quality side, Yee et al. study the benefits of using user comments for improving search in social Web
sites.

We thank the authors for their submissions and the program committee for their hard work.

July, 2009 Claudio Lucchese, Gleb Skobeltsyn, Wai Gen Yee
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The YouTube Video Delivery System

Leonidas Kontothanassis
Google Inc.

This talk will cover the YouTube Video Delivery System. It will discuss access
patterns and trends for both video uploads and downloads. It will describe the
storage and delivery mechanisms for popular and unpopular content and the
impact YouTube has on the network storage infrastructure for Google. We will
also discuss the networking impact for ISPs around the world.

Leonidas Kontothanassis joined Google in 2006 and immediately started
working on networking and video delivery issues and have been ever since. He
currently acts as the manager of the teams working in these areas. Previously
he has worked in such areas as computer architecture, parallel programming,
and content delivery with multiple companies in the Kendall/MIT area include
DEC/HP/Intel Labs and Akamai. He received a PhD in computer architec-
ture in 1996 and has served as committee member or organizer for academic
conferences and research funding organizations like NSF.
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DryadLINQ:
A System for General-Purpose Distributed Data-Parallel Computing

Using a High-Level Language

Dennis Fetterly
Microsoft Research

The goal of DryadLINQ is to make distributed computing on large compute
clusters simple. DryadLINQ combines two important pieces of technology: the
Dryad distributed execution engine and the .NET Language INtegrated Query
(LINQ). Dryad provides reliable, distributed computing on thousands of appli-
cations in a SQL-like query language, relying on the entire -NET library and
using Visual Studio. DryadLINQ is a simple, powerful, and elegant program-
ming environment for writing large-scale data parallel applications running on
large PC clusters. This talk will also describe the experience using DryadLINQ
for a series of information retrieval experiments.

Dennis Fetterly is a Research Software Development Engineer in Microsoft
Research’s Silicon Valley lab, which he joined in May, 2003. His research
interests include a wide variety of topics including web crawling, the evolu-
tion and similarity of pages on the web, identifying spam web pages, and large
scale distributed systems. He is currently working on DryadLINQ, TidyFS,
and a project evaluating policies for corpus selection. Interesting past projects
include the MSRBot web crawler, Dryad, the Your Desktop and Your Keychain
project, which utilizes flash memory devices to enable users to carry their desk-
top PC state with them from machine to machine, and PageTurner, a large scale
study of the evolution of web-pages.
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Sander Bockting
Avanade Netherlands B.V.

Versterkerstraat 6
1322 AP, Almere, Netherlands

sander.bockting@avanade.com

Djoerd Hiemstra
University of Twente

P.O. Box 217
7500 AE, Enschede, Netherlands

d.hiemstra@utwente.nl

ABSTRACT
The centralized web search paradigm introduces several prob-
lems, such as large data traffic requirements for crawling,
index freshness problems and problems to index everything.
In this study, we look at collection selection using highly
discriminative keys and query-driven indexing as part of a
distributed web search system. The approach is evaluated
on different splits of the TREC WT10g corpus. Experimen-
tal results show that the approach outperforms a Dirichlet
smoothing language modeling approach for collection selec-
tion, if we assume that web servers index their local con-
tent.

1. INTRODUCTION
The web search approach of major search engines, like

Google, Yahoo! and Bing, amounts to crawling, indexing
and searching. We call this approach centralized search,
because all operations are controlled by the search engines
themselves, be it from a relatively limited number of loca-
tions on large clusters of thousands of machines. The cen-
tralized web search paradigm poses several problems.

The amount of web data is estimated to grow exponen-
tially [34]. The changing and growing data requires frequent
visits by crawlers, just to keep the index fresh. Crawling
should be done often, but generates a huge amount of traf-
fic, making it impossible to do frequent crawls of all pages.
With an estimated four weeks update interval, updates are
performed relatively slow [25, 35]. Also, it is impossible to
index everything, as the search engine accessible visible web
is only a fraction of the total number of web pages [16].

Callan [5] identified the distributed information retrieval
problem set, consisting of resource description, resource se-
lection and result merging. We believe that distributing the
search efforts may be an approach to solve the problems de-
scribed above. This research focuses on resource description
and resource selection [10, 22]. Resource description, i.e.
indexing of the peers, is distributed; resource selection, or
collection selection, is centralized in our research.

Copyright c© 2009 for the individual papers by the papers’ authors. Copy-
ing permitted for private and academic purposes. Re-publication of material
from this volume requires permission by the copyright owners. This volume
is published by its editors.
LSDS-IR Workshop. July 2009. Boston, USA.
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2. Query 2. Query

3. Result 3. Result

4. Merged result set

Broker

Figure 1: Peers are accessible via a broker to answer
queries from clients

Figure 1 shows three types of entities: peers, brokers and
clients. We assume that peers are collaborative. Every peer
runs a search engine enabled web server. The search engine
indexes the local website(s), but it may also index other
websites. In this scenario, there can be many millions of
peers. When a user has an information need, he can pose
a query at the client. The client sends the query to the
broker. In a response, the broker tries to identify the most
promising peers to answer the query. This has to be a small
amount of peers, e.g. five to ten peers, so not a lot of traffic
is generated. The query is routed to those peers and the
results are returned to the broker. The broker merges the
results and sends the merged list to the client.

Peers and brokers cooperate to enable brokers to identify
most promising peers. Therefore, every peer sends a small
part of its index to the broker. This part cannot be too
small, to still allow for proper judging about the peers’ abil-
ity to satisfactory answer queries. The index part cannot be
too large due to index data traffic scalability.

Techniques have been proposed to manage the index size.
Podnar et al [20] used the concept of highly discriminative
keys (HDKs) for document retrieval in distributed informa-
tion retrieval. An HDK is a set of terms that is highly
discriminative, i.e., that only match a few documents in the
collection. Because the terms are pre-coordinated (they are
combined at index time, not at search time) and because
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only a few document match all terms in a pre-coordinated
set, the HDK approach is able to very efficiently retrieve the
top documents for a query. Although searching can be effi-
cient, the HDK indexing process, described in more detail in
Section 3.1, has the negative side-effect that a huge amount
of highly discriminative keys are generated. To reduce the
number of keys, Skobeltsyn [32] proposed a query-driven in-
dexing strategy that uses caching techniques to adapt to
the changing querying behavior of users. The combination
of HDK with query-driven indexing allows for completely
distributed document retrieval that in theory grows to web
scale proportions [31].

This paper contributes to the field of distributed informa-
tion retrieval by the applying HDKs and query-driven in-
dexing to select collections, instead of documents. Such an
approach would in theory scale the distributed search sce-
nario described above to millions of peers: The broker lists
for every HDK a small number of peers to send the query to,
and the peers retrieve the documents; possibly many. Un-
like a traditional inverted file index that typically consists
of huge posting lists and a, in comparison, tiny dictionary
[36], our HDK index consists of a huge dictionary and, in
comparison, tiny posting lists. The system is fitted into the
previously sketched scenario, which allows for control at the
broker. This control can for example be used to prevent
misuse or to allow for domain-specific search.

This paper is organized as follows: the next section dis-
cusses earlier collection selection methods, Section 3 intro-
duces our collection selection system and Section 4 describes
the evaluation. The paper concludes with results and con-
clusions.

2. EARLIER WORK ON COLLECTION SE-
LECTION

Collection selection systems have been developed to se-
lect collections containing documents that are relevant to
a user’s query. The generalized Glossary-Of-Servers Server
(gGlOSS) is such a system [13]. It uses a vector space model
representing index items (document collections) and user
queries as weight vectors in a high dimensional Euclidean
space to calculate the distance (or similarity) between doc-
ument collections and queries [24].

Another well-known approach is CVV, which exploits the
variation in cue validity to select collections [38]. The cue
validity CV i,j of query term tj for collection ci measures
the extent that tj discriminates ci from the other collec-
tions, by comparing the ratio of documents in ci containing
tj to the ratios of documents in other collections containing
tj . The larger the variation in cue validities for collections
with respect to a term, the better the term is for selecting
collections.

This section will describe two collection selection methods
in more detail: inference networks and language modeling.

2.1 Inference networks
cori [7] is a collection ranking algorithm for the inquery

retrieval system [6], and uses an inference network to rank
collections. A simple document inference network has leafs d
representing the document collections. The terms that oc-
cur in those collections are represented by representation
nodes r. Flowing along the arcs between the leaves and
nodes are probabilities based on document collection statis-

tics. Opposed to tf.idf, the probabilities are calculated us-
ing document frequencies df and inverse collection frequen-
cies icf (df.icf). The inverse collection frequency is the
number of collections that contain the term. An inference
network with these properties is called a collection retrieval
inference network (cori net).

Given query q with terms rk, the network is used to obtain
a ranked list of collections by calculating the belief p(rk|ci)
in collection ci due to the observation of rk. The collec-
tion ranking score of ci for query q is the sum of all beliefs
p(rk|ci), where r ∈ q. The belief is calculated using For-
mula 1. In this formula, b and l are constants, cw i is the
number of words in ci, cw is the mean number of words
in the collections and |C| is the number of collections. df
and cf respectively are the number of documents and col-
lections that contain rk. Finally, dt and db respectively are
the minimum term frequency component and minimum be-
lief component when rk occurs in ci.

To improve retrieval, the component L is used to scale
the document frequency in the calculation of T [6, 23]. L
is made sensitive to the number of documents that contain
term rk (using b) and is made large using l. L should be
large, because df is generally large. Proper tuning of these
two parameters is required for every data set, but deemed
impossible as the correct settings are highly sensitive to data
set variations [12]; the value of l should be varied largely even
when keeping the data set constant while varying the query
type.

Further research showed that it is not justified to use stan-
dard cori as a collection selection benchmark. D’Souza et
al. showed that HighSim outperformed cori in 15 of 21
cases [11]. Si and Callan [28] found limitations with differ-
ent collection sizes. Large collections are not often ranked
high by cori, although they often are the most promising
collections.

L = l · ((1− b) + b · cw i/cw)

T = dt + (1− dt) · log (df )

log (df + L)

I =
log
(
|C|+0.5

cf

)
log |C|+ 1.0

p(rk|ci) = db + (1− db) · T · I (1)

2.2 Language modeling
A language model is a statistical model to assign a proba-

bility to a sequence of words (e.g. a query) being generated
by a particular document or document collection. Language
models can be used for collection selection in distributed
search, by creating a language model for each collection [29,
37]. They have also been used for collection selection for
other tasks, for instance for blog search [2, 26].

indri is an improved version of the inquery retrieval sys-
tem [33], as it is capable of dealing with larger collections,
allows for more complex queries due to new query constructs
and uses formal probabilistic document representations that
use language models. The combined model of inference net-
works and language modeling is capable of achieving more
favorable retrieval results than inquery [18]. Due to these
differences, term representation beliefs are calculated in an-
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other way than with cori (as described in Section 2.1):

P (r|D) =
tf r,D + αr

|D|+ αr + βr

The belief is calculated for representation concept r of docu-
ment node D (in document collection C). Examples of rep-
resentation concepts are a term in the body or title of a doc-
ument. D and r are nodes in the belief network. The term
frequency of representation node r in D is denoted by tf r,D.
αr and βr are smoothing parameters. Smoothing is used
to make the maximum likelihood estimations of a language
model more accurate, which could have been less accurate
due to data sparseness, because not every term occurs in a
document [39]. Smoothing ensures that terms that are un-
seen in the document, are not assigned zero probability. The
default smoothing model for Indri is Dirichlet smoothing,
which affects the smoothing parameter choices [17]. In set-
ting the smoothing parameters, it was assumed that the like-
liness of observing representation concept r is equal to the
probability of observing it in collection C, given by P (r|C).
This means that αr/(αr + βr) = P (r|C). The following
parameter values were chosen:

αr = µP (r|C)

βr = µ(1− P (r|C))

This results in the following term representation belief, where
the free parameter µ has a default value of 2500:

P (r|D) =
tf r,D + µP (r|C)

|D|+ µ

2.3 Discussion
The language modeling approach of indri has a better

formal probabilistic document representation than cori and
indri is an improved version of inquery (which is the foun-
dation of cori). We will use the language model on doc-
ument collections as implemented by indri as our baseline
collection selection system. Si et al. [29] showed that a
language modeling approach for collection selection outper-
forms cori. Furthermore, cori outperforms algorithms like
cvv and gGlOSS in several studies [9, 21].

3. SOPHOS
Sophos is a collection selection prototype that uses HDKs

to index collections. The keys are used to assign scores to
the collections. Using a scoring function, collection scores
can be calculated to rank collections for a particular query.
A general overview is depicted in Figure 2. This section de-
scribes how the broker index is created, explains index size
reduction using a query-driven indexing approach, identi-
fies query result parameters, and concludes with a collection
ranking formula (ScoreFunction in Figure 2).

3.1 Highly discriminative keys
Building the index is done in two phases. First, every

peer builds an index of its document collection and sends
that index to the broker. Second, the broker constructs a
broker index from all peer indices.

3.1.1 Peer indexing
Peer indexing starts with the generation of term set statis-

tics. First, single term statistics are generated by counting

Prune keys with query log

(Query-driven Indexing)

ScoreFunction
Broker

Index

Ranked list of 

collectionsQuery

results

Generated 

index keys

Stored 

index keys

Document collections

Figure 2: General overview of the indexing and col-
lection selection system Sophos

term frequencies of every word in the collection, without
looking at document boundaries in the collection. A term
set is called frequent when it occurs more times than a term
set frequency maximum tf max. Every infrequent single term
is added to the peer index together with its frequency count.
The frequent keys are stored for further analysis.

The next step consists of obtaining double term set statis-
tics. For every frequent term in the collection, frequency
statistics are created for term combinations that consist of
the frequent term and a term that appears after that term
within a window size ws. The result is a list of double terms
with corresponding frequency counts. Once again, the term
set frequency maximum defines which term sets are frequent
and will be used for further analysis, and which term sets
are infrequent and will be stored in the peer index. This
procedure can be repeated as long as the generated term
sets do not contain more than ws terms, or when a prede-
fined maximum number of terms in a term set, hmax, has
been reached.

Summarizing, the peer index consists of tuples with term
sets and corresponding frequency counts.

3.1.2 Broker indexing
The infrequent term sets from the peer indices are sent

to the broker. The broker index contains term sets with
associated sets of collection identifier counters. A collection
identifier counter is a tuple of a collection identifier and a
term set frequency counter. A collection identifier is a short
representation of a collection where the term set occurs.

When a term set is inserted into the broker index, it is
called a highly discriminative key (HDK). The broker index
will contain a maximum number of collections per HDK, de-
noted by the collection maximum cm. As soon as the maxi-
mum number of collections is reached for a particular HDK,
the cm collections with the largest term set frequencies will
be stored in the broker index.

3.2 Query-driven indexing
A list of popular keys can be created by extracting all

unique queries from a query log. Every key that is infrequent
at a peer, and which is present in the unique query list, will
be sent to the broker; the other keys are filtered out to reduce
the broker index size and to reduce traffic.
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c sum of query term set occurrence within one col-
lections (grouped by sets with h terms)

h #terms in an HDK
hmax maximum #terms that HDK can consist of
q #terms in query
n #distinct query terms found in a collection
tf max maximum frequency of a term set in a collection

Table 1: Parameter definitions for query result han-
dling

This index pruning strategy was used before by Shokouhi
et al. [27]. It is not the most desirable strategy for query-
driven indexing, because it is unable to deal with unseen
query terms. However, it will give a good idea about the
possible index size reduction and the loss of retrieval perfor-
mance.

3.3 Identifying query result parameters
Once the broker index has been built, the system is ready

to be queried. The broker index contains HDKs with h
terms, where h varies from 1 to hmax. In Sophos, hmax is set
to 3. Every key has an associated posting list, which con-
tains tuples of collection identifiers and counters. A counter
indicates the number of occurrences of a certain key within
the corresponding collection. The counter value cannot ex-
ceed the term set frequency maximum, tf max, as a key would
otherwise have been locally frequent and new HDKs would
have been generated when the maximum number of terms,
hmax, was not yet reached.

When a user poses a query with q terms, e.g. abcde with
q = 5, the query is first decomposed in query term combi-
nations with length hmax (i.e. abc, abd, . . . , bde, cde). This
results in

(
q
h

)
combinations. Each combination is looked up

in the broker index. Note that this introduces additional
load on the broker, but these lookups do not require net-
work access to the peers. The results of each of those smaller
queries are merged by summing the number of occurrences
per collection. The sum of all counters, c, has a potential
maximum of

(
q
h

) · tf max. It may happen that this procedure
results in little or no collections where an HDK occurs. The
procedure is then repeated for smaller term sets; first term
sets of two terms will be looked up in the index. When even
this gives too few results, single terms will be looked up in
the index. In the case that one collection contains two differ-
ent combinations, e.g. both abc and bce occur in collection
X, the number of occurrences are summed (this is c that was
just introduced). However, it also interesting to note that
4 out of 5 query terms can be found in collection X. The
number of query terms that can be found using HDKs of a
particular length is indicated by n. The different parameters
are displayed in Table 1.

3.4 ScoreFunction: ranking query results
ScoreFunction, given in Formula 2, is a ranking formula

that uses the query result parameters to enforce a collection
ranking conforming to our desired ranking properties. It

calculates a score s for a collection for a given query

s = log10

([
h− 1 +

n− 1

q
+√

c

(hmax+1−h)·(n
h)·tf max

· α(q−n)

q

]
/hmax

)
(2)

It consists of three components; one component per de-
sired ranking property. The properties, and corresponding
components, are listed below in order of importance.

1. Collections that contain longer HDKs should be ranked
higher. Component 1: h− 1.

2. A collection should be ranked higher if it contains more
distinct query terms. Component 2: (n− 1)/q.

3. More occurrences of query term sets within a collection
should result in a higher collection ranking. Compo-

nent 3:

√
c

(hmax+1−h)·(n
h)·tfmax

·α(q−n)

q
.

The general intuition behind this component is that
a collection is more important when it contains more
query terms. This is controlled by a damping factor α.
The term set counts have less impact when they get
closer to tf max, because longer keys would be generated
for a term set in a collection when its frequency exceeds
tf max. We refer to earlier work for a more detailed
explanation about ScoreFunction [4].

An important detail to mention about querying and rank-
ing is that collection X can be found after looking for HDKs
with length h. When the same collection X is found af-
ter looking for HDKs with length h − 1, those results are
discarded as the collection was already found using larger
HDKs. Counts c are only compared with other counts that
are retrieved after looking for HDKs of the same length. The
motivation for this behavior is that smaller HDKs tend to
have higher counts.

Each of the three components has a share in the collec-
tion score. The component share of a less desired property
never exceeds that smallest possible share of a more desired
property’s component value.

4. EXPERIMENT SETUP
This section describes the corpus, query set and query logs

that were used in the evaluation process, and continues to
describe how the collection selection effectiveness of Sophos
was measured.

4.1 Data collections

4.1.1 WT10G corpus splits
The Web Track 10GB corpus (WT10g) was developed for

the Text REtrieval Conference1 and consists of 10GB of web
pages (1,692,096 documents on 11,680 servers). Compared
to regular TREC corpora, WT10g should be more suited
for distributed information retrieval experiments, due to the
existence of hyperlinks, differences in topics, variation in
quality and presence of duplicates [3, 8].

1http://trec.nist.gov/
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Four splits of the WT10G document corpus were made to
look at the effect of document corpora on collection selec-
tion. Every split is a set of collections; every collection is a
set of documents. The numbers 100 and 11512 indicate the
amount of collections in the corpus split.

IP Split: Documents are put in collections based on the IP
addresses of the site where a document was residing.
This results in 11,512 collections.

IP Merge 100: A cluster is created by grouping up to 116
collections, which results in 100 collections. Grouping
is done in order of IP address. This split simulates
the scenario of indexing the search engines that index
many servers.

Random 100 and Random 11512: Two random splits
with 100 collections and with 11,512 collections were
created. Documents were randomly assigned to a col-
lection. The number of 11,512 collections was chosen
to be able to compare a random split with the IP Split.

The number of documents in random splits is relatively
constant, but varies in IP based collections from less than 10
up to more than 1000 documents. This is typical for the size
of sites on the Internet; the number of documents per server
follows a Zipf distribution on the Internet [1]. The IP based
splits show signs of conformance to a Zipf distribution [4].
This means that the IP based splits can be compared to the
Internet in terms of distribution of the number of documents
and the sizes of the collections.

The merit of a collection is the number of relevant docu-
ments in a collection for a particular query. The IP based
corpus splits have a larger deviation in merit among the
collections. This contrasts with random splits, which by ap-
proximation have equal merit for each collection [4].

4.1.2 WT10g retrieval tasks
Fifty WT10g informational ‘ad-hoc’ queries were used for

evaluation (query numbers 501–550). The queries have a
query number, title, description and a narrative description
of the result that is considered relevant. The title is a small
set of words which was used as the query text. The narra-
tive descriptions were used by humans to assign relevance
judgments to documents. The relevance judgments can be
used to count the number of relevant documents in the col-
lections, which in turn can be used to measure collection
selection effectiveness.

There are three types of relevance judgments: not rele-
vant (0), relevant (1) and authoritative (2). There can be
multiple authoritative documents in the document corpus
for a query, but for some queries there are no authoritative
documents. All authoritative judgments are converted to 1,
so documents are either relevant or not relevant. This allows
for evaluation of the collected merit.

4.1.3 Query logs
AOL published a query log with 21,011,340 queries [19].

The log has been anonymized and consists of several data
fields: the actual query issued and the query submission date
and time, and an anonymous user ID number. The release
of the anonymized data set was controversial at the time
because it was proven possible to link an ID to a real person.
To respect the anonymity of the users, we used a stripped

version of the query log that only contains the actual queries
issued in random order (and none of the other metadata).

We also used two query logs that were published by Ex-
cite2 that were stripped in the same way. One query log
from 1997 contains 1,025,907 queries and another query log
from 1999 contains 1,777,251 queries.

Finally, a fourth query log with 3,512,320 unique queries
was created by removing all queries from the AOL query log
that were issued only once. This query log will be referred
to as AOL2. The other logs are called AOL, Excite97 and
Excite99.

4.2 Method
To evaluate the performance of our collection selection

system, we adopted the precision and recall metrics for col-
lection selection as defined by Gravano et al. [13]. We start
by obtaining the retrieval system ranking (S) for a query,
which contains up to 1,000 collections. We also create the
best ranking (B) which is the best possible ranking for a
particular query; collections are ranked by their amount of
merit with respect to a query.

Given query q and collection ci, the merit within a col-
lection can be expressed using merit(q , ci). The merit of
the ith ranked collection in rankings S and B is given by
S i = merit(q , csi) and B i = merit(q , cbi).

The obtained recall after selecting n collections can be
calculated by dividing the merit selected by the best possible
retrieval system:

Rn =

∑n
i=1 Si∑n
i=1Bi

(3)

Precision Pn is the fraction of top n collections that have
non-zero merit:

Pn =
|{sc ∈ Topn(S)|merit(q, sc) > 0}|

|Topn(S)| (4)

The precision and recall obtained by Sophos is compared
to the collection selection results from a baseline of Language
Modeling with Dirichlet Smoothing (lmds) as implemented
by indri. The baseline system has one parameter µ that
is set to 2500. Krovetz word stemming is applied to the
collections.

Section 3 introduced Sophos and its parameters. There
are three parameters for peers: the maximum key length
hmax, the maximum key frequency before calling a key fre-
quent (tf max) and the window size ws. Based on num-
bers used by Luu et al. [15], we use the following settings:
tf max = {250, 500, 750} and ws = {6, 12, 18}. The average
query length on the Internet is 2.3 [14, 30]. We use this ob-
servation to set hmax to 3. Setting it smaller would require
many intersections of term sets (with associated collections)
to answer queries. Setting it larger would result in many
term sets that are rarely queried for. For the broker, the
collection maximum cm is tested for values 5, 10, 20 and 50.

To evaluate Sophos, the collections are processed by re-
moving stop words – drastically reducing the number of in-
valuable keys and speeding up term set generation – and
applying Porter word stemming.

Finally, we will look at the precision and recall with query-
driven indexing using four different query logs. By pruning
the keys from the peer indices that do not occur in a query

2http://www.excite.com/
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log. At the same time, we will look at the number of term
sets (keys) in the broker index to get an idea about its size.

5. RESULTS

5.1 Index size
Figure 3 shows the number of collection identifier coun-

ters within the broker index for different indexing settings
of indexing the IP Split. Spread over single, double and
triple term set collection identifier counters, the number of
counters are a good indication for the actual broker index
size. The figure shows that the number of counters decreases
when the term set frequency maximum is increased.
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Figure 3: Number of collection ID counters with IP
Split.

A more substantial reduction of collection identifier coun-
ters – of roughly 70% – can be achieved by using query-
driven indexing, as shown in Figure 4. The figure shows the
number of collection identifier counters after indexing the
Random 11,512 corpus split with or without query-driven in-
dexing. Figure 5 depicts the obtainable index size reduction
by using different query logs. The Excite query logs contain
significantly less query term sets than the AOL query log.
The figure shows that more keys are pruned from the peer
indices, resulting in a smaller broker index. The figure shows
that using Excite query logs instead of the standard AOL
query log can result in roughly 75% less collection identifier
counters.
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stored per QDI strategy for Random 11512 corpus
split
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stored per QDI strategy for IP Split

5.2 Collection selection performance
Table 2 shows the average precision and recall over 50

queries that were calculated with Formula 3 and Formula 4.
The numbers are calculated for four different corpus splits
with which the baseline (lmds) and Sophos were tested.
Sophos was used with the following settings: query-driven
indexing with the AOL query log, tf max = 250, cm = 20
and ws = 6. Due to memory constraints, we were unable
to run Sophos with a window size larger than 6. The table
shows that the baseline outperforms Sophos on the Random
11,512 corpus split, but Sophos outperforms the baseline on
the IP split.

This is displayed in more detail in Figure 6, which shows
the average recall of Sophos and the baseline after selecting
n collections. Sophos was tested using different query logs,
tf max = 250 and cm = 50. Interestingly, pruning with the
smallest Excite query logs results in the best recall figures,
possibly because the queries were logged at the same time
as when the corpus was crawled.
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Figure 6: Recall of different collections selection
methods on IP Split

6. CONCLUSIONS
We introduced the collection selection system Sophos that

uses highly discriminative keys in peer indices to construct
a broker index. The broker index contains keys that are
good discriminators to select collections (or peers). To limit

LSDS-IR’09 Collection Selection with Highly Discriminative Keys

14



Corpus split Collection selection method P@1 P@10 P@20 P@50 R@1 R@10 R@20 R@50

Random 100 lmds 0.290 0.251 0.249 0.217 0.314 0.435 0.526 0.683
Sophos QDI AOL tf250 cm20 0.330 0.254 0.237 0.208 0.379 0.436 0.493 0.644

Random 11512 lmds 0.140 0.096 0.084 0.069 0.233 0.196 0.186 0.198
Sophos QDI AOL tf250 cm20 0.040 0.036 0.037 0.026 0.067 0.073 0.082 0.073

IP Merge 100 lmds 0.280 0.202 0.188 0.154 0.489 0.489 0.567 0.755
Sophos QDI AOL tf250 cm20 0.300 0.254 0.214 0.160 0.211 0.485 0.626 0.825

IP Split lmds 0.170 0.110 0.083 0.056 0.070 0.149 0.183 0.289
Sophos QDI AOL tf250 cm20 0.170 0.147 0.121 0.091 0.280 0.466 0.466 0.548

Table 2: Average precision and recall over 50 queries after selecting n collections, high scores shown in bold

the number of keys transferred to the broker, and to reduce
the broker index size, we employed query-driven indexing to
only store the keys that are queried for by users. Similar
studies were performed for document retrieval [15], but to
the best of our knowledge, we are the first to apply this
approach for collection selection.

Precision and recall was measured using 50 queries on
the WT10g TREC test corpus and compared to a state-
of-the-art baseline that uses language modeling with Dirich-
let smoothing (lmds). The results showed that our system
outperformed the baseline with the IP split as test corpus.
This is promising, because the IP based splits most closely
resemble the information structure on the Internet. lmds
was better capable of selecting information in random based
splits, because it stores all available information about the
collections. In random based splits, relevant documents (and
their corresponding terms) are mixed over many collections,
making it hard for our approach to select highly discrimi-
native keys that can discriminate collections with relevant
documents.

Query-driven indexing is required to keep the broker index
size manageable; a 70% index size reduction can be obtained
by pruning keys using the AOL query log, another 75% re-
duction is possible by using a smaller query log. Our results
on the IP split showed that pruning using the smaller Excite
query logs resulted in higher precision and recall than with
AOL query logs. The use of any query log resulted in higher
precision and recall than the baseline results. This motivates
further research using more advanced query-driven indexing
strategies, such as described by Skobeltsyn [32], to further
reduce the index size while improving the performance. It
would also be interesting to make tf max depending on the
collection size.
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ABSTRACT
We present the Permutation Prefix Index (PP-Index), an in-
dex data structure that allows to perform efficient approxi-
mate similarity search.

The PP-Index belongs to the family of the permutation-
based indexes, which are based on representing any indexed
object with “its view of the surrounding world”, i.e., a list
of the elements of a set of reference objects sorted by their
distance order with respect to the indexed object.

In its basic formulation, the PP-Index is strongly biased
toward efficiency, treating effectiveness as a secondary as-
pect. We show how the effectiveness can easily reach opti-
mal levels just by adopting two “boosting” strategies: multi-
ple index search and multiple query search. Such strategies
have nice parallelization properties that allow to distribute
the search process in order to keep high efficiency levels.

We study both the efficiency and the effectiveness proper-
ties of the PP-Index. We report experiments on collections
of sizes up to one hundred million images, represented in a
very high-dimensional similarity space based on the combi-
nation of five MPEG-7 visual descriptors.

Categories and Subject Descriptors
E.1 [Data]: Data Structures; H.3.3 [Information Sys-
tems]: Information Storage and Retrieval—Search process

General Terms
Algorithms,Experimentation,Performance

Keywords
approximate similarity search, metric space, scalability

1. INTRODUCTION
The similarity search model [12] is a search model in

which, given a query q and a collection of objects D, all
belonging to a domain O, the objects in D have to be sorted

Copyright c© 2009 for the individual papers by the papers’ authors. Copy-
ing permitted for private and academic purposes. Re-publication of material
from this volume requires permission by the copyright owners. This volume
is published by its editors.
LSDS-IR Workshop. July 2009. Boston, USA.

by their similarity to the query, according to a given distance
function d : O × O → R+ (i.e., the closer two objects are,
the most similar they are considered). Typically only the
k-top ranked objects are returned (k-NN query), or those
within a maximum distance value r (range query).

One of the main research topics on similarity search is the
study of the scalability of similarity search methods when
applied to high-dimensional similarity spaces.

The well known “curse of dimensionality” [7] is one of the
hardest obstacles that researchers have to deal with when
working on this topic. Along the years, such obstacle has
been attacked by many proposals, using many different ap-
proaches. The earliest and most direct approach consisted
in trying to improve the data structures used to perform ex-
act similarity search. Research moved then toward the ex-
ploration of approximate similarity search methods, mainly
proposing variants of exact methods in which some of the
constraints that guarantee the exactness of the results are
relaxed, trading effectiveness for efficiency.

Approximate methods [17] that are not derived from ex-
act methods have been also proposed. On this field, the re-
cent research on permutation-based indexes (PBI) [1, 6] has
shown a promising direction toward scalable data structures
for similarity search.

In this work we present the Permutation Prefix Index (PP-
Index), an approximate similarity search structure belonging
to the family of the permutation-based indexes. We describe
the PP-Index data structures and algorithms, and test it on
data sets containing up to 100 million objects, distributed
on a very high-dimensional similarity space. Experiments
show that the PP-Index is a very efficient and scalable data
structure both at index time and at search time, and it also
allows to obtain very good effectiveness values. The PP-
Index has also nice parallelization properties that allow to
distribute both the index and the search process in order to
further improve efficiency.

2. RELATED WORKS
The PP-Index belongs to the family of the permutation-

based indexes, a recent family of data structure for approxi-
mate similarity search, which has been independently intro-
duced by Amato and Savino [1] and Chavez et al. [6].

The PP-Index has however a key difference with respect to
previously presented PBIs: as we detail in this section, such
PBIs use permutations in order to estimate the real distance
order of the indexed objects with respect to a query. The
PP-Index instead uses the permutation prefixes in order to
quickly retrieve a reasonably-sized set of candidate objects,
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which are likely to be at close distance to the query object,
then leaving to the original distance function the selection
of the best elements among the candidates.

For a more detailed review of the most relevant methods
for similarity search in metric spaces we point the reader to
the book of Zezula et al. [18]. The recent work of Patella
and Ciaccia [8] more specifically analyzes and classifies the
characteristics of many approximate search methods.

Chávez et al. [6] present an approximate similarity search
method based on the intuition of “predicting the closeness
between elements according to how they order their distances
towards a distinguished set of anchor objects”.

A set of reference objects R = {r0, . . . , r|R|−1} ⊂ O is
defined by randomly selecting |R| objects from D. Every
object oi ∈ D is then represented by Πoi , consisting of the
list of identifiers of reference objects, sorted by their dis-
tance with respect to the object oi. More formally, Πoi is
a permutation of 〈0, . . . , |R| − 1〉 so that, for 0 < i < |R|
it holds either (i) d(oi, rΠox (i−1)) < d(oi, rΠox (i)), or (ii)
d(oi, rΠox (i−1)) = d(oi, rΠox (i)) and Πox(i − 1) < Πox(i),
where Πox(x) returns the i-th value of Πox .

All the permutations for the index objects are stored in
main memory. Given a query q, all the indexed permutations
are sorted by their similarity with Πq, using a similarity mea-
sure defined on permutations. The real distance d between
the query and the objects in the data set is then computed
by selecting the objects from the data set following the order
of similarity of their permutations, until the requested num-
ber of objects is retrieved. An example of similarity measure
on permutations is the Spearman Footrule Distance [9]:

SFD(ox, oy) = Σr∈R|P (Πox , r)− P (Πoy , r)| (1)

where P (Πox , r) returns the position of the reference object
r in the permutation assigned to Πox .

Chávez et al. do not discuss the applicability of their
method to very large data sets, i.e., when the permutations
cannot be all kept in main memory.

Amato and Savino [1], independently of [6], propose an
approximate similarity search method based on the intuition
of representing the objects in the search space with “their
view of the surrounding world”.

For each object oi ∈ D, they compute the permutation
Πoi in the same manner as [6]. All the permutations are
used to build a set of inverted lists, one for each reference
object. The inverted list for a reference object ri stores the
position of such reference object in each of the indexed per-
mutations. The inverted lists are used to rank the indexed
objects by their SFD value (equation 1) with respect to a
query object q, similarly to [6]. In fact, if full-length per-
mutations are used to represent the indexed objects and the
query, the search process is perfectly equivalent to the one
of [6]. In [1], the authors propose two optimizations that
improve the efficiency of the search process, not affecting
the accuracy of the produced ranking. Both optimizations
are based on the intuition that the information about the
order of the closest reference objects is more relevant than
the information about distant ones.

One optimization consists in inserting into the inverted
lists only the information related to Πki

oi
, i.e., the part of

Πoi including only the first ki elements of the permutation,

thus reducing by a factor |R|
ki

the size of the index. For

example, given |R| = 500 a value of ki = 100 reduces by
five times the number of disk accesses with respect to using

full-length permutations, with a negligible loss in accuracy.
Similarly, a value ks is adopted for the query, in order to

select only the first ks elements of Πq. Given |R| = 500 a
value of ks = 50 reduces by ten times the number of disk
accesses, also slightly improving the accuracy.

3. THE PP-Index
The PP-Index represents each indexed object with a very

short permutation prefix.
The PP-Index data structures consists of a prefix tree kept

in main memory, indexing the permutation prefixes, and a
data storage kept on disk, from which objects are retrieved
by sequential disk accesses.

This configuration of data structures is interestingly simi-
lar to the one used by Bawa et al. [4], however, it is relevant
to note that our work and [4] are based on completely dif-
ferent approaches to the problem. The latter proposes the
LSH-Forest, an improvement to the LSH-Index [11] that is
based on using hash keys of variable lenght. These are used
to identify a set of candidate objects with hash keys that
have a prefix match with the hash key of to the query. Thus
the LSH-Forest, like the other LSH-based methods, is based
only on probabilistic considerations, while the PP-Index, like
the other PBIs, relies on geometrical considerations.

More generally, a key difference between the PBI model
and the LSH model is that the hash functions of the LSH
model are solely derived from the similarity measures in use,
independently of the way the indexed objects are distributed
in the similarity space, while in the SPI model the reference
objects provide information about this aspect.

The PP-Index is designed to allow very efficient indexing
by performing bulk processing of all the objects indexed.
Such bulk processing model is based on the intuitive assump-
tion that the data, in the very large collections the PP-Index
is designed for, have a relatively static nature. However, it is
easy to provide the PP-Index with update capabilities (see
Section 3.6).

3.1 Data structures
Given a collection of objects D to be indexed, and the

similarity measure d, a PP-Index is built by specifying a set
of reference objects R, and a permutation prefix length l.

Any object oi ∈ D is represented by a permutation prefix
woi consisting of the first l elements of the permutation Πoi ,
i.e., woi = Πl

oi
. Any object oi ∈ D is also associated with

a data block. A data block boi contains (i) the information
required to univocally identify the object oi and (ii) the es-
sential data used by the function d in order to compute the
similarity between the object oi and any other object in O.

The prefix tree of the PP-Index is built on all the permu-
tation prefixes generated for the indexed objects. The leaf
at the end of a path relative to a permutation prefix w keeps
the information required to retrieve the data blocks relative
to the objects represented by w from the data storage.

The data storage consists of a file in which all the data
blocks are sequentially stored. The order of objects (repre-
sented by data blocks) in the data storage is the same as the
one produced by performing an ordered visit of the prefix
tree. This is a key property of the PP-Index, which allows
to use the prefix tree to efficiently access the data storage.

Specifically, the leaf of the prefix tree relative to permu-
tation prefix w contains two counter values hstart

w and hend
w ,

and two pointer values pstart
w and pend

w . The counter values
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BuildIndex(D, d, R, l)
1 prefixTree← EmptyPrefixTree()
2 dataStorage← EmptyDataStorage()
3 for i← 0 to |D − 1|
4 do oi ← GetObject(D, i)
5 dataBlockoi ← GetDataBlock(oi)
6 poi ← Append(dataBlockoi , dataStorage)
7 woi ← ComputePrefix(oi, R, d, l)
8 hoi ← i
9 Insert(woi , hoi , poi , prefixTree)

10 L← ListPointersByOrderedVisit(prefixTree)
11 P ← CreateInvertedList(L)
12 ReorderStorage(dataStorage, P )
13 CorrectLeafValues(prefixTree, dataStorage)
14 index← NewIndex(d, R, l, prefixTree, dataStorage)
15 return index

Figure 1: The BuildIndex function.

indicate the ordinal position in the sequence of data blocks
in the data storage of the first and the last data blocks rela-
tive to the permutation prefix w. The pointer values indicate
instead the byte offset in the data storage where the data
blocks are effectively serialized. In case the data blocks have
a fixed size s, the p values can be omitted and computed
when necessary as pw = hw · s.

The data storage implementation must allow, given any
two pointers p′ and p′′, to sequentially retrieve all the data
blocks included between them.

3.2 Building the index
Figure 1 shows a pseudo-code description of the indexing

function for the PP-Index.
The indexing algorithm first initializes an empty prefix

tree in main memory, and an empty file on disk, to be used
as the data storage.

The algorithm takes in input an object oi ∈ D, for i from
0 to |D − 1|, and appends its data block at the current
end position pend of the data storage file. Then the algo-
rithm computes, for the object oi, the permutation prefix
woi (ComputePrefix), and inserts woi into the prefix tree.
The values hoi = i and poi = pend are stored in the leaf
of the prefix tree corresponding to permutation prefix woi .
When more that one value has to be stored in a leaf, a list
is created.

Figure 2 shows an example list of permutation prefixes
generated for a set of objects and the data structures result-
ing from the above discussed first phase of data indexing.

The successive phase (ReorderStorage) consists in re-
ordering the data blocks in the data storage to satisfy the
order constrains described in the previous section. An or-
dered visit of the prefix tree is made in order to produce
a list L of the hoi values stored in the leaves. Thus, the
hoi values in the list L are sorted in alphabetical order of
the permutation prefixes their relative objects are associated
with.

Data blocks in the data storage are reordered following
the order of appearance of hoi values in list L. For example,
given a list for L = 〈0, 4, 8, 6, 1, 3, 5, 9, 2, 7〉, the data block
relative to object o7, identified in the list by the value ho7 =
7, has to be moved to the last position in the data storage,
since ho7 appears in the last position of the list L (see the
values in the leaves of the prefix tree in Figure 2).

To efficiently perform the reordering, the list L is in-
verted into a list P . The i-th position of the list P in-
dicates the new position in which the i-th element of the
data storage has to be moved. For the above example,

0ow   =<1, 3, 2>

2ow   =<5, 2, 3>

4ow   =<1, 3, 2>

6ow   =<1, 3, 4>

8ow   =<1, 3, 2>

1ow   =<2, 3, 0>

3ow   =<4, 1, 3>

5ow   =<4, 1, 3>

7ow   =<5, 2, 3>

9ow   =<4, 3, 5>

Permutation prefixes
|D|=10, |R|=6, l=3
Index characteristics

|

1 2 4 5

3 3 31 2

3 32 4 0 5

3p 5p 7p2pp0 p4 p8 6p 1p p9

0o  ... 5o  ... 8o  ...7o  ...3o  ... 6o  ... 9o  ...2o ... 4o  ...1o  ...

Data storage

Prefix tree
root

3 5 72h0 4 8 6 1 9h h h h h h h h h

main memory
secondary memory

Figure 2: Sample data and partially-built index data
structure after the first indexing phase.
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Figure 3: The final index data structure.

P = 〈0, 4, 8, 5, 1, 6, 3, 9, 2, 7〉.
Once P is generated the data storage is reordered accord-

ingly, using an m-way merge sorting method [13]. The ad-
vantages of using this method are that it involves only se-
quential disk accesses, and that it has a small (and config-
urable) main memory space occupation.

In order to obtain the final index structure, the values in
the leaves of the prefix tree have to be updated accordingly
to the new data storage (CorrectLeafValues). This is
obtained by performing an ordered visit to the prefix tree,
the same performed when building the list L, synchronized
with a sequential scan of the reordered data storage. The
number of elements in the list of a leaf determines the two
hstart and hend values that replace such list, and also the
number of data blocks to be sequentially read from the data
storage, in ordered to determine the pstart and pend values.

Figure 3 shows the final index data structure.

3.3 Search function
The search function is designed to use the index in order to
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Search(q, k, z, index)
1 (pstart, pend)← FindCandidates(q, index.prefixTree,
2 index.R, index.d, index.l, z)
3 resultsHeap← EmptyHeap()
4 cursor ← pstart

5 while cursor ≤ pend

6 do dataBlock ← Read(cursor, index.dataStorage)
7 AdvanceCursor(cursor)
8 distance← index.d(q, dataBlock.data)
9 if resultsHeap.size < k

10 then Insert(resultsHeap, distance, dataBlock.id)
11 else if distance < resultsHeap.top.distance
12 then ReplaceTop(resultsHeap, distance,
13 dataBlock.id)
14 Sort(resultsHeap)
15 return resultsHeap

FindCandidates(q, prefixTree, R, d, l, z)
1 wq ← ComputePrefix(q, R, d, l)
2 for i← l to 1
3 do wi

q ← SubPrefix(wq , i)

4 node← SearchPath(wi
q , prefixTree)

5 if node 6= nil
6 then minLeaf ← GetMin(node, prefixTree)
7 maxLeaf ← GetMax(node, prefixTree)
8 if (maxLeaf.hend −minLeaf.hstart + 1) ≥ z
9 ∨i = 1

10 then return (minLeaf.pstart,
11 maxLeaf.pend)
12 return (0, 0)

Figure 4: The Search function.

efficiently answer to k nearest neighbor queries. The search
strategy consists in searching a subtree of the prefix tree
that identifies a specified number of candidate objects all
represented by permutation prefixes having a prefix match
with the permutation prefix representing the query.

A k-NN query is composed of the query object q, the k
value, and the z value, indicating the minimum number of
candidate objects among which the k nearest neighbors have
to be selected.

The FindCandidates function determines the smallest
subtree of the prefix tree having a prefix match with the
permutation prefix wq, i.e., the permutation prefix relative
to the query q, and retrieving at least z objects. The func-
tion returns two pointers pstart and pend to the positions in
the data storage of the data blocks of the first and the last
candidate objects.

The distance of each candidate object with the query is
computed, using the distance function d. A heap is used to
keep track of the k objects closest to the query.

3.4 Prefix tree optimizations
In order to reduce the main memory occupation of the pre-

fix tree it is possible to simplify its structure without affect-
ing the quality of results. These are search-specific optimiza-
tions, and a non-optimized version of the prefix tree should
be saved for other operations (e.g., update and merge).

A first optimization consists in pruning any path reaching
a leaf which is composed of only-child, given that this kind
of path does not add relevant information to distinguish be-
tween different existing groups in the index. Another opti-
mization consists in compressing any path of the prefix tree
composed entirely of only-children into a single label [15],
thus saving the memory space required to keep the chain of
nodes composing the path.

A PP-Index-specific optimization, applicable when the z
value is hardcoded into the search function, consists in re-

ducing to a single leaf the subtrees of the prefix tree that
points to less than z objects, given that none of such sub-
trees will be ever selected by the search function.

3.5 Improving the search effectiveness
The “basic” search function described is Section 3.3 is

strongly biased toward efficiency, treating effectiveness as
a secondary aspect. The PP-Index allows to easily tune
effectiveness/efficiency trade-off, and effectiveness can eas-
ily reach optimal levels just by adopting the two following
“boosting” strategies:

Multiple index : t indexes are built, based on different
R1 . . . Rt sets of reference objects. This is based on the intu-
ition that different reference object sets produce many dif-
ferently shaped partitions of the similarity space, resulting
in a more complete coverage of the area around queries.

A search process the using multiple index strategy can be
parallelized by distributing the indexes over multiple ma-
chines, or just on different processes/CPUs on the same ma-
chine, maintaing almost the same performance of the basic
search function, with a negligible overhead for merging the t
k-NN results, as far as there are enough hardware resources
to support the number of indexes involved in the process.

Multiple query : at search time, p additional permutation
prefixes from the query permutation prefix wq are gener-
ated, by swapping the position of some of its elements. The
geometric rationale is that a permutation prefix w′ differ-
ing from another permutation prefix w′′ for the swap of two
adjacent/near elements identifies an area Vw′ of the similar-
ity space adjacent/near to Vw′′ allowing to extend the search
process to areas of the search space that are likely to contain
relevant objects.

The heuristic we adopt in our experiments for swapping
permutation prefix elements consists in sorting all the ref-
erence objects pairs appearing in the permutation prefix by
their difference of distance with respect to the query object.
Then the swapped permutation prefixes are generated by
first selecting for swap those pairs of identifiers that have
the smallest distance difference.

The multiple query strategy can be parallelized by dis-
tributing the queries over different processes/CPUs on the
machine handling the index structure.

3.6 Update and merge, distributed indexing
The PP-Index data structures allows to very efficiently

merge indexes built using the same parameters into a single
index. The merge functionality supports three operations:

Supporting update operations: it is easy to add update
capabilities to an index by maintaining a few additional
data structures. Deleted objects are managed using a vector
of their identifiers. Newly inserted or modified objects are
stored in an all-in-memory secondary PP-Index used in con-
junction with the main index structure. A periodic merge
procedure is used when the secondary index reaches a given
memory occupation limit.

Indexing very large collection: the main memory occu-
pation of a prefix tree reaches its maximum during the in-
dexing process, when it has to be entirely kept in memory,
while during search, thanks to the optimization methods de-
scribed in Section 3.4, its size can be reduced by orders of
magnitude. This issue is solved building a number of smaller
partial indexes and then merging them into the final index.

Distributing the indexing process: the indexing process
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of smaller indexes can be distributed of different machines,
given that the information contained in any smaller index is
completely independent of the one contained in the others.
Also the merge process can be distributed, if it is performed
in a number of steps that involve the creation of intermediate
indexes.

The merge process consists in merging the prefix trees
of the source indexes into a single prefix tree, i.e., by enu-
merating, in alphabetical order, all the permutation prefixes
contained in the source indexes.

Such enumeration can be easily produced by performing
a parallel ordered visit of all the prefix trees being merged.
If the prefix trees of the source indexes are saved to the
storage using a depth first visit, the merge process requires
only a single read of the serialized prefix trees. Obviously,
the new prefix tree is directly serialized on disk during the
permutation prefix enumeration process.

In the case of an update process, the identifiers of the
deleted objects are used to skip deleted objects during the
merge process.

The data storages are merged during the permutation pre-
fix enumeration.

4. EXPERIMENTS

4.1 The CoPhIR data set
The CoPhIR1 [5] data set has been recently developed

within the SAPIR project, and it is currently the largest
multimedia metadata collection available for research pur-
poses. It consists of a crawl of 106 millions images from the
Flickrphoto sharing website.

The information relative to five MPEG-7 visual descrip-
tors [16] have been extracted from each image, resulting in
more than 240 gigabytes of XML description data.

We have randomly selected 100 images from the collec-
tion as queries and we have run experiments using the first
million (1M), ten millions (10M), and 100 millions (100M)
images from the data set.

We have run experiments on a linear combination of the
five distance functions for the five descriptors, using the
weights proposed in [3].

Descriptor Type Dimensions Weight
Scalable Color L1 64 2

Color Structure L1 64 3
Color Layout sum of L2 80 2

Edge Histogram L1 62 4
Homogeneous Texture L1 12 0.5

Table 1: Details on the five MPEG-7 visual descrip-
tors used in CoPhIR.

4.2 Configurations and evaluation measures
We have explored the effect of using different sized R sets,

by running the experiments using three R set sizes consist-
ing of 100, 200, 500, and 1, 000 reference objects. We have
adopted a random selection policy of objects from D for the
generation of the various R sets, following [6], which reports
the random selection policy as a good performer.

In all the experiments we have used a fixed value of l = 6.

1http://cophir.isti.cnr.it/
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Figure 5: Search time w.r.t. to the size of R, for
z = 1, 000 and k = 100 (single index, single query).

We have tested a basic configuration based on the use of
a single index and the search function described in Section
3.3, i.e., an efficiency-aimed configuration.

We have then tested the use of multiple indexes , on con-
figurations using 2, 4 and 8 indexes, and also the multiple
query search strategy by using a total of 2, 4, and 8 multi-
ple queries. We have also tested the combination of the two
strategies.

We have applied the index optimization strategies de-
scribed in Section 3.4 to all the generated indexes.

On the held-out data we have tested various z val-
ues, in this paper we report the results obtained for z =
1, 000, which has produced a good trade-off in effective-
ness/efficiency.

The experiments have been run on a desktop machine run-
ning Windows XP Professional, equipped with a Intel Pen-
tium Core 2 Quad 2.4 GHz CPU, a single 1 TB Seagate
Barracuda 7,200 rpm SATA disk (with 32 MB cache), and 4
GB RAM. The PP-Index has been implemented in c#. All
the experiments have been run in a single-threaded applica-
tion, with a completely sequential execution of the multiple
index/query searches.

We have evaluated the effectiveness of the PP-Index by
adopting a ranking-based measure and a distance-based
measure [17], recall and relative distance error, defined as:

Recall(k) =
|Dk

q ∩ P k
q |

k
(2)

RDE(k) =
1

k

k∑
i=1

d(q, P k
q (i))

d(q, Dk
q (i))

− 1 (3)

where Dq is the list of the elements of D sorted by their
distance with respect to q, Dk

q is the list of the k closest

elements, P k
q is the list returned by the algorithm, and Lk

q (i)
returns the i-th element of the list L.

4.3 Results

|D| indexing prefix tree size data l′
time (sec) full comp. storage

1M 419 7.7 MB 91 kB 349 MB 2.1
10M 4385 53.8 MB 848 kB 3.4 GB 2.7
100M 45664 354.5 MB 6.5 MB 34 GB 3.5

Table 2: Indexing times (with |R| = 100), resulting
index sizes, and average prefix tree depth l′ (after
prefix tree compression with z = 1, 000).

Table 2 reports the indexing times for the various data set
sizes (|R| = 100), showing the almost perfect linear propor-
tion between indexing time and data set size. With respect
to the indexing times we note that: (i) the twelve hours
time, required to build the 100M index for the |R| = 100, is
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Figure 6: Effectiveness with respect of the size of R
set, for k = 100 and z = 1, 000 (single index, single
query).

|R| |D|
1M 10M 100M

100 4,075 5,817 7,941
200 3,320 5,571 7,302
500 1,803 5,065 6,853
1,000 1,091 4,748 6,644

Table 3: Average z′ value, for z = 1, 000.

in line with the fourteen hours we have measured to build
a text search index on the descriptions and the comments
associated with the indexed images; (ii) this time refers to
a completely sequential indexing process, not leveraging on
the parallelization possibilities described in Section 3.6; (iii)
we have not explored the possibility of using a similarity
search data structure in order to answer l-NN query on the
R set necessary to build the permutation prefix.

The table also shows the resulting memory occupation
of the prefix tree before and after the application of the
compression strategies described in Section 3.4. The val-
ues shows how such strategies allows to reduce by orders of
magnitude the main memory requirement of the PP-Index
(at least by a factor fifty in our case) without affecting the
quality of the results.

As expected, the disk occupation is perfectly linear with
respect to the data set size, given that the disk data storage
contains only a sequential serialization of data blocks (375
bytes each one).

The last column of Table 2 reports the average depth of
the leaves of the prefix tree, after the compression. The l′

values show that the l value is not crucial in the definition
of a PP-Index, given that the only requirement is to choose
a l value large enough in order to perform a sufficient differ-
entiation of the indexed objects.

The graph of Figure 5 plots the search time with respect
to the size of R and the data set size, for k = 100 (single
index, single query). For the worst case, with |R| = 100,
we have measured an average 0.239 seconds search time on
the 100M index, with an average of less than eight thou-
sands candidates retrieved from the data storage (see Table
3). The search time decreases in a direct proportion the de-
crease of the z′ value, which follows from the more detailed
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Figure 7: Multiple index search strategy on the
100M index, using |R| = 1, 000 and z = 1, 000.

partitioning of objects into the permutation prefix space, de-
termined by the increase of |R|. Even though the z′ value
increases as D gets larger, the increase of z′ is largely sub-
proportional to the growth of D: when D grows by a factor
100, z′ increases at worst by a factor 6.6.

A possible issue with the z′ value is that it is not so close
the z value, and it has potentially no limits. However, dur-
ing the experiments the z′ value has never been a critical
factor with respect to efficiency: we have not observed any
extreme case in which z′ >> z, and the z′ value has never
required more than a single read operation from disk to re-
trieve all the candidate objects (e.g., retrieving 10, 000 data
blocks from the data storage involves reading only 3.7 MB
from disk). We leave to future works an investigation of the
relations of the z value with the other parameters.

Figure 6 shows the effectiveness of the PP-Index with re-
spect to the size of the R and the data set size, using a
single-index/single-query configuration, for k = 100.

Effectiveness values improve with the increase of |R| for
the 10M and 100M data sets, while the 1M data set shows
the inverse tendency. This confirms the intuition that larger
data sets requires a richer permutation prefix space (gener-
ated by a larger set R) to better distribute their elements,
until a limit is reached and objects became too sparse in the
permutation prefix space and the effectiveness worsen.

The maximum-efficiency (0.210 seconds answer time) con-
figuration of PP-Index has obtained a 18.3% recall and 8.1%
RDE on the 100M data set, for k = 100.

Figures 7 and 8 show respectively the effects on effective-
ness of the multiple index and multiple query strategies, for
three k values.

With respect to the multiple index strategy we have mea-
sured a great improvement on both measures reaching a 74%
recall (four times better than the single-index case) and a
0.7% RDE (eleven times better) for the eight index case.

For the above mentioned eight index configuration we have
measured an average 1.72 seconds search time, for a com-
pletely sequential search process. The four index configura-
tion allows to reach a 52% recall (67% for k = 10) and just
a 2.2% RDE with a sub-second answer time.

It is relevant to note that, given the small memory occu-
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Figure 8: Multiple query search strategy on the
100M index, using |R| = 1, 000 and z = 1, 000.

pation of the compressed prefix tree, we have been able to
simultaneously load eight 100M indexes into the memory,
thus practically performing search on an 800 million objects
index, though with replicated data, on a single computer.

The multiple query strategy also shows relevant improve-
ments, though of minor entity with respect to the multiple
index strategy. This is in part motivated by the fact that
many of the queries, generated by permuting the elements
of the original query permutation prefix, actually resulted
in retrieving the same candidates of other queries2. On the
100M index, for |R| = 1, 000, on the average, 1.92 distinct
queries to be effective in retrieving candidates for the two
queries configuration, 3.18 queries for the four queries config-
uration, and 5.25 queries for the eight queries configuration.

Figure 9 shows the effectiveness of the combined multi-
ple query and multiple index search strategies, using eight
queries and eight indexes, for |R| = 1, 000. We have mea-
sured an average search time of 12.45 seconds, for a fully
sequential search process. This setup produces almost exact
results, with a recall > 97% and a RDE < 0.01%.

We have measured, on the average, a total of 370, 000 data
blocks retrieved from the data storage among the average
44.5 queries being effectively used to access the data storages
for each original query. Although this z′ value is relatively
high, it just represents the 0.3% of the whole collection. This
is a very low value considering, for example, that Lv et al.
[14], proposing a multiple query strategy for the LSH-Index,
have measured a percentage of distance computations with
respect to the data set size, in order to obtain a 96% recall,
of 4.4% on a 1.3 million objects data set and of 6.3% on a
2.6 million objects data set.

4.4 Comparison experiments
It is a hard task to run comparative experiments on novel

and very large data sets, such as CoPhIR due to many rea-
sons: (i) lack of previous results on the same data set; (ii)
lack of a publicly available implementation for many of the
methods involved in the comparison; (iii) when an imple-
mentation is available, it is typically not designed to scale

2Such candidates are read only once from the data storage.
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Figure 9: Combined multiple query and multiple in-
dex strategies, using eight queries and eight indexes,
using |R| = 1, 000 and z = 1, 000.

to very large data sets, but just a proof of concept; (iv)
moreover, the implementation is usually designed to take in
input only a specific data type/format, which makes harder
to port the application to different data types.

For this reasons we have currently limited our comparison
to replicating two experiments that, among the others, are
most closely related to our work: Batko et al. [2], which have
run experiments using an early release of the CoPhIR data
set, and Amato and Savino [1], whose proposal is the most
closely related to our own.

Batko et al. [2] have run experiments on the CoPhIR data
set, with data sets size of 10 and 50 millions images3. They
reports an 80% recall level for 100-NN queries on both col-
lection. For the 50M they test both a 80-CPU infrastructure
with 250 GB RAM, keeping all the index data in memory,
and a 32-CPU infrastructure with 32 disks storing the index
data, obtaining a 0.44 seconds answer time for the memory-
based solution and 1.4 seconds for the disk-based one.

The PP-Index could achieve a better performance than
[2] by distributing the search process, yet using much less
resources than [2]. We have simulated the distribution of the
eight indexes on eight distinct computers, each one using two
processes executing four queries each, measuring the query
answer time as the time of the slowest of the 16 processes
plus the time to merge the 16 100-NN intermediate results.
We have measured an average 1.02 second answer time to
obtain > 95% recall on the 50M data set.

Amato and Savino [1] test their method on the Corel data
set4. The data set consists of 50, 000 32-dimensions color
HSV histograms extracted from the images. The distance
function used to compare the histograms is L1.

Replicating [1], we have selected 50 random objects as
queries, and indexed the rest of the collection. Given the
small size of the data set, we have set |R| = 50. The time
required for generating the PP-Index is 4.9 second, with a

3We suppose they use the same linear combination of visual
descriptors of our experiments, given that two authors are
also the authors of [3], from which we take our weights.
4http://kdd.ics.uci.edu/databases/CorelFeatures/
CorelFeatures.html
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disk occupation of 13 MB and a memory occupation of 450
kB. In [1] the index structure generated by setting ki = 100
is estimated to require 20 MB. This value does not include
the HSV histograms, which are required to reorder the re-
trieved objects by the true similarity.

The maximum recall level obtained in [1] for k = 50 is
about 54%, requiring to read 2.4 MB of data from disk (600
blocks of 4 kB size). The PP-Index, in a single-index/four-
query configuration (z = 500), obtains a 89.6% recall, re-
quiring to read just 900 kB of data from disk, in four se-
quential reads. The single-index/single-query configuration
obtains a 66% recall.

5. CONCLUSIONS
We have introduced the PP-Index, an approximate simi-

larity search data structure based on the use of short per-
mutation prefixes. We have described the PP-Index data
structures and algorithms, including a number of optimiza-
tion methods and search strategies aimed at improving the
scalability of the index, its efficiency, and its effectiveness.

The PP-Index has been designed to take advantage of the
relatively static nature one could expect from very large col-
lections. However, as we have described, it is easy to support
fast update operations.

We have evaluated the PP-Index on a very large and high-
dimensional data set. Results show that it is both efficient
and effective in performing similarity search, and it scales
well to very large data sets.

We have shown how a limited-resources configuration ob-
tains good effectiveness results in less than a second, and
how almost exact results are produced in a relatively short
amount of time. The parallel processing capabilities of the
PP-Index allow to distribute the search process in order to
further improve its efficiency.

The comparison with experimental results published for
two closely related method, which are among the top-
performers on the task, shows that the PP-Index outper-
forms the compared methods, both in efficiency and effec-
tiveness. Only one [2] of the works we compare with uses a
data set of a size comparable to our largest one. We plan to
extend the comparison with some of the competing methods,
by porting them on the larger data set sizes.

The PP-Index has been already used to build a performing
similarity search system5 [10].

There are many aspect of our proposal that are worth to
be further investigated. For example, the R set is a crucial
element of the PP-Index. We plan to study element selec-
tion policies alternative to the random policy, e.g., selecting
centroids of clusters of D, or the most frequent queries from
a query log.
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Crawling, indexing, and similarity searching images on
the web. In Proceedings of SEDB ’08, the 16th Italian
Symposium on Advanced Database Systems, pages
382–389, Mondello, Italy, 2008.

5http://mipai.esuli.it/

[3] M. Batko, P. Kohoutkova, and P. Zezula. Combining
metric features in large collections. SISAP ’08, 1st
International Workshop on Similarity Search and
Applications, pages 79–86, 2008.

[4] M. Bawa, T. Condie, and P. Ganesan. Lsh forest:
self-tuning indexes for similarity search. In WWW ’05:
Proceedings of the 14th international conference on
World Wide Web, pages 651–660, Chiba, Japan, 2005.

[5] P. Bolettieri, A. Esuli, F. Falchi, C. Lucchese,
R. Perego, T. Piccioli, and F. Rabitti. CoPhIR: a test
collection for content-based image retrieval. CoRR,
abs/0905.4627, 2009.
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ABSTRACT 
Static index pruning methods have been proposed to reduce size 
of the inverted index of information retrieval systems. The goal is 
to increase efficiency (in terms of query response time) while 
preserving effectiveness (in terms of ranking quality). Current 
state-of-the-art approaches include the term-centric pruning 
approach and the document-centric pruning approach. While the 
term-centric pruning considers each inverted list independently 
and removes less important postings from each inverted list, the 
document-centric approach considers each document 
independently and removes less important terms from each 
document. In other words, the term-centric approach does not 
consider the relative importance of a posting in comparison with 
others in the same document, and the document-centric approach 
does not consider the relative importance of a posting in 
comparison with others in the same inverted list. The consequence 
is less important postings are not pruned in some situations, and 
important postings are pruned in some other situations. We 
propose a posting-based pruning approach, which is a 
generalization of both the term-centric and document-centric 
approaches. This approach ranks all postings and keeps only a 
subset of top ranked ones. The rank of a posting depends on 
several factors, such as its rank in its inverted list, its rank in its 
document, its weighting score, the term weight and the document 
weight. The effectiveness of our approach is verified by 
experiments using TREC queries and TREC datasets.   

Categories and Subject Descriptors 
H.3.3 [Information Storage and Retrieval]: Information Search 
and Retrieval – Index pruning, Search process. 

General Terms 
Algorithms, Performance, Experimentation. 

Keywords 
Static Index Pruning, Document-centric Index Pruning, Term-
centric Index Pruning, Posting-centric Index Pruning. 

1. INTRODUCTION 
Text information retrieval systems are based on an inverted index 
to efficiently process queries. The most important part of an 
inverted index is its inverted file, a file that contains posting list 
for each term in the text collection [1]. In general, a posting list of 
a term contains its posting entries (or index pointers), each in the 
form of <docID, freq>, where docID is the ID of a document that 
contains the term, and freq is its frequency in the document. For a 
multi-keyword query, all posting lists of query terms are retrieved 
from the inverted file, and document scores are accumulated for 
each document in the union of the posting lists, based on a 
specified weighting scheme. A list of documents in descending 
order of rank scores is presented to the user. 

For a large text corpus, the inverted file is too large to fit into 
memory of the search server. Thus, query processing involves a 
lot of disk access, which increases query response time. For a text 
information retrieval system that has to process thousands of 
queries per second, it is critical to improve query processing 
performance.  

Beside the parallel query processing approach that uses a cluster 
of servers to process queries, the index compression approach is 
widely used. The lossless compression approach uses data 
compression techniques to compress index data, thereby reducing 
the volume of data transferred from disk. The compressed index 
data is then decompressed in memory, and queries are processed 
based on the original index information. Common data 
compression technique used in information retrieval systems is 
variable length data coding [2]. In contrast, lossy compression 
approach opts for keeping only important information in the 
index, discarding other less important information [4][5][6][8] 
[11]. Thus ranking quality of queries processed based on a lossy 
compressed index (i.e. a pruned index) might be affected.  

In practice, a lossless compression technique can be applied on a 
lossy pruned index to further reduce index size. In addition, both 
types of compressed/pruned index can be used by an information 
retrieval system: a lossy pruned index is used to answer a large 
portion of user queries, and a lossless compressed index is used 
only if result quality is significantly hurt [4]. 

In this work, we concentrate on lossy index compression. Current 
state-of-the-art approaches include term-centric pruning [5] and 
document-centric pruning [6]. While term-centric pruning method 
considers each inverted list independently and removes less 
important postings from each inverted list, document-centric 
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pruning considers each document independently and removes less 
important terms from each document. In other words, the term-
centric method does not consider the relative importance of a 
posting in comparison with others in the same document, and 
document-centric method does not consider the relative 
importance of a posting in comparison with others in the same 
inverted list. The consequence is less important postings are not 
pruned in some situations, and important postings are pruned in 
some other situations.  

We propose a posting-based pruning approach, which is a 
generalization of both the term-centric and document-centric 
approaches. Our approach ranks all postings and keeps only a 
subset of the top ranked ones, removing the others. We consider a 
couple of factors when ranking a posting, such as its rank in its 
posting list, its rank in its document, its weighting score, the 
normalized weight of the term, and the normalized weight of the 
document. Our experiments based on TREC queries and TREC 
datasets [22] show that posting-based pruning method 
outperforms both the term-centric and document-centric methods.  

2. RELATED WORK 
Lossless index compression techniques are well studied, for 
example, see Witten et al. [2][3]. Those techniques are mainly 
based on the fact that the frequencies of terms in documents, 
which are stored in the inverted index, follow a skewed 
distribution. In that case, variable length coding technique can be 
used to encode index information, consuming only a few bits for 
most of term frequency values. In general, this helps to reduce 
index size by about one-tenth. However, for large scale 
information retrieval systems, the compressed index is still too big 
to fit into memory. In addition, using a compressed index reduces 
time to access index data from disk, but does not reduce time to 
process the posting lists. Thus, using lossless index compression 
alone cannot significantly improve efficiency. 

Lossy index compression techniques opt for discarding postings 
that are not informative. By removing a large number of postings 
from the inverted index, lossy index compression techniques not 
only significantly reduce index size, but also significantly reduce 
length of posting lists. Therefore, lossy index compression 
techniques can reduce both time to access index data from disk 
and time to process posting lists. However, as some index 
information is lost, lossy index compression techniques may lead 
to a drop in query ranking quality. 

In [5], Carmel et al. introduced a term-centric approach to static 
index pruning. Entries in each posting list are sorted in 
descending order of a weighting scores. Only entries whose 
weighting scores are greater than a threshold value are kept in the 
pruned index. The threshold value can be the same for all terms 
(uniform pruning), or it can be different for each term (term-based 
pruning).  

Buttcher and Clarke introduce a document-centric pruning 
technique [6]. Instead of posting list pruning, they propose 
document pruning. For each document, they keep only a small 
number of representative, highly-ranked terms in the pruned 
index. Terms in each document are ranked based on their 
contribution to the Kullback-Leibler divergence [16] between the 
document and the text collection. The intuition behind this is that 
those document-representative terms are powerful enough to 
distinguish the document from others. They also show 

experimentally that if the document is ranked high for a given 
query, it is very likely that query terms are among its 
representative terms. Thus indexing sets of representative terms is 
a good method to preserve ranking quality while reducing index 
size.  

Other index pruning techniques (some are for distributed, peer-to-
peer information retrieval systems) belong to either the term-
centric approach or document-centric approach. Blanco et al. [8], 
and Shokouhi et al. [10], try to find terms whose posting lists can 
be completely removed. De Moura et al. [11] propose to index a 
set of representative sentences for each document. Lu and Callan 
[7] propose a number of methods to identify a representative term 
set for each document. Podna et al. [12] and Skobeltsyn et al. [13] 
propose to index term combinations to reduce the negative effect 
of posting list pruning to ranking quality. Blanco and Barreiro [9] 
improve the precision of term-centric pruning by considering a 
number of designs overlooked by the original work.  

Looking at other aspect of static index pruning, Skobeltsyn et al. 
[14] point out that the use of results caching fundamentally affects 
the performance of a pruned index, due to the change in query 
pattern introduced by results caching. They then propose to 
combine results caching and index pruning to reduce the query 
workload of back-end servers.  

3. TERM-CENTRIC PRUNING VERSUS 
DOCUMENT-CENTRIC PRUNING 
3.1 Term-Centric Index Pruning 
Term-centric pruning fits very well with the inverted index 
structure of information retrieval systems. As queries are 
processed based on inverted lists, it is natural to truncate inverted 
lists in order to reduce index size. Based on the inverted index 
structure, the “idealized, term-based” pruning technique proposed 
by Carmel et al. is well-formed and mathematically provable. This 
clearly shows that a pruned index, even though not containing all 
information, still can guarantee the ranking quality to some extent 
[5].  

There are several properties that are specific to term-centric 
pruning. It preserves the collection vocabulary. For every term, 
there are always some entries in its inverted list in the pruned 
index. (The works of Blanco et al. [8] and Shokouhi et al. [10] are 
exceptions, as their work reduces the vocabulary size.) In contrast, 
term-centric pruning does not necessarily preserve the set of 
documents. As posting entries are removed, it is possible that 
some documents will be totally removed from the pruned index.  

The fact that term-centric index pruning preserves the set of terms 
demonstrates its support for the possibility of all terms appearing 
in user queries.  Due to this support, in order to guarantee the 
quality of top-K results for any queries, term-centric pruning must 
not prune any of the top-K entries in any posting list. Obviously, 
pruning any of these makes the pruned index unable to guarantee 
the top-K results of the query containing only that single term. In 
addition, term-centric pruning assumes (implicitly) that every term 
in the vocabulary is equally important. In contrast, for documents, 
term-centric pruning assumes that some are more important than 
others. This is inferred from the fact that term-centric pruning 
might totally removed some documents from the pruned index.   
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3.2 Document-Centric Data Pruning 
Document-centric pruning does not make any assumption about 
the index structure and how queries are processed. Precisely, 
document-centric pruning should be considered as a “data” 
pruning technique instead of an index pruning technique, as what 
it actually does is to prune the documents, not an index structure.  

In contrast to term-centric pruning, document-centric pruning 
preserves the set of documents, not the set of terms. While any 
document in the collection is represented by a subset of its terms 
(i.e., its set of representative terms), there is no guarantee that 
every term will be indexed. It is likely that there are terms that are 
always ranked low in any document and are removed by 
document-centric pruning.  

The first assumption implied by document-centric pruning is that 
every document can be ranked first by some queries (one such 
query might be the query that contains all its representative 
terms). Due to this assumption, document-centric pruning opts for 
including every document in the pruned index. The second 
implied assumption is that terms are not equally important, and 
some terms can be totally removed from the pruned index.  

4. POSTING-BASED INDEX PRUNING 
As pointed out above, term-centric pruning prunes index 
elements, which are posting lists; while document-centric pruning 
prunes data elements, which are documents. Both approaches 
assume that all elements are equally important, and thus the 
pruned index should keep some information about every element, 
either they are posting lists or documents. 

We first find that the decision to keep some amount of 
information for each posting list or document to be reasonable. 
Without any information about the user queries, we must assume 
any term can be used by users. Thus no term can be totally 
removed. Similarly, without any information about what users 
will search for, we also have to assume any document can be an 
answer (to some queries). Therefore, no document can be totally 
removed.  

However, given the requirement of significantly reducing index 
size, it is not affordable to keep information for all posting lists 
and all documents. We believe that the pruned index should 
contain neither all terms, nor all documents, but only the most 
important postings, given the desired pruning level. 

We suspect that non-informative terms are common in any large 
text collection. Non-informative terms are those terms that do not 
help to discriminate documents. One example of non-informative 
terms is a term that appears in every document, such as the term 
“abstract” in a collection of scientific papers. Those terms are 
expected to have similar weighting scores to every document. 
Therefore, eliminating those terms will not hurt ranking quality. 
Unfortunately, term-centric pruning tends not to prune any entries 
from the posting lists of those terms. The reason is, as entry scores 
are almost similar, all scores are likely to be greater than the 
threshold value computed by the term-based method proposed in 
[5].  

We also suspect that there are many “rarely asked for” documents 
in any large text collection. A document is called “rarely asked 
for” if it does not appear in the top-ranked results of any real 
world query. In practice, users normally look at only the top 20 
results, so any document that does not appear in the top-20 results 

of a large number of queries can be removed. Puppin et al. [17] 
observed that, for a collection of 5,939,061 documents and a set 
of 190,000 unique queries, around 52% of the documents were 
not returned among the first 100 top-ranked results of any query.   

We propose a posting-based index pruning method. We choose 
neither posting lists, nor documents as our working elements. 
Instead, we choose postings, i.e. tuples of the form <term ID, 
document ID, term frequency>. Postings are contained in both 
index elements (as posting entries in posting lists) and data 
elements (as terms in documents). Also, choosing posting entries 
as working elements, we open the possibility of removing any 
document and any term’s posting list from the pruned index. With 
this flexibility, our method is able to remove non-informative 
terms as well as “rarely asked for” documents. 

4.1 Term Weighting  
When building a pruned index, terms should not be treated 
equally. Non-informative terms appear in a large number of 
documents, results in long posting lists. However, non-
informative terms do not help much in ranking documents. Thus, 
the pruned index should significantly prune the posting lists of 
non-informative terms and reserve places for other informative 
terms. Our posting-based pruning method assigns a weight to each 
term as its informativeness value. Blanco and Barreiro [8] have 
studied a number of term-weighting schemes for the purpose of 
posting list pruning. Their finding is that residual inverse 
document frequency (RIDF) is a good quantity to measure the 
informativeness of terms, among other schemes such as the classic 
inverse document frequency and the term discriminative value. 
We adopt RIDF to calculate term informativeness values. As 
specified in [8], the RIDF value of a term is 
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where df is the term’s document frequency and N is the number of 
documents in the collection. As pointed out by Blanco, RIDF 
values can be computed efficiently.  

4.2 Document Weighting 
Documents in a large text collection are not equally important and 
therefore, in the pruned index, more terms should be kept for 
important documents. As for term weighting, we also assign a 
weight to each document in the collection to reflect how 
important it is. For a Web collection, the PageRank [18] or HITS 
[19] algorithm can be used to compute document important 
values. However, PageRank and HITS are not applicable for non-
Web documents, as there is no link structure among documents. 
We adopt the approach of Buttcher and Clarke [6] for this 
purpose. For each document, we assign its Kullback-Leibler 
distance to the collection as its important value. Thus, “out 
standing” documents (i.e., documents which are very different 
from the collection) will be assigned high important values, while 
documents which are similar to others will be assigned low 
important values. Our important value for a document d is defined 
as 
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where tf(t) is the term frequency of term t, TF(t) is the collection 
term frequency of term t, |d| is the length of document d (i.e., the 
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number of terms in d), and |C| is the length of the collection (i.e., 
the sum of document lengths).  

4.3 Posting Ranking Function  
Our static pruning method evaluates postings and assigns each a 
usefulness value. We then build the pruned index based on these 
values. Given a desired level of pruning, posting entries are 
selected based on their usefulness values and added into the 
pruned index until the pruned index size reaches its limit.  

According to term-centric pruning, we should assign a high 
usefulness value to a posting entry which appears at the top of its 
posting list. According to document-centric pruning, we should 
not assign a high usefulness value to a posting whose term does 
not belong to the set of top-ranked terms of the document. In 
addition, as discussed above, we should assign low values to non-
informative terms and “rarely asked for” documents, and vice 
versa. Also, we obviously want to assign high usefulness value to 
posting entries with high scores. 

To rank postings, for each posting <t, d>, we compute the 
following quantities: 

• S(t, d) = the score term t contributes to the rank score of 
document d. 

• RIDF(t) = the informativeness value of term t. 

• KLD(d || C) = the important value of document d. 

• Rank(t) = the rank of term t relatively with other terms in 
document d. 

• Rank(d) = the rank of document d relatively with other 
documents in the posting list of term t. 

Among the quantities above, S(t, d) is computed using a 
weighting scheme, such as the classic TFIDF weighting scheme, 
or the state-of-the-art BM25 weighting scheme; RIDF(t) is 
calculated as specified in (1); KLD(d || C) is calculated according 
to (2); Rank(d) is the position of document d in the posting list of 
term t, where posting entries are sorted in descending order of its 
scores S(t,di); and Rank(t) is the position of term t in document d, 
where terms are sorted in descending order of its “feedback” score 
[6], defined below: 
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In this work, we use the BM25 weighting scheme [20] (given 
below) to calculate S(t, d)  due to its widely use in other research 
works. 
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where avgdl is the average length of documents, k1 is set to its 
“standard” value of 1.2 and b is set to its “standard” value of  
0.75. 

In combination, our posting entry ranking function takes as 
parameters all the above quantities and returns a usefulness value. 
Note that we apply normalization and transformation to parameter 
values. First, RIDF(t) values are normalized so that they sum up 
to one. Similar normalization is applied to KLD(d || C) values. 
Normalization step is necessary, as the range of RIDF(t) and 
KLD(d || C) are different. Second, we use a sigmoid function to 

transform the term rank values and document rank values. This 
transformation is necessary, too. Using the term rank values 
makes it appears that the 10th term is ten time less important than 
the top ranked term, which does not seem right. Therefore, we use 
a non-linear function specified below (5) as a transform function. 
The parameter x0 is used to shift the “transition” point, where the 
sigmoid function switches from high value state to low value 
state, and the parameter a is used to control the slope of the 
transition period of the function.  

( ) ( ) axxe
xsigmoid

01

1
1 +−+

−=  (5) 

The sigmoid function above returns a value between zero and one. 
Rank value close to zero (i.e., top ranked element) will be 
transformed to a value close to one, while other rank values will 
be transformed depend on two parameters x0 and a. In Figure 1, 
we show the shape of the sigmoid function for several 
combinations of parameters.  
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Figure 1. Sigmoid functions. 

Our posting entry ranking function is given below: 

( ) =dtf ,
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α  

(6) 

where α is a parameter taking value between zero and one. 

4.4 Posting-Based Pruning versus Document-
Centric Pruning and Term-Centric Pruning 
We show that our posting entry ranking function generalizes 
document-centric index pruning method and term-centric pruning 
method.  

If we set the value of α to zero, replace the document weighting 
function KLD(d||C) with the unity function u(d) = 1, and set the 
parameter a of the sigmoid function to 1 so that the sigmoid 
function in (5) becomes a threshold function at x0, then for each 
document d, our ranking function f() assigns a non-zero value to 
the posting entry <t, d> if t is ranked in the top-x0 among all 
unique terms in d, otherwise f() returns a zero value. In this case, 
our posting-based pruning technique is equivalent to the 
“constant” document-centric pruning technique proposed by 
Buttcher and Clarke in [6], which select a fixed number of top 
ranked terms from each document. Obviously, the “relative” 
document-centric pruning technique proposed in [6] can be easily 
obtained from our posting entry ranking function by adjusting x0 
for each document according to its length. 

Similarly, if we set the value of α to one, replace the term 
weighting function RIDF(t) with the unity function u(t) = 1, set 
the parameter a of the sigmoid function to 1, and set the parameter 
x0 to the rank of the i-th posting entry in the posting list of term t 
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such that S(t, di) > τ (t) and S(t, di+1) ≤ τ (t), where τ (t) is the cut-
off threshold proposed by Carmel et al. in [5], then our posting 
entry ranking function assigns a non-zero value to any posting 
entry selected by term-centric pruning technique, and a zero value 
to any non-selected posting entry.  

Our posting-based pruning technique is different from term-
centric and document-centric pruning techniques in several 
aspects. By using term weighting function and document 
weighting function other than the unity function, we allow the 
pruned index to include more information for informative terms 
and outstanding documents. By using a sigmoid function instead 
of a threshold function to transform the term and document ranks, 
we open the possibility that a posting entry which is ranked low in 
a posting list could be selected, if it is ranked high in the 
document, and vice versa. 

5. EXPERIMENTAL SETTINGS 
We use the WT10G collection as our data set. This collection 
contains 1,692,096 Web documents crawled from the Web. We 
use the Terrier platform [21] to index and rank queries, and we 
develop our posting-based index pruning technique based on 
Terrier.  

We use the BM25 weighting scheme for both calculating term-
document scores and query ranking. Potter stemming algorithm 
[23] and a standard list of stop-words are used for preprocessing 
documents. After stemming and stop-word removal, the 
vocabulary contains 3,161,488 unique terms. The un-pruned 
index contains 280,632,807 posting entries. 

We use TREC [22] topics 451–500 as our query set. Precision is 
measured for each pruned index using the set of relevance 
judgment provided by TREC for topics 451–500. From TREC 
topics 451–500, we build two sets of queries: one set of long 
queries, wherein each query includes the title and the description 

fields from the TREC topic, and one set of short queries, wherein 
each query includes only the title field from the TREC topic. 

We also implement term-centric index pruning and document-
centric index pruning exactly as specified in their original works 
[5][6]. The only difference is that in [5], Carmel et al. used the 
SMART term weighting scheme for both index pruning and query 
ranking. We instead use BM25 term weighting scheme for query 
ranking, but still use SMART term weighting scheme for index 
pruning. 

We conduct experiments to compare the effectiveness of our 
proposed posting-based pruning technique with the term-based, 
“score shifting” pruning technique proposed in [5], and the 
“relative” document-centric pruning technique proposed in [6]. In 
the next section, we report precision at 10, precision at 20, and 
average precision at each pruning level for each technique.  

6. EXPERIMENTAL RESULTS 
In Figure 2, we show the effectiveness of pruned indices for the 
set of short TREC queries; and in Figure 3, we show the 
effectiveness of pruned indices for the set of long TREC queries. 
Posting-centric pruned index is marked as “pXX_YY_ZZ”, where 
XX is the value of parameter α (percentage), YY is the value of 
parameter a, and ZZ is the value of parameter x0. Figure 2 and 
Figure 3 show experiment results for a posting-centric pruned 
index with α = 50%, a = 15, and x0 = 50. With the pruning level 
less than 70%, posting-centric pruning has similar performance as 
compare with document-centric pruning and term-centric pruning. 
However, for pruning level of 70% or more, posting-centric 
pruning is outperformed by document-centric pruning.    

We turn our parameters for posting-centric index pruning 
technique. Table 1, Table 2, and Table 3 show experiment results 
for short queries of document-centric pruning technique and 
posting-centric pruning techniques with various combinations of 

   

Figure 2: Querying effectiveness for short TREC queries. 
 

   
Figure 3: Querying effectiveness for long TREC queries. 
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parameter values. Experiments with long queries have similar 
trend and therefore are omitted. 

In Table 1, Table 2, and Table 3, the values in bold are the highest 
performance for a specific pruning level. The first observation is 
that posting-centric pruning is better at low and moderate pruning 
level, while document-centric pruning is better at higher pruning 
level. The second observation is that, even though posting-centric 
pruning is better than document-centric pruning at low and 
moderate pruning level, the differences are small. In contrast, at 

higher pruning level, the differences between the performance of 
posting-centric pruning and document-centric pruning are larger. 
In addition, none of the posting-centric pruning techniques 
outperforms document-centric pruning technique at high pruning 
level. 

In all previous experiments of posting-centric pruning technique, 
parameters of the posting entry ranking function (6) are fixed for 
all posting entries. We consider the possibility of adaptively 
setting parameters for each posting entry, by adapting the slope of 

Table 1. Precision at 10 for short TREC queries of document-centric pruning technique and posting-centric pruning techniques of 
various parameter combinations.  

 

Pct #posting 
entry-pruned 

Document-
centric 

p50_15_50 p20_15_50 p50_35_200 p50_200_50 p80_200_1000 p50_300_1000 p80_300_1000 p80_400_1000 

0 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 

10 0.2458 0.2542 0.2542 0.2542 0.2542 0.2542 0.2542 0.2563 0.2521 

20 0.2396 0.2521 0.2521 0.2542 0.2375 0.2333 0.2333 0.2354 0.2354 

30 0.2396 0.2458 0.2458 0.2458 0.2292 0.2271 0.2292 0.2313 0.2292 

40 0.2458 0.2479 0.2479 0.2271 0.2250 0.2271 0.2271 0.2250 0.2333 

50 0.2500 0.2563 0.2542 0.2375 0.2292 0.2250 0.2312 0.2312 0.2208 

60 0.2458 0.2521 0.2500 0.2250 0.2208 0.2104 0.2208 0.2167 0.2146 

70 0.2396 0.2354 0.2354 0.2271 0.2396 0.2229 0.2354 0.2187 0.2187 

80 0.2500 0.1979 0.2167 0.2021 0.2104 0.2063 0.2333 0.1979 0.2021 

90 0.2458 0.15 0.1625 0.1625 0.1854 0.1958 0.1875 0.2021 0.2000 

 

Table 2. Precision at 20 for short TREC queries of document-centric pruning technique and posting-centric pruning techniques of 
various parameter combinations.  

 

Pct #posting 
entry-pruned 

Document-
centric 

p50_15_50 p20_15_50 p50_35_200 p50_200_50 p80_200_1000 p50_300_1000 p80_300_1000 p80_400_1000 

0 0.2073 0.2073 0.2073 0.2073 0.2073 0.2073 0.2073 0.2073 0.2073 

10 0.2052 0.2042 0.2042 0.2052 0.2052 0.2052 0.2052 0.2052 0.2052 

20 0.201 0.2031 0.2031 0.2021 0.1990 0.1938 0.1948 0.1948 0.1958 

30 0.1979 0.2052 0.2063 0.1990 0.1854 0.1844 0.1854 0.1854 0.1844 

40 0.1979 0.2042 0.2042 0.1917 0.1750 0.1740 0.1740 0.1750 0.1781 

50 0.1969 0.2083 0.2073 0.1875 0.1771 0.1740 0.1781 0.1792 0.1719 

60 0.1958 0.2031 0.2010 0.1802 0.1813 0.1813 0.1844 0.1813 0.1833 

70 0.2010 0.2031 0.1990 0.1719 0.1802 0.1740 0.1802 0.1750 0.1750 

80 0.2094 0.1583 0.1729 0.1573 0.1552 0.1635 0.1729 0.1635 0.1646 

90 0.1927 0.1177 0.1229 0.1208 0.1354 0.1469 0.1448 0.1531 0.1500 

 

Table 3. MAP for short TREC queries of document-centric pruning technique and posting-centric pruning techniques of various 
parameter combinations.  

 

Pct #posting 
entry-pruned 

Document-
centric 

p50_15_50 p20_15_50 p50_35_200 p50_200_50 p80_200_1000 p50_300_1000 p80_300_1000 p80_400_1000 

0 0.1892 0.1892 0.1892 0.1892 0.1892 0.1892 0.1892 0.1892 0.1892 

10 0.1864 0.1868 0.1871 0.1869 0.1879 0.1875 0.1878 0.1873 0.1880 

20 0.1838 0.1891 0.1892 0.1889 0.1835 0.1818 0.1824 0.1835 0.1826 

30 0.1846 0.1914 0.1913 0.1901 0.1816 0.1806 0.1807 0.1821 0.1825 

40 0.1847 0.1855 0.1854 0.1880 0.1805 0.1822 0.1820 0.1827 0.1845 

50 0.1837 0.1958 0.1958 0.1815 0.1834 0.1809 0.1839 0.1840 0.1809 

60 0.1835 0.1911 0.1915 0.1804 0.1755 0.1743 0.1785 0.1747 0.1747 

70 0.1693 0.172 0.1739 0.1698 0.1702 0.1619 0.1657 0.1692 0.1627 

80 0.1679 0.1557 0.1571 0.1476 0.1373 0.1494 0.1575 0.1486 0.1440 

90 0.1533 0.0919 0.1136 0.1238 0.1338 0.1404 0.1314 0.1378 0.1421 
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the sigmoid function as follows. For a posting entry <t, d>, we 
use two sigmoid functions, one for the rank of term t in the 
document d, the other for the rank of document d in the posting 
list of term t. We call the former document-oriented sigmoid 
function, and the later term-oriented sigmoid function. For the 
term-oriented sigmoid function, its x0 parameter is set according 
to the pruning level (i.e., if the pruning level is 90%, x0 is equal to 
10% of the length of the term posting list). Similarly, for the 
document-oriented sigmoid function, if the pruning level is 90%, 
its x0 parameter is set to 10% of the number of unique terms in the 
document. For both sigmoid functions, the parameter a, which 
control the slope of the function, is set so that the function returns 
a value close to 1 for input value which is less than 0.9 × x0 and 
returns a value close to 0 for input value which is greater than 1.1 
× x0. We also explore the performance of several alternatives, 
which may or may not use term-weighting and/or document-
weighting (refer to the ranking function (6) in Section 4.3).  

In Table 4, we report the performance of different alternatives at 
the approximately 90% pruning level. Document-centric pruning 
performance is included for reference.  For each column, the best 

value is in bold. From the results reported in Table 4, we can see 
that:  

(i) Term-document scores should be used in the posting 
entry ranking function (6), which is revealed by the 
significant differences between the performance of AP1 
and AP2.  

(ii)  Term-weighting is useful, which is confirmed by the 
differences between the performance of AP1 and AP3. 

(iii)  Document weighting seems to be harmful, which hurt the 
performance of AP4, compare to the performance of AP3 
and AP1.  

Among all alternatives, AP3 is the best, which is only slightly 
outperformed by document-centric pruning for long queries 
according to MAP. We therefore consider it as the best among our 
alternatives. Below, we report its performance in comparison with 
document-centric pruning and term-centric pruning at various 
level of pruning in Figure 4 and Figure 5. 

By adapting the sigmoid functions to posting entries, the 
performance of our posting-centric pruning technique is much 
better, as good as the performance of document-centric pruning 

   

Figure 4: Querying effectiveness for short TREC queries. 

 

   
Figure 5: Querying effectiveness for long TREC queries. 

 

Table 4. Performance at 90% pruning level of different posting-centric pruning techniques. 
 

Pruning method Short TREC queries Long TREC queries 

 P@10 P@20 MAP P@10 P@20 MAP 

Document-centric 0.2458 0.1927 0.1533 0.3120 0.2470 0.1731 

AP1: no term weighting, no document weighting, α = 0.5, using two different sigmoid 
functions with parameters vary for each posting entry  0.2375 0.1688 0.1456 0.3020 0.2100 0.1561 

AP2: similar to AP1, except that term-document scores are not used 0.1277 0.1106 0.0831 0.1660 0.1250 0.0903 

AP3: similar to AP1, except that term weighting is used 0.2604 0.1969 0.1592 0.3300 0.2500 0.1714 

AP4: similar to AP1, except that both term weighting and document weighting are used 0.2271 0.1573 0.1354 0.2740 0.1900 0.1479 

 

LSDS-IR’09 Static Index Pruning for Information Retrieval Systems: A Posting-Based Approach

31



technique (posting-centric pruning is better than document-centric 
pruning at some pruning level, while the inverse is true at other 
pruning levels). 

7. CONCLUSIONS AND FUTURE WORK 
We evaluate document-centric and term-centric static index 
pruning based on the WT10G corpus and TREC query sets. Based 
on our experimental results, term-centric index pruning is better 
than document-centric index pruning at low and moderate pruning 
level (i.e., less than 70% pruning, according to our results), while 
document-centric index pruning is better at higher pruning level. 

We propose posting-centric index pruning technique, which ranks 
each posting entry (i.e., a term-document pair) based on a set of 
features such as the rank of the term in the document and the rank 
of the document in the inverted list of the term. We show that 
posting-centric index pruning generalizes both document-centric 
and term-centric pruning, and therefore, the solution space of 
term-centric pruning covers the solution spaces of both document-
centric and term-centric index pruning. This implies that, by 
exploring this larger solution space, better solution can be found. 

We explore the solution space of posting-centric pruning by 
studying a family of posting entry ranking functions. We discover 
that term weighting based on RIDF is useful, while document 
weighting based on KL-divergence is harmful. We also notice that 
parameters of the sigmoid function, which we use to transform the 
rank of a term/document to its score, should be adapted to each 
posting entry. Fixing these parameters makes posting-centric 
pruning less effective than document-centric pruning. 

Other term weighting and document weighting methods are 
possible. We are evaluating a method of weighting terms and 
documents based on user queries and the PageRank algorithm 
applying on the graph of terms and documents. Our goal is to 
discover important terms and documents by analyzing the 
relationship among terms and documents given the context of user 
queries. Once the important terms and the important documents 
are discovered, their information is kept in the pruned index, 
while information about others, less important terms and 
documents, can be partially removed or totally discarded. 
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ABSTRACT
Novel “manycore”architectures, such as graphics processors,
are high-parallel and high-performance shared-memory ar-
chitectures [7] born to solve specific problems such as the
graphical ones. Those architectures can be exploited to
solve a wider range of problems by designing the related
algorithm for such architectures. We present a fast sorting
algorithm implementing an efficient bitonic sorting network.
This algorithm is highly suitable for information retrieval
applications. Sorting is a fundamental and universal prob-
lem in computer science. Even if sort has been extensively
addressed by many research works, it still remains an inter-
esting challenge to make it faster by exploiting novel tech-
nologies. In this light, this paper shows how to use graph-
ics processors as coprocessors to speed up sorting while al-
lowing CPU to perform other tasks. Our new algorithm
exploits a memory-efficient data access pattern maintain-
ing the minimum number of accesses to the memory out
of the chip. We introduce an efficient instruction dispatch
mechanism to improve the overall sorting performance. We
also present a cache-based computational model for graph-
ics processors. Experimental results highlight remarkable
improvements over prior CPU-based sorting methods, and
a significant improvement over previous GPU-based sorting
algorithms.

1. INTRODUCTION
Every day people use Web Search Engines as a tool for

accessing information, sites, and services on the Web. Infor-
mation retrieval has to face those issues due to the growing
amount of information on the web, as well as the number of
new users. Creating a Web Search Engine which scales even
to today’s Web contents presents many challenges. A fast
crawling technology is needed to gather web documents and

Copyright c© 2009 for the individual papers by the papers’ authors. Copy-
ing permitted for private and academic purposes. Re-publication of material
from this volume requires permission by the copyright owners. This volume
is published by its editors.
LSDS-IR Workshop. July 2009. Boston, USA.

keep them up to date. Storage space must be used efficiently
to store indexes, and documents. The indexing system must
process hundreds of gigabytes of data efficiently. Queries
must be handled quickly, at a rate of hundreds to thousands
per second. All these services run on clusters of homoge-
neous PCs. PCs in these clusters depends upon price, CPU
speed, memory and disk size, heat output, and physical size
[3]. Nowadays these characteristics can be find also in other
commodity hardware originally designed for specific graph-
ics computations. Many special processor architectures have
been proposed to exploit data parallelism for data intensive
computations and graphics processors (GPUs) are one of
those. For example, the scientific community uses GPUs
for general purpose computation. The result obtained, in
term of computational latency, outperform the time charge
requested on classical processors. Unfortunately, such pro-
grams must rely on APIs to access the hardware, for example
OpenGL or DirectX. These APIs are simultaneously over-
specified, forcing programmer to manipulate data that is not
directly relevant, and drivers. These APIs make critical pol-
icy decisions, such as deciding where data resides in memory
and when they are copied.

In last years, due to the growing trend of media market,
the request of rendering algorithms is rapidly evolving. For
those companies producing hardware, it means to design
every time new hardware both able to run novel algorithms
and able to provide higher rate of computations per sec-
ond. Such processors require significant design effort and
are thus difficult to change as applications and algorithms
evolve. The request for flexibility in media processing moti-
vates the use of programmable processors, and the existing
need for non-graphical APIs pushed the same companies into
creating new abstractions designed to last.

Finally, according to what Moore’s law foresee, the num-
ber of transistor density doubles every two years. Further-
more, mainly due to power-related issues, new generation
processors (such as traditional CPUs) tend to incorporate
an ever-increasing number of processors (also called cores)
on the same chip [9]. The result is that nowadays the mar-
ket proposes low-cost commodity hardware that is able to
execute heavy loads of computations. In order to enable de-
velopers to leverage the power of such architectures, they
usually make available ad-hoc programming tools for.

For the reasons listed so far, these architectures are ideal
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candidates for the efficient implementation of those compo-
nent of a Large-Scale Search Engine that are eager of com-
putational power.

This paper focuses on using a GPU as a co-processor for
sorting. Sorting is a core problem in computer science that
has been extensively researched over the last five decades
and still remains a bottleneck in many applications involv-
ing large volumes of data. One could argue why efficient
sorting is related with LSDS-IR. First of all, sorting is a
basic application for indexing. We will show in Section 3
how many indexing algorithms are basically a sorting op-
eration over integer sequences. Large scale indexing, thus,
required scalable sorting. Second, the technique we are in-
troducing here is of crucial importance for Distributed Sys-
tems for IR since it is designed to run on GPUs that are
considered by many as a basic building block for future gen-
eration data-centers [4]. Our bitonic sorting network can
be seen as a viable alternative for sorting large quantities
of data on graphics processors. In the last years general
purpose processors have been specialized adopting mecha-
nisms to make more flexible their work. Such facilities (i.e.
more levels of caches, out-of-order execution paradigm, and
branch prediction techniques) leads to make the theoreti-
cal performance of CPUs closer to the real achievable one.
From the other side specialized processors, like GPUs, ex-
pose lower flexibility at design phase, but are able to reach
higher computational power providing more computational
cores with respect to other the class of processors. We map
a bitonic sorting network on GPU exploiting the its high
bandwidth memory interface. Our novel data partitioning
improves GPU cache efficiency and minimizes data transfers
between on-chip and off-chip memories.

This paper is organized as follows. Section 2 discusses
related works, while Sections 3 introduces some relevant
characteristics about the applicability of GPU-based sort-
ing in Web Search Engines. Section 4 presents some issues
arising from the stream programming model and the single-
instruction multiple-data (SIMD) architecture. The central
part is devoted to expose our solution, and the computa-
tional model used to formalize Graphics Processing Units.
Section 6 presents some results obtained in a preliminary
evaluation phase. Section 7 discuss hot to evolve and im-
prove this research activity.

2. RELATED WORK
Since most sorting algorithms are memory bandwidth bound,

there is no surprise that there is currently a big interest in
sorting on the high bandwidth GPUs.

Purcell et al. [24] presented an implementation of bitonic
merge sort on GPUs based on an implementation by Ka-
pasi et al. [17]. Author used that approach to sort photons
into a spatial data structure providing an efficient search
mechanism for GPU-based photon mapping. Comparator
stages were entirely realized in the fragment units1, includ-
ing arithmetic, logical and texture operations. Authors re-
ported their implementation to be compute-bound rather
than bandwidth-bound, and they achieve a throughput far
below the theoretical optimum of the target architecture.

Kipfer et al. [19, 20] showed an improved version of the

1In addition to computational functionality, fragment units
also provide an efficient memory interface to server-side
data, i.e. texture maps and frame buffer objects.

bitonic sort as well as an odd-even merge sort. They pre-
sented an improved bitonic sort routine that achieves a per-
formance gain by minimizing both the number of instruc-
tions to be executed in the fragment program and the num-
ber of texture operations.

Zachmann et al. [14] presented a novel approach for par-
allel sorting on stream processing architectures based on an
adaptive bitonic sorting [6]. They presented an implemen-
tation based on modern programmable graphics hardware
showing that they approach is competitive with common
sequential sorting algorithms not only from a theoretical
viewpoint, but also from a practical one. Good results are
achieved by using efficient linear stream memory accesses
and by combining the optimal time approach with algo-
rithms.

Govindaraju et al. [13] implemented sorting as the main
computational component for histogram approximation. This
solution is based on the periodic balanced sorting network
method by Dowd et al. [10]. In order to achieve high com-
putational performance on the GPUs, they used a sorting
network based algorithm and each stage is computed using
rasterization. They later presented a hybrid bitonic-radix
sort that is able to sort vast quantities of data [12], called
GPUTeraSort. This algorithm was proposed to sort record
contained in databases using a GPU. This approach uses the
data and task parallelism on the GPU to perform memory-
intensive and compute-intensive tasks while the CPU is used
to perform I/O and resource management.

Sengupta et al. [25] presented a radix-sort and a Quick-
sort implementation based on segmented scan primitives.
Authors presented new approaches of implementing several
classic applications using this primitives and shows that this
primitives are an excellent match for a broad set of problems
on parallel hardware.

Recently, Sintorn et al. [28] presented a sorting algorithm
that combines bucket sort with merge sort. In addition,
authors show this new GPU sorting method sorts on nlog(n)
time.

Cederman et al. [8] showed that their GPU-Quicksort is
a viable sorting alternative. The algorithm recursively par-
tition the sequence to be sorted with respect to a pivot.
This is done in parallel by each GPU-thread until the en-
tire sequence has been sorted. In each partition iteration
a new pivot value is picked and as a result two new sub-
sequences are created that can be sorted independently by
each thread block can be assigned one of them. Finally, ex-
periments pointed out that GPU-Quicksort can outperform
other GPU-based sorting algorithms.

3. APPLICATIONS TO INDEXING
A modern search engine must scale even with the growing

of today’s Web contents. Large-scale and distributed appli-
cations in Information Retrieval such as crawling, indexing,
and query processing can exploit the computational power
of new GPU architectures to keep up with this exponential
grow.

We consider here one of the core-component of a large-
scale search engine: the indexer. In the indexing phase, each
crawled document is converted into a set of word occurrences
called hits. For each word the hits record: frequency, posi-
tion in document, and some other information. Indexing,
then, can be considered as a “sort” operation on a set of
records representing term occurrences [2]. Records repre-
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sent distinct occurrences of each term in each distinct docu-
ment. Sorting efficiently these records using a good balance
of memory and disk usage, is a very challenging operation.

In the last years it has been shown that sort-based ap-
proaches [29], or single-pass algorithms [21], are efficient in
several scenarios, where indexing of a large amount of data
is performed with limited resources.

A sort-based approach first makes a pass through the col-
lection assembling all term-docID pairs. Then it sorts the
pairs with the term as the dominant key and docID as the
secondary key. Finally, it organizes the docIDs for each term
into a postings list (it also computes statistics like term and
document frequency). For small collections, all this can be
done in memory.

When memory is not sufficient, we need to use an external
sorting algorithm [22]. The main requirement of such algo-
rithm is that it minimizes the number of random disk seeks
during sorting. One solution is the Blocked Sort-Based In-
dexing algorithm (BSBI). BSBI segments the collection into
parts of equal size, then it sorts the termID-docID pairs of
each part in memory, finally stores intermediate sorted re-
sults on disk. When all the segments are sorted, it merges
all intermediate results into the final index.

A more scalable alternative is Single-Pass In-Memory In-
dexing (SPIMI). SPIMI uses terms instead of termIDs, writes
each block’s dictionary to disk, and then starts a new dic-
tionary for the next block. SPIMI can index collections of
any size as long as there is enough disk space available. The
algorithm parses documents and turns them into a stream of
term-docID pairs, called tokens. Tokens are then processed
one by one. For each token, SPIMI adds a posting directly to
its postings list. Instead of first collecting all termID-docID
pairs and then sorting them (as BSBI does), each postings
list is dynamic. This means that its size is adjusted as it
grows. This has two advantages: it is faster because there
is no sorting required, and it saves memory because it keeps
track of the term a postings list belongs to, so the termIDs
of postings need not be stored.

When memory finished, SPIMI writes the index of the
block (which consists of the dictionary and the postings lists)
to disk. Before doing this, SPIMI sorts the terms to facil-
itate the final merging step: if each block’s postings lists
were written in unsorted order, merging blocks could not be
accomplished by a simple linear scan through each block.
The last step of SPIMI is then to merge the blocks into the
final inverted index.

SPIMI, which time complexity is lower because no sorting
of tokens is required, is usually preferred with respect to
BSBI that presents an higher time complexity.

In both the methods presented for indexing, sorting is in-
volved: BSBI sorts the termID-docID pairs of all parts in
memory, SPIMI sorts the terms to facilitate the final merg-
ing step [22].

In order to efficiently evaluate these two approaches on a
heterogeneous cluster we have to compare“standard”SPIMI
performances with the performances of a BSBI-based sorter
implemented by us. Moreover, to fully analyze the indexing
phase, we need a GPU-based string sorter able to outperform
CPUs as well as our sorter for integers does. In this way
we have the possibility to compare both solutions, on all
architectures, then to choose the best combination. Having
all possible implementations available, a flexible execution
of indexing running on various hardware can be imagined.

This option is even more important if the allocation of the
task is scheduled dynamically, as it can be done depending
of the workload of the single resources.

The-state-of-art in string sort lacks of solution for GPU
architectures: nowadays we are not aware of solutions for
parallel SIMD processors. In the literature, this problem is
efficiently solved by using different approaches. The most
interesting and suitable for us seems to be Burstsort [27].
It is a technique that combines the burst trie [15] to dis-
tribute string-items into small buckets whose contents are
then sorted with standard (string) sorting algorithms. Suc-
cessively, Sinha et al. [26] introduced improvements that
reduce by a significant margin the memory requirements of
Burstsort. This aspect is even more relevant for GPU archi-
tectures having small-sized on-chip memories.

4. SORTING WITH GPUS
This section gives a brief overview of GPUs highlighting

features that make them useful for sorting. GPUs are de-
signed to execute geometric transformations that generate a
data stream of display-pixels. A data stream is processed by
a program running on multiple SIMD processors, which are
capable for data-intensive computations. The output, then,
is written back to the memory.

4.1 SIMD Architecture
SIMD machines are classified as processor-array machines:

a SIMD machine basically consists of an array of computa-
tional units connected together by a simple network topol-
ogy [23]. This processor array is connected to a control pro-
cessor, which is responsible for fetching and interpreting in-
structions. The control processor issues arithmetic and data
processing instructions to the processor array, and handles
any control flow or serial computation that cannot be par-
allelized. Processing elements can be individually disabled
for conditional execution: this option give more flexibility
during the design of an algorithm.

Although SIMD machines are very effective for certain
classes of problems, the architecture is specifically tailored
for data computation-intensive work, and it results to be
quite “inflexible” on some classes of problems2.

4.2 Stream Programming Model
A stream program [18] organizes data as streams and ex-

presses all computation as kernels. A stream is a sequence
of similar data elements, that are defined by a regular ac-
cess pattern. A kernel typically loops through all the input
stream elements, performing a sequence of operations on
each element, and appending results to an output stream.
These operations exhibits an high instruction level paral-
lelism. Moreover, these operations cannot access to arbi-
trary memory locations but they keep all the intermediate
values locally, into kernels. Since each element of the in-
put stream can be processed simultaneously, kernels also ex-
pose large amounts of data-level parallelism. Furthermore,
stream memory transfers can be executed concurrently with
kernels, thereby exposing task-level parallelism in the stream
program. Some other important characteristics common to
all stream-processing applications are: (i) elements are read
once from memory, (ii) elements are not visited twice, and

2 For example, these architectures cannot efficiently run the
control-flow dominated code.
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(iii) the application requires high level of arithmetic opera-
tions per memory reference, i.e. computationally intensive.

4.3 Nvidia’s CUDA
CUDA [1], acronym of Compute Unified Device Architec-

ture, is defined as an architecture built around a scalable
array of multithreaded streaming multiprocessors (MPs).
Each MP is defined as a unit comprising one instruction
unit, a collection of eight single precision pipelines also called
cores, a functional units for special arithmetical operations
and a 16 KB local store also called shared memory. In prac-
tice, this means that each MP is a SIMD processor, whose
cores form an arithmetic pipeline that executes scalar in-
structions. All MPs create, manage, and execute concurrent
threads in hardware with zero scheduling overhead, and im-
plements a barrier for threads synchronization. Neverthe-
less, only threads concurrently running on the same MP can
be synchronized.

CUDA model also introduces the entity warp as a group
of 32 parallel scalar threads, and reports that each warp
executes one common instruction at a time. This is another
way of saying that warp is a stream of vector instructions:
scalar threads are then vector elements. But, unlike others
SIMD instruction set, such as Intel’s SSE, a particular value
of the vector length is not specified. A thread block is defined
as a collection of warps that run on the same MP and share
a partition of local store. The number of warps in a thread
block is configurable.

4.3.1 CUDA SDK
The SDK provided by Nvidia for its GPUs consist of a

large, collection of code examples, compilers and run-time
libraries. Clearly the CUDA model is “restricted” to Nvidia
products, mainly for efficiency reasons, and it is conform to
the stream programming model. Threads and thread blocks
can be created only by invoking a parallel kernel, not from
within a parallel kernel. Task parallelism can be expressed
at the thread-block level, but block-wide barriers are not
well suited for supporting task parallelism among threads
in a block. To enable CUDA programs to run on any num-
ber of processors, communication between different blocks of
threads, is not allowed, so they must execute independently.
Since CUDA requires that thread blocks are independent
and allows blocks to be executed in any order. Combin-
ing results generated by multiple blocks must in general be
done by launching a second kernel. However, multiple thread
blocks can coordinate their work using atomic operations on
the external (off-chip) memory.

Recursive function calls are not allowed in CUDA kernels.
Recursion is, in fact, unattractive in a massively parallel
kernel. Providing stack space for all the active threads it
would require substantial amounts of memory. To support
an heterogeneous system architecture combining a CPU and
a GPU, each with its own memory system, CUDA programs
must copy data and results between host memory and device
memory. The overhead of CPU/GPU interaction and data
transfers is minimized by using DMA block-transfer engines
and fast interconnects.

4.4 Cache-oblivious algorithms
The cost of communication can be larger up to an order

of magnitude than the cost of the pure computation on such
architectures. Our idea is to model the proposed solution as

cache-oblivious algorithms. The model underlying this type
of algorithms is not directly applicable on GPU’s parallel ar-
chitecture, which is equipped with local memory instead of
cache. Adopting local memory approach, the programmer
has to bear the effort of synchronizing, sizing, and schedul-
ing the computation of data and its movement through the
off-chip memory and the in-chip one. On the other hand in
cache-based architectures this aspect is automatically man-
aged by the underlying support. A local memory approach
permits to move data located in different addresses compos-
ing a specific access pattern. This capability is impossible to
realize with caches, where the hardware hides this operation
by automatically replacing missed cache lines.

Frigo et al. [11] presents cache-oblivious algorithms that
use both asymptotically optimal amounts of work, and asymp-
totically optimal number of transfers among multiple levels
of cache. An algorithm is cache oblivious if no program
variables dependent on hardware configuration parameters,
such as cache size and cache-line length need to be tuned
to minimize the number of cache misses. Authors introduce
the “Z, L” ideal-cache model to study the cache complexity
of algorithms. This model describes a computer with a two-
level memory hierarchy consisting of an ideal data cache of
Z words of constant size, and an arbitrarily large main mem-
ory. The cache is partitioned into cache lines, each consist-
ing of L consecutive words that are always moved together
between cache and main memory.

The processor can only reference words that reside in the
cache. If the referenced word belongs to a line already in
cache, a cache hit occurs, and the word is delivered to the
processor. Otherwise, a cache-miss occurs, and the line is
fetched into the cache. If the cache is full, a cache line
must be evicted. An algorithm with an input of size n is
measured in the ideal-cache model in terms of its work com-
plexity W (n) and its cache complexity Q(n, Z, L), that is
the number of cache misses it incurs as a function of the size
Z and line length L of the ideal cache.

The metrics used to measure cache-oblivious algorithms
need to be reconsidered in order to be used with GPUs that
are parallel architectures. To do that W () has to be defined
taking care of the level of parallelism exposed by GPUs.
Evaluating Q(), we must translate the concept of Z and L
that refer to cache characteristics. More precisely, a GPUs
is provided of p MPs each one with a local memory. We
can abstract such architectural organization by considering
each local memory as one cache-line, and the union of all
local memories as the entire cache, taking no care of which
processor is using data. In this point of view, if the shared
memory of each MP is 16 KB, we obtain L = 16 KB and
Z = 16 · p KB.

5. BITONIC SORT
To design our sorting algorithm in the stream program-

ming model, we started from the popular Bitonic Sort (BS)
network and we extend it to adapt to our specific architec-
ture. Specifically, BS is one of the fastest sorting networks
[5]. A sorting network is a special kind of sorting algo-
rithm, where the sequence of comparisons do not depend
on the order with which the data is presented, see Figure
1. This makes sorting networks suitable for implementation
on GPUs. In particular, the regularity of the schema used
to compare the elements to sort, makes this kind of sorting
network particularly suitable for partitioning the elements in
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the stream programming fashion, as GPUs require. Finally,
we compared theoretical results with the ones resulting from
the tests, in order to say if the adapted ideal-cache model is
useful to abstract GPUs.

step

Figure 1: Bitonic sorting networks for 16 elements.
Each step is completed when all comparisons in-
volved are computed. In the figure each comparison
is represented with a vertical line that link two ele-
ments, which are represented with horizontal lines.

The main issue to address is to define an efficient schema
to map all comparisons involved in the BS on the elements
composing the streams invoked.

The first constraint is that the elements composing each
stream must be “distinct”. This means that each item in
the input has to be included in exactly one element of the
stream. From this point of view, each stream of elements
defines a partition of the input array to be sorted. This char-
acteristic is necessary due to the runtime support, because
it does not permit any type of data-exchange, or synchro-
nization, between two elements (Figure 2).

kernel stream

element

step

Figure 2: Example of a kernel stream comprising
more sorting network steps. The subset of items
composing each element must perform comparison
only inside itself.

The second aspect to optimize is the partitioning of the
steps composing the sorting network. Since a BS is com-
posed by several steps (Figure 1), we have to map the execu-
tion of all steps into a sequence of independent runs, each of
them corresponding to the invocation of a kernel. Since each
kernel invocation implies a communication phase, such map-
ping should be done in order to reduce the number of these
invocations, thus the communication overhead. Specifically,
this overhead is generated whenever the SIMD processor be-
gins the execution of a new stream element. In that case, the
processor needs to flush the results contained in the proper
shared memory, then to fetch the new data from the off-chip

memory. In the ideal-cache computational model, it corre-
sponds to a cache-miss event, which wastes the performance
of the algorithm.

Resuming, performing several network steps in the same
kernel has the double effect to reduce the number of cache-
misses, i.e. improving Q() metric, and to augment the level
of arithmetic operations per memory reference. The unique
constraint is that the computation of an element has to be
independent from the one of another element in the same
stream.

A

step

B C

Figure 3: Increasing the number of steps covered
by the partition, the number of items included dou-
bles. A, B and C are partitions respectively for local
memory of 2, 4 and 8 locations.

Let us introduce our solution. First of all, we need to
establish the number of consecutive steps to be executed by
one kernel. We must consider that for each step assigned
to a kernel, in order to maintain the all stream elements
independent, the number of memory location needed by the
relative partition doubles, see Figure 3. So, the number
of steps a kernel can cover is bounded by the number of
items that it is possible to include into the stream element.
Furthermore, the number of items is bounded by the size of
the shared memory available for each SIMD processor.

Algorithm 1 Bitonic Sort algorithm.

a ← array to sort
for s = 1 to log2 |a| do

for c = s− 1 down to 0 do
for r = 0 to |a| − 1 do

if r
2c ≡ r

2s (mod 2) ∧ a[r] > a[r ⊕ 2c] then
a[r] ⇆ a[r ⊕ 2c]

end if
end for

end for
end for

More precisely, to know how many steps can be included
in one partition, we have to count how many distinct values c
assumes, see Algorithm 1. Due to the fixed size of memory
locations, i.e. 16 KB, we can specifies partition of SH =
4 K items, for items of 32 bits. Moreover such partition is
able to cover “at least” sh = log(SH) = 12 steps. From
this evaluation it is also possible to estimate the size of the
kernel stream: if a partition representing an element of the
stream contains SH items, and the array a to sort contains
N = 2n items, then the stream contains b = N/SH = 2n−sh

elements.
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A important consideration must be done for the first ker-
nel invoked by the algorithm: until the variable s in the
Algorithm 1 is not greater than sh the computation of the
several first steps can be done with this first kernel. This
because the values assumed by c remain in a range of sh
distinct values. More precisely the first kernel computes the

first sh·(sh+1)
2

steps (Figure 3).
This access pattern schema can be traduced in the func-

tion ℓc(i) that for the current kernel stream, given the cur-
rent value of c, is able to define the subset of a to be assigned
to the i-th stream element. In other words, ℓ describes a
method to enumerate the set of indexes in a that the i-th
element of the kernel stream has to perform. Formally, it is
defined as:

ℓc : i ∈ [0, b− 1] → Π ⊆ πsh(a)

where πsh(a) is a partition of a, namely a set of nonempty
subsets of a such that every element in a is in exactly one of
these subsets, and each subset contains exactly 2sh elements
of a.

Let us assume n = 32 and the size of the shared memory
can contains 4 K items, so we have |a| = 232 and b = 2n−sh =
232−12 = 220 elements for each stream. Basically, we need
32 bits to point an element of a, and log(b) = 20 bits to
identify the i-th partition among the b existing. The i value
is used to build a bit-mask that is equal for each address
produced by ℓc(i). Such mask sets log(b) bits of the 32 bits
composing an index for a. The missing sh bits are generated
by using a variable x to enumerate all values in the range
X = [0, 2sh−1] and by inserting each of them in c-th position
of the i mask. This composition leads to a set of addresses
of n bits whose relative items compose the b-th partition.
Formally, we obtain:

ℓc(i) = {x ∈ X : i[31...c] ◦ x ◦ i[c+1...0]}
where i[31...c] notation identifies the leftmost bits, namely
from the 31th bit down to the c-th one, and “◦” is the con-
catenation operator.

The rule to compose the elements in ℓc(i) is easy, but in
some case it leads to some exception. When c < sh, then
x is divided in two parts, that are xL and xR, and they
are inserted in c-th position and in the c′-th position of i
respectively. In particular, the statement c < sh occurs
whenever the middle loop in the Algorithm 1 ends and c
start a new loop getting the new value of s, denoted with c′.
Specifically, it happens that, depending on the current value
of c, the algorithm needs to make two insertions: to add xR

at position c, and to add xL at position c′. Formally, when
c < sh, we have to define a second function ℓc,c′() as in the
following:

ℓc,c′(i) = {x ∈ X : i[31...c̄] ◦ xL ◦ i[c′+sh−c...c] ◦ xR}
where xL = x[sh−1...c], xR = x[c−1...0], and c′ = s + 1.

5.1 Evaluation
For our solution we obtain that W (n, p), where p indi-

cates the number of MPs, and n the size of a, is equal
to the computational cost of the sequential BS divided p,
specifically W (n, p) = O

`
n
p
· log2 n

´
. To know Q(n, Z, L)

we must estimate the number of cache-misses. Assuming
|a| = n, we obtain that the sorting network is made of
σ = 1

2

`
log2(n) + log(n)

´
steps. Furthermore, let us assume

L = SH, Z = SH · p, and each kernel covers sh steps, ex-
cept the first kernel that covers σ′ = 1

2

`
sh2 + sh

´
. Then the

number of cache-misses is ⌈(σ − σ′)/sh⌉.
The last consideration regards W (n, p) measure, that should

be estimated considering that each MP is a SIMD processor.
In fact, each MP reaches its maximum performance when-
ever the data-flow permits to the control unit to issue the
same instruction for all cores. In this way such instruction
is executed in parallel on different data in a SIMD fashion.

In order to compare our bitonic sort with the quick sort
proposed by Cederman et al., we tried to extend the analysis
of ideal-cache model metrics to their solution. Unfortunately
their solution does not permit to be accurately measured
like ours. In particular, it is possible to estimate the num-
ber of transfers among multiple levels of cache, but quick
sort uses off-chip memory also to implement prefix-sum for
each stream element ran. In particular quick sort splits in-
put array in two parts with respect to a pivot by invoking
a procedure on GPU, and recursively repeats this opera-
tion until each part can be entirely contained in the shared
memory. In the optimistic case, assuming |a| = n and a
shared memory equal to L = SH, this operation is invoked
log(n)−log(L) times, that is also the number of cache-misses
for quick sort, namely Q(). This value is sensibly lower to
the Q() measured for bitonic sort, but the evaluation of the
number of such cache-misses should be proportionally aug-
mented due to the prefix-sum procedure. Regarding W (),
the authors report a computational complexity equal to the
one obtained for sequential case, i.e. O

`
n · log(n)

´
, without

referring the parallelism of the underlying hardware. How-
ever, optimistic evaluation of such parallel, version should
be, also in this case, lower than W () computed for bitonic
sort.

6. RESULTS
The experiments have been conducted on an Ubuntu Linux

Desktop with an Nvidia 8800GT, namely a GPU provided
with 14 SIMD processors and CUDA SDK 2.1. To gener-
ate the arrays for these preliminary tests we used uniform,
gaussian and zipfian distributions. Specifically, for each dis-
tribution was generated 20 different arrays. Figure 4 shows:
the means, the standard deviation, the maximum and the
minimum for the times elapsed for all runs of each distri-
bution. The tests involved CPU-based quick sort provided
with C standard library, our solution and the one proposed
by Cederman et al. [8]. In that paper, the GPU-based
quick sort resulted the most performing algorithm in liter-
ature, so our preliminary tests take into consideration only
such GPU-based algorithm.

Figure 4 shows that GPU-based solutions are able to out-
perform CPU’s performance for the sorting problem. The
same figure also shows that our solution is not competitive
with respect to the one of Cederman until the number on
items to sort reaches 8 MB. One more consideration is that
GPU-based quick sort is not able to successfully conclude
the tests for arrays greater than 16 MB. Further analysis
pointed out that bitonic algorithm spends the main part of
the time elapsed for the data-transfer phase of some specific
kernel instance. Since element streams were always of the
same size, we deduced that the number of transfers is not
the only aspect to take into consideration to minimize the
communication overhead, as metrics of ideal-cache models
suggests.
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Figure 4: Squared white areas represent the vari-
ance obtained for several running for each size of
the problem. Vertical lines point out the maximum
and the minimum value obtained.

As suggest by Helman et al. [16] a deeper evaluation of
the algorithm can be conducted by using arrays generated
by different distributions. This type of test puts in evi-
dence the behavior of the algorithms regarding to the vari-
ance of the times obtained in different contexts. For the
two distribution tested, bitonic sort algorithm has a better
behavior with respect to variance. Obviously, this result is
caused by the type of algorithm used. Quick sort is a data-

dependent approach whereas sorting network are based on a
fixed schema of comparisons that does not vary with respect
to data-distribution.

Consideration on the results obtained from these prelim-
inary test suggest us that ideal-cache model does not seem
sufficiently accurate to abstract GPU’s architecture. If the-
oretical results lead to better performance for GPU-based
quick sort, from the tests conducted, it arises that bitonic
sort has a better performance-trend by increasing the size of
the problem. This consideration is enforced by the analysis
of the data-transfer: we strongly believe that by improving
the data-transfer bandwidth, bitonic sort can reach better
results without increasing theoretical W () and Q() metrics.

7. FUTURE WORKS
Preliminary results show that the number of transfers is

not the only aspect to take into consideration for minimiz-
ing communication overhead. Another important factor is
the transfer bandwidth that is relevant to achieve better re-
sults. Results show that the ideal-cache model is not able
to fully describe and capture all the aspects determining the
performance for such kind of architectures. Probably differ-
ent kinds of performance metrics are needed to evaluate an
algorithms on these novel hardware resources.

Furthermore, since indexing is a tuple-sorting operation
we will extend our solution to include the sorting of tuples
of integers. In this paper, in fact, we assume the tuples are
sorted by using multiple passes on the dataset. We reserve
to future work the extension to tuples.

Of course, we have to run more tests to enforce the results
obtained and to analyze more in deep the causes of the waste
of performance that affect our algorithm.
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ABSTRACT
Information Retrieval (IR) systems require input corpora to
be indexed. The advent of terabyte-scale Web corpora has
reinvigorated the need for efficient indexing. In this work,
we investigate distributed indexing paradigms, in particular
within the auspices of the MapReduce programming frame-
work. In particular, we describe two indexing approaches
based on the original MapReduce paper, and compare these
with a standard distributed IR system, the MapReduce in-
dexing strategy used by the Nutch IR platform, and a more
advanced MapReduce indexing implementation that we pro-
pose. Experiments using the Hadoop MapReduce imple-
mentation and a large standard TREC corpus show our
proposed MapReduce indexing implementation to be more
efficient than those proposed in the original paper.

1. INTRODUCTION
The Web is the largest known document repository, and

poses a major challenge for Information Retrieval (IR) sys-
tems, such as those used by Web search engines or Web
IR researchers. Indeed, while the index sizes of major Web
search engines are a closely guarded secret, these are com-
monly accepted to be in the range of billions of documents.
For researchers, the recently released TREC ClueWeb09 cor-
pus1 of 1.2 billion Web documents poses both indexing and
retrieval challenges. In both scenarios, the ability to effi-
ciently create appropriate index structures to allow effective
and efficient search is of much value. Moreover, at such
scale, the use of distributed architectures to achieve high
throughput is essential.

In this work, we investigate the MapReduce program-
ming paradigm, that has been gaining popularity in com-
mercial settings, with implementations by Google [5] and
Yahoo! [21]. Microsoft also has a similar framework for dis-
tributed operations [10]. In particular, MapReduce allows
the horizontal scaling of large-scale workloads using clusters
of machines. It applies the intuition that many common
large-scale tasks can be expressed as map and reduce oper-
ations [5], thereby providing an easily accessible framework
for parallelism over multiple machines.

However, while MapReduce has been widely adopted with-
in Google, and is reportedly used for their main indexing
process, the MapReduce framework implementation and other

1See http://boston.lti.cs.cmu.edu/Data/clueweb09/.
Copyright c© 2009 for the individual papers by the papers’ authors. Copy-
ing permitted for private and academic purposes. Re-publication of material
from this volume requires permission by the copyright owners. This volume
is published by its editors.
LSDS-IR Workshop. July 2009. Boston, USA.

programs using it remain (understandably) internal only.
Moreover, there have been few empirical studies undertaken
into the scalability of MapReduce beyond that contained
within the original MapReduce paper [5], which in partic-
ular demonstrates the scalability of the simple operations
grep and sort. More recently, a MapReduce implementa-
tion has been used to sort 1 terabyte of data in approx. 1
minute [17]. However, while Dean & Ghemawat [5] suggest
a simple formulation in MapReduce for document indexing,
no studies have empirically shown the benefits of applying
MapReduce on the important IR indexing problem.

This paper contributes a first step towards understanding
the benefits of indexing large corpora using MapReduce, in
comparison to other indexing implementations. In particu-
lar, we describe four different methods of performing doc-
ument indexing in MapReduce, from initial suggestions by
Dean & Ghemawat, to more advanced strategies. We de-
ploy MapReduce indexing strategies in the Terrier IR plat-
form [18], using the freely available Hadoop implementa-
tion [1] of MapReduce, and then perform experiments using
standard TREC data.

The remainder of this paper is structured as follows: Sec-
tion 2 describes a state-of-the art single-pass indexing strat-
egy; Section 3 introduces the MapReduce paradigm; Sec-
tion 4 describes strategies for document indexing in Map-
Reduce; Section 5 describes our experimental setup, research
questions, experiments, and analysis of results; Concluding
remarks are provided in Section 6.

2. INDEXING
In the following, we briefly describe the structures in-

volved in the indexing process (Section 2.1) and how the
modern single-pass indexing strategy is deployed in the open
source Terrier IR platform [18] on which this work is based
(Section 2.2). We then provide details of how an indexing
process can be distributed to make use of additional ma-
chines (Section 2.3).

2.1 Index Structures
To allow efficient retrieval of documents from a corpus,

suitable data structures must be created, collectively known
as an index. Usually, a corpus covers many documents, and
hence the index will be held on a large storage device - com-
monly one or more hard disks. Typically, at the centre of
any IR system is the inverted index [23]. For each term, the
inverted index contains a posting list, which lists the doc-
uments - represented as integer document-IDs (doc-IDs) -
containing the term. Each posting in the posting list also
stores sufficient statistical information to score each docu-
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ment, such as the frequency of the term occurrences and,
possibly, positional information (the position of the term
within each document, which facilitates phrase or proximity
search) [23] or field information (the occurrence of the term
in various semi-structured area of the document, such as ti-
tle, enabling these to be higher-weighted during retrieved).
The inverted index does not store the textual terms them-
selves, but instead uses an additional structure known as a
lexicon to store these along with pointers to the correspond-
ing posting lists within the inverted index. A document
index may also be created which stores meta-information
about each document within the inverted index, such as an
external name for the document (e.g. URL), and the length
of the document [18]. The process of generating these struc-
tures is known as indexing.

2.2 Single-pass Indexing
When indexing a corpus of documents, documents are

read from their storage location on disk, and then tokenised.
Tokens may then be removed (stop-words) or transformed
(e.g. stemming), before being collated into the final in-
dex structures [23]. Current state-of-the-art indexing uses
a single-pass indexing method [8], where the (compressed)
posting lists for each term are built in memory as the cor-
pus is scanned. However, it is unlikely that the posting lists
for very many documents would fit wholly in the memory
of a single machine. Instead, when memory is exhausted,
the partial indices are ‘flushed’ to disk. Once all documents
have been scanned, the final index is built by merging the
flushed partial indices.

In particular, the temporary posting lists held in memory
are of the form list(term, list(doc-ID, Term Frequency)).
Additional information such as positions or fields can also
be held within each posting. As per modern compression
schemes, only the first doc-ID in each posting list is absolute
- for the rest, the difference between doc-IDs are instead
stored to save space, using Elias-Gamma compression [6].

2.3 Distributing Indexing
The single-pass indexing strategy described above is de-

signed to run on a single machine architecture with finite
available memory. However, should we want to take ad-
vantage of multiple machines, this can be achieved in an
intuitive manner by deploying an instance of this indexing
strategy on each machine [22]. For machines with more than
one processor, one instance per processing core is possible,
assuming the local disk and memory are not saturated. As
described by Ribeiro-Neto & Barbosa [20], each instance
would index a subset of the input corpus to create an index
for only those documents. It should be noted that if the
documents to be indexed are local to the machines doing
the work (shared-nothing), such as when each machine has
crawled the documents it is indexing, then this strategy will
always be optimal (will scale linearly with processing power).
However, in practical terms, fully machine-local data is diffi-
cult to achieve when a large number of machines is involved.
This stems from the need to split and distribute the corpus
without overloading the network or risking un-recoverable
data loss from a single point of failure.

Distributed indexing has seen some coverage in the lit-
erature. Ribeiro-Neto & Barbosa [20] compared three dis-
tributed indexing algorithms for indexing 18 million docu-
ments. Efficiency was measured with respect to local through-
put of each processor, not in terms of overall indexing time.

Unfortunately, they do not state the underlying hardware
that they employ, and as such their results are difficult to
compare to. Melnik et al. [15] described a distributed in-
dexing regime designed for the Web, with considerations for
updatable indices. However, their experiments did not con-
sider efficiency as the number of nodes is increased.

In [5], Dean & Ghemawat proposed the MapReduce para-
digm for distributing data-intensive processing across mul-
tiple machines. Section 3 gives an overview of MapReduce.
Section 4 reviews prior work on MapReduce indexing, namely
that of Dean & Ghemawat, who suggest how document in-
dexing can be implemented in MapReduce, and from the
Nutch IR system. Moreover, we propose a more advanced
method of MapReduce indexing, which, by the experiments
in Section 5, is shown to be more efficient.

3. MAPREDUCE
MapReduce is a programming paradigm for the process-

ing of large amounts of data by distributing work tasks over
multiple processing machines [5]. It was designed at Google
as a way to distribute computational tasks which are run
over large datasets. It is built on the idea that many tasks
which are computationally intensive involve doing a ‘map’
operation with a simple function over each ‘record’ in a large
dataset, emitting key/value pairs to comprise the results.
The map operation itself can be easily distributed by run-
ning it on different machines processing different subsets of
the input data. The output from each of these is then col-
lected and merged into the desired results by ‘reduce’ oper-
ations.

By using the MapReduce abstraction, the complex details
of parallel processing, such as fault tolerance and node avail-
ability, are hidden, in a conceptually simple framework [13],
allowing highly distributed tools to easily be built on top
of MapReduce. Indeed, various companies have developed
tools to perform data mining operations on large-scale datasets
on top of MapReduce implementations. Google’s Sawzall [19]
and Yahoo’s Pig [16] are two such examples of data mining
languages. Microsoft uses a distributed framework similar
to MapReduce called Dryad, which the Nebula scripting lan-
guage uses to provide similar data mining capabilities [10].
However, it is of note that MapReduce trades the ability to
perform code optimisation (by abstracting from the internal
workings) for easy implementation through its framework,
meaning that an implementation in MapReduce is likely not
the optimal solution, but will be cheaper to produce and
maintain [11].

MapReduce is designed from a functional programming
perspective, where functions provide definitions of opera-
tions over input data. A single MapReduce job is defined
by the user as two functions. The map function takes in a
key/value pair (of type <key1, value1>) and produces a set
of intermediate key/value pairs (<key2, value2>). The out-
puts from the map function are then automatically grouped
by their key, and then passed to the reduce function. The
reduce task merges the values with the same key to form a
smaller final result. A typical job will have many map tasks
which each operate on a subset of the input data, and fewer
reduce tasks, which operate on the merged output of the
map tasks. Map or reduce tasks may run on different ma-
chines, allowing parallelism to be achieved. In common with
functional programming design, each task is independent of
other tasks of the same type, and there is no global state,
or communication between maps or between reduces.
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Counting term occurrences in a large data-set is an often-
repeated example of how to use MapReduce paradigm2 [5].
For this, the map function takes the document file-name
(key1) and the contents of the document (value1) as input,
then for each term in the document emits the term (key2)
and the integer value ‘1’ (value2). The reduce then sums up
all of the values (many 1s) for each key2 (a term) to give
the total occurrences of that term.

As mentioned above, MapReduce jobs are executed over
multiple machines. In a typical setup, data is not stored in
a central file store, but instead replicated in blocks (usually
of 64MB) across many machines [7]. This has a central ad-
vantage that the map functions can operate on data that
may be ‘rack-local’ or ‘machine-local’ - i.e. does not have
to transit intra- and inter-data centre backbone links, and
does not overload a central file storage service. Therefore
high bandwidth can be achieved because data is always as
local as possible to the processing CPUs. Intermediate re-
sults of map tasks are stored on the processing machines
themselves. To reduce the size of this output (and there-
fore IO), it may be merged using a combiner, which acts as
a reducer local to each machine. A central master machine
provides job and task scheduling, which attempts to perform
tasks as local as possible to the input data.

While MapReduce is seeing increasing popularity, there
are only a few notable studies investigating the paradigm
beyond the original paper. In particular, for machine learn-
ing [4], Chu et al. studied how various machine learning
algorithms could be parallelised using the MapReduce para-
digm, however experiments were only carried out on single
systems, rather than a cluster of machines. In such a situa-
tion, MapReduce provides an easy framework to distribute
non-cooperating tasks of work, but misses the central data
locality advantage facilitated by a MapReduce framework.
A similar study for natural language processing [12] used
several machines, but with experimental datasets of only
88MB and 770MB, would again fail to see benefit in the
data-local scheduling of tasks.

In contrast, indexing is an IO-intensive operation, where
large amounts of raw data have to be read and transformed
into suitable index structures. In this work, we show how
indexing can be implemented in a MapReduce framework.
However, the MapReduce implementation described in [5]
is not available outside of Google. Instead, we use the
Hadoop [1] framework, which is an open-source Java imple-
mentation of MapReduce from the Apache Software Founda-
tion, with developers contributed by Yahoo! and Facebook,
among others. In the next section, we describe several index-
ing strategies in MapReduce, starting from that proposed
in the original MapReduce paper [5], before developing a
more refined strategy inspired by the single-pass indexing
described in Section 2.2.

4. INDEXING IN MAPREDUCE
In this section, we show how indexing can be performed

in MapReduce. Firstly, we describe two possible interpre-
tations of indexing as envisaged by Dean & Ghemawat in
their original seminal MapReduce paper [5] (Section 4.1).
Then, we describe an alternative MapReduce indexing strat-
egy used by the Nutch IR platform, before finally showing

2A worked example and associated source code is avail-
able at http://hadoop.apache.org/core/docs/r0.19.0/mapred_
tutorial.html

how a more refined single-pass indexing strategy can be im-
plemented in MapReduce (Section 4.3).

It should be noted that in MapReduce each map task is
not aware of its context in the overall job. For indexing, this
means that the doc-IDs emitted from the map phases can-
not be globally correct. Instead, these doc-IDs start from
0 in each map. To allow the reduce tasks to calculate the
correct doc-IDs, each map task produces a “side-effect” file,
detailing the number of documents emitted per map. This
is true for all the indexing implementations described in this
section. We also note that for all our indexing implementa-
tions the number of reducers specified depicts the number
of final indices generated.

4.1 Dean & Ghemawat’s MapReduce
Indexing Strategy

The original MapReduce paper by Dean & Ghemawat [5]
presents a short description for performing indexing in Map-
Reduce, which is directly quoted below:

“The map function parses each document, and emits a se-
quence of <word, document ID> pairs. The reduce function
accepts all pairs for a given word, sorts the corresponding
document IDs and emits a <word, list(document ID)> pair.
The set of all output pairs forms a simple inverted index. It
is easy to augment this computation to keep track of word
positions.”

The implicit claim being made in the original MapReduce
paper [5] is that efficient indexing could be trivially imple-
mented in MapReduce. However, we argue that this over-
simplifies the details, and provides room for a useful study to
allow document indexing in MapReduce to be better under-
stood. For example, for an inverted index to be useful, the
term frequencies within each document need to be stored.
Though this is not accounted for in Dean & Ghemawat’s
paper, there are two possible interpretations on how this
could be achieved within the bounds laid out in the quo-
tation above. We detail these interpretations below in Sec-
tions 4.1.1 and 4.1.2, respectively.

4.1.1 Emitting Term,Doc-ID Tuples
The literal interpretation of the description above would

be to output a set of <term, doc-ID> pairs for each token
in a document. This means that if a single term appears n
times in a document then the <term, doc-ID> pair will be
emitted n times. This has the advantage of making the map
phase incredibly simple, as it emits on a per token basis.
However, this means that we will emit a <term, doc-ID>
pair for every token in the collection. In general, when a
map task emits lots of intermediate data, this will be saved
to the machine’s local disk, and then later transferred to
the appropriate reducer. However, with this indexing inter-
pretation, the intermediate map data would be extremely
large - indeed, similar to the size of the corpus, as each to-
ken in the corpus is emitted along with a doc-ID. Having
large amounts of intermediate map data will increase map
to reducer network traffic, as well as lengthening the sort
phase. These are likely to have an effect on the job’s overall
execution time. The reducer will - for each unique term -
sort the doc-IDs, then add up the instances on a per doc-ID
basis to retrieve the term frequencies. Finally, the reducer
will write the completed posting list for that term to disk.
Figure 1 provides a pseudo-code implementation of map and
reduce functions for this strategy.
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Dean & Ghemawat MapReduce Indexing -
Map function pseudo-code

1: Input
Key: Document Identifier, Name
Value: Contents of the Document, DocContents

2: Output
A list of (term,doc-ID) pairs, one for each token
in the document

3: for each Term in the DocContents loop
4 : Stem(Term)
5 : deleteIfStopword(Term)
6 : if (Term is not empty) then emit(Term, doc-ID)
7: end loop
8: Add document to the Document Index
9: if (lastMap()) write out information about the
10: documents this map processed (“side-effect” files)

Dean & Ghemawat MapReduce Indexing -
Reduce function pseudo-code

1: Input
Key: A Term
Value: List of (doc-ID), doc-IDs

2: Output
Key: Term
Value: Posting List

3 : List Posting-List = new PostingList()
4 : Sort doc-IDs
5 : for each doc-ID in doc-IDs loop
6 : increment tf for doc-ID
7 : correct doc-ID
8 : add doc-ID and tf to Posting-List
9 : end loop
10: emit(Posting-List)

Figure 1: Pseudo-code interpretation of Dean &
Ghemawat’s MapReduce indexing strategy (map
emitting <term,doc-ID>, Section 4.1.1).

4.1.2 Emitting Term,Doc-ID,TF Tuples
We claim that emitting once for every token extracted is

wasteful of resources, causing excessive disk IO on the map
by writing intermediate map output to disk, and excessive
disk IO in moving map output to the reduce tasks. To re-
duce IO, we could instead emit <term,(doc-ID, tf)> tuples,
where tf is the term frequency for the current document.
In this way, the number of emit operations which have to
be done is significantly reduced, as we now only emit once
per unique term per document. The reduce method for this
interpretation is also much simpler than the earlier interpre-
tation, as it only has to sort instances by document to get
the final posting list to write out. It should also be noted
that the <term, doc-ID> strategy described earlier, can be
adapted to generate tfs instead through the use of a Map-
Reduce combiner, which performs a localised merge on each
map task’s output.

While the <term,(doc-ID, tf)> indexing strategy emits
significantly less than that described in Section 4.1.1, we
argue that an implementation in this manner would still be
inefficient, because a large amount of IO is still required to
store, move and sort the temporary map output data.

4.2 Nutch’s MapReduce Indexing Strategy
The Apache Software Foundation’s open source Nutch

platform [3] also deploys a MapReduce indexing strategy,

using the Hadoop MapReduce implementation. By inspec-
tion of the source of Nutch v0.9, we have determined that
the MapReduce indexing strategy differs from the general
outline described in Section 4.1 above. Instead of emitting
terms, Nutch only tokenises the document during the map
phase, hence emitting <doc-ID, analysed-Document> tu-
ples from the map function. Each analysed-Document con-
tains the textual forms of each term and their corresponding
frequencies. The reduce phase is then responsible for writing
all index structures. Compared to emitting <term,(doc-ID,
tf)>, the Nutch indexing method will emit less, but the
value of each emit will contain substantially more data (i.e.
the textual form and frequency of each unique term in the
document). We believe this is a step-forward towards reduc-
ing intermediate map output. However, there may still be
scope for further reducing map task output to the benefit of
overall indexing efficiency. In the next section, we develop
our single-pass indexing strategy (described in Section 2.2)
for the MapReduce framework, to address this issue.

4.3 Single-pass MapReduce Indexing Strategy
We now adapt the single-pass indexing strategy described

in Section 2.2, for use in a MapReduce framework. The in-
dexing process is split into m map tasks. Each map task
operates on its own subset of the data, and is similar to the
single-pass indexing corpus scanning phase. However, when
memory runs low or all documents for that map have been
processed, the partial index is flushed from the map task,
by emitting a set of <term, posting list> pairs. The par-
tial indices (flushes) are then sorted by term, map and flush
numbers before being passed to a reduce task. As the flushes
are collected at an appropriate reduce task, the posting lists
for each term are merged by map number and flush number,
to ensure that the posting lists for each term are in a glob-
ally correct ordering. The reduce function takes each term
in turn and merges the posting lists for that term into the
full posting list, as a standard index. Elias-Gamma com-
pression is used as in non-distributed indexing to store only
the distance between doc-IDs. Figure 2 provides a pseudo-
code implementation of map and reduce functions for our
proposed MapReduce indexing strategy.

The fundamental difference between this strategy and that
of Dean & Ghemawat described in Section 4.1, is what the
map tasks emit. Instead of emitting a batch of <term,doc-
ID> pairs immediately upon parsing each document, we in-
stead build up a posting list for each term in memory. Over
many documents, memory will eventually be exhausted, at
which time all currently stored posting lists will be flushed
as <term,posting list> tuples. This has the positive effect of
minimising both the size of the map task output, as well as
the number of emits. Compared to the Dean & Ghemawat
indexing strategies, far less emits will be called, but emits
will be much larger. Compared to the Nutch MapReduce in-
dexing strategy, there may more emits, however, the reduce
task is operating on term-sorted data, and does not require
a further sort and invert operation to generate an inverted
index. Moreover, the emit values will only contain doc-IDs
instead of textual terms, making them considerably smaller.

Figure 3 presents an example for a distributed setting
MapReduce indexing paradigm of 200 documents. The doc-
uments are indexed by m = 2 map tasks, before the posting
lists for each term are grouped and sorted, and then reduced
to a single index. The posting lists output from each map
contains only local doc-IDs. In the reduce tasks, these are
merged into a list of absolute doc-IDs, by adding to each
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Single-Pass MapReduce Indexing -
Map function pseudo-code

1: Input
Key: Document Identifier, Name
Value: Contents of the Document, DocContents

2: Output
Key: Term
Value: Posting list

3: for each Term in the DocContents loop
4 : Stem(Term)
5 : deleteIfStopword(Term)
6 : if (Term is not empty) then add the current

document for that term to the in-memory
Posting List

7: end loop
8: Add document to the Document Index
9: if (lastMap() or outOfMemory()) then

emit(in-Memory Posting List)
10: if (lastMap()) write out information about the
11: documents this map processed (“side-effect” files)

Single-Pass MapReduce Indexing -
Reduce function pseudo-code

1: Input
Key: A Term
Value: List of (Posting List), PartialPostingLists

2: Output
Key: Term
Value: Posting List

3 : List Posting-List = new PostingList()
4 : Sort PartialPostingLists by the map and flush they

were emitted from
5 : for each PostList in PartialPostingLists loop
6 : for each doc-ID in PostList loop
7 : correct doc-ID
8 : Merge PostList into Posting-List
9 : end loop
10: end loop
11: emit(Posting-List)

Figure 2: Pseudo-code for our proposed single-pass
MapReduce indexing strategy (Section 4.3).

entry the number of documents processed by previous map
tasks. However, note that in our indexing implementation,
the doc-IDs are flush-local as well as map-local. While this
is not strictly necessary, it allows smaller doc-IDs to be emit-
ted from each map, which can be better compressed.

5. EXPERIMENTS & RESULTS
In the following experiments, we aim to determine the ef-

ficiency of multiple indexing implementations. Specifically,
we investigate whether distributed indexing as laid out in
the original MapReduce paper (Section 4.1) is fit for pur-
pose. We compare this to our single-pass indexing strategy
developed both for a single machine architecture (Section 2)
and for MapReduce (Section 4.3). Note that in this paper
we do not investigate Nutch’s MapReduce indexing strat-
egy, however we expect it to be more efficient than Dean
& Ghemawat’s indexing strategy, while being less efficient
than our single-pass indexing strategy. We leave this for fu-
ture work. Furthermore, we investigate these approaches in
terms of scalability as the number of machines designated for
work is increased, and experiment with various parameters

Figure 3: Correcting document IDs while merging.

in MapReduce to determine how to most efficiently apply it
for indexing.

5.1 Research Questions
To measure the efficiency of our indexing implementations

and therefore the suitability (or otherwise) of MapReduce
for indexing, we investigate 3 important research questions,
which we address by experimentation in the remainder of
this section:
1. Can a practical application of the distributed indexing
strategy described in Section 2 be sufficient for large-scale
collections when using many machines? (Section 5.4)
2. When indexing with MapReduce, what is the most effi-
cient number of maps and reduces to use? (Section 5.5)
3. Is MapReduce Performance Close to Optimal Distributed
Indexing? (Section 5.6)

5.2 Evaluation Metrics
Research questions 1-3 require a metric for indexing per-

formance. For this, we measure the throughput of the sys-
tem, in terms of MB/s (megabytes per second). We calcu-
late throughput as collectionsize/timetaken where collec-
tion size is the compressed size on disk for a single copy of
the collection in MB (megabytes). The time taken is the full
time taken by the job (including setup) measured in seconds.

Research question 3 mandates suitability for indexing at
a large scale. We measure suitability in terms of throughput
(as above) and in terms of speedup. Speedup Sm, defined
as Sm = T1

Tm
, where m is the number of machines, T1 is the

execution of the algorithm on a single machine, and Tm is
the execution time in parallel, using m machines [9]. This
encompasses the idea that not only should speed improve
as more resources are added, but that such a speed increase
should reflect the quantity of those resources. For instance,
if we increase the available resources by a factor of 2, then it
would be desirable to get (close to) twice the speed. This is
known as linear speedup (where Sm = m), and is the ideal
scenario for parallel processing. However, linear speedup
can be hard to achieve in a parallel environment, because
of the growing influence of small sequential sections of code
as the number of processors increases (known as Amdahl’s
law [2]), or due to overheads.

5.3 Experimental Setup
Following [24], which prescribes guidelines for presenting

indexing techniques, we now give details of our experimen-
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Number of Machines (Cores) 1(3) 2(6) 4(12) 6(18) 8(24)
Distributed Single-Pass 2.44 4.6 12.8 12.4 12.8

Dean & Ghemawat MapReduce 1.15 1.59 4.01 4.71 6.38
MapReduce Single-Pass 2.59 5.19 9.45 13.16 17.31

Table 1: Throughput as the number of machines al-
located is increased using using a variety of indexing
strategies, measured in MB/sec.

tal cluster setup, consisting of 19 identical machines. Each
machine has a single Intel Xeon 2.4GHz processor with 4
cores, 4GB of RAM, and contains three hard drives: One
160GB hard disk, spinning at 7200rpm with an 8MB buffer,
is used for the operating system and temporary job scratch
space; Two 400GB hard disks, each spinning at 7200rpm
with a 16MB buffer, are dedicated for distributed file sys-
tem storage. Each machine is running a copy of the open
source Linux operating system Centos 5 and are connected
together by a gigabit Ethernet connection on a single rack.
The Hadoop (version 0.18.2) distributed file system (DFS)
is running on this cluster, replicating files to the distributed
file storage on each machine. Each file on the DFS is split
into 64MB blocks, which are each replicated to 2 machines3.
While each machine has four processors available at any one
time, only three of these are valid targets for job execution,
the last processor is left free for the distributed file system
software running on each machine. As our cluster is shared
by several users, job allocation is done by Hadoop on De-
mand (HOD) running with the Torque resource manager
(version 2.1.9) rather than using a dedicated Hadoop clus-
ter. Machines not allocated to a MapReduce job are avail-
able to be scheduled by Torque for other jobs not associated
with MapReduce. However on such nodes, the fourth pro-
cessor core is still free for distributed file system work4. We
also have in the same rack a RAID5 centralised file server
powered by 8 Intel Xeon 3GHz processor cores for use with
non-MapReduce jobs, providing network file system (NFS)
storage. For consistency, in the following experiments, we
employ the standard TREC web collection .GOV2. This is
an 80GB (425GB uncompressed) crawl of .gov Web domain
comprising over 25 million documents. Before the advent of
ClueWeb09, .GOV2 was the largest available TREC corpus.

5.4 Is Distributed Indexing Good Enough?
First we determine if MapReduce is necessary for large-

scale indexing. If a simple distribution of the non-parallel
indexing strategy described in Section 2 is sufficient to index
large collections then there is no need for MapReduce. To
evaluate this, we distribute the single-pass indexing strat-
egy across n machines in our cluster, where we vary n =
{1, 2, 4, 6, 8}. To provide a comparative baseline, the non-
parallel single-pass indexing implementation in Terrier can
index the .GOV2 corpus on a single processor core (not ma-
chine) in just over 1 day using the same algorithm. This
translates into a throughput of approximately 1MB/sec. For
distributed indexing to be sufficient for indexing large col-
lections, throughput should increase in a (close-to) linear
fashion with the number of processing cores added. As

3This is lower than the Hadoop default of 3, to conserve
distributed file system space.
4Hence, as each machine always has one processing core free
to handle distributed file system traffic, and the network
traffic of other cluster jobs is assumed to be low, then there
should be no impact on the validity of the experiments.
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Figure 4: The effect of varying the number of map
tasks on indexing time (seconds) of .GOV2 collec-
tion: 4 machines, 1 reduce task.

mentioned in Section 2.3, when distributed indexing uses
machine-local data, indexing will achieve exactly linear scal-
ing. However, unless the document data is already present
on the machines (e.g. indexing takes place on the machines
which crawled the documents), there would be the need to
copy the required data to the indexing machines. In many
other scenarios, crawling or documents corpora storage may
not be on indexing machines. Moreover, local-only indexing
is not resilient to machine failure. Instead, we experiment
with the shared-corpus distributed indexing, where the cor-
pus is indexed over NFS from a central fileserver. Local data
(shared-nothing) indexing would require the corpus subset
to be copied prior to indexing.

Table 1, row 1, shows how throughput increases as we al-
locate more machines (recall that each machine adds three
processor cores for indexing work). Here we can see that
throughput indeed increases in a reasonable fashion, How-
ever, once we allocate more than 4 machines we observe
no further speed improvements. This is caused by our cen-
tral file store becoming a bottleneck as it is unable to serve
all the allocated machines simultaneously. We can there-
fore conclude that this distribution method is unsuitable for
large-scale indexing using our hardware setup. Moreover,
we argue that even with better hardware this issue cannot
be overcome as the file server(s) will always be slower than
the combination of all worker machines.

5.5 Investigating MapReduce Parameters
In Section 5.4, we showed that the distributed indexing

strategy described in Section 2 is unsuitable for the scal-
able distributed shared-corpus indexing of large collections.
However, before we can evaluate MapReduce as an alternate
solution we need to investigate how to maximise its efficiency
in terms of its input parameters. The fundamental parame-
ters of a MapReduce job are m - the number of map tasks
that the input data is divided across - and r, the number of
reduce tasks. A higher number of map tasks means that the
input collection of documents is split into smaller chunks,
but also that there will be more overheads, as more tasks
have to be initialised and latterly cleared. To determine
what effect this has on performance, we vary m while index-
ing the .GOV2 corpus, using a set 4 machines. The results
- in terms of indexing time - are shown in Figure 4. We see
that when the number of maps is small (i.e. less than the
12 processors available from the 4 machines), parallelism is
hindered, as not all processors have work to do. When the
number of map tasks is ≤ 14, we also note that indexing
time is still high. On examination of these jobs, we found
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Figure 5: The effect of varying the number of reduce
tasks on indexing time (seconds) of .GOV2 collec-
tion: 6 machines, 72 map tasks.

that the balance of work between map tasks was not even,
with one map task taking markedly longer than the others5.
When the number of map tasks is increased to 16, balance
is restored.

In previous work [14], we have shown that the time taken
by the reduce step is an important factor in determining in-
dexing performance. Therefore, it is important to know how
many reduce tasks it is is optimal to create - subject to ex-
ternal constraints on the number of reducers (e.g. having 8
query servers suggests 8 reducers are used so that 8 final in-
dices are created). To test the effect of the number of reduce
tasks on efficiency, we index .GOV2 while varying the num-
ber of reduce tasks. Here we used 6 machines and 72 map
tasks. The indexing time results are shown in Figure 5. As
we would expect, while the number of reduces is below the
available processors (for the 6 machines allocated, 18 pro-
cessors) the speed increases as we add more reducers, since
we are effectively providing more parallel processing power.
Once we are beyond the number of processors however, in-
dexing time increases. This is intuitive, as there is more work
to be done than available processors. Therefore, we can con-
clude that the number of reduce tasks should be a multiple
of the number of processors. Unlike map tasks, however,
there is an incentive to have less reduce tasks, resulting in
fewer indices, but this needs to be traded off against the pos-
sibility of failures and the associated time wasted through
re-running.

5.6 Is MapReduce Performance Close to
Optimal Distributed Indexing?

We now investigate whether MapReduce is an efficient al-
ternative to distributed indexing. Moreover, we evaluate
MapReduce against optimal distributed indexing in terms
of performance, i.e. the extent to which it scales close to
linearly with processing power. The core advantage of Map-
Reduce is the ability to apply the distributed file system
(DFS) to avoid centralised storage of data (creating a sin-
gle point of failure), and to take advantage of data locality
to avoid excess network IO. This meanwhile, is at the cost
of additional overheads in job setup, monitoring and con-
trol, as well as the additional IO required to replicate the
data on a DFS. As the centralised file-system was identi-
fied as the bottleneck for distributed indexing, we would

5Hadoop actually supports speculative execution, where two
copies of the last task, or the slowest tasks, will be started.
Only output from the first successful task to complete will be
used. This uses otherwise idle processing power to decrease
average job duration.

expect MapReduce to perform better since it uses a DFS.
For evaluation, we perform a direct comparison on through-
put between indexing strategies. Note that while distributed
indexing creates n index shards, where n is the number of
processors allocated, MapReduce instead produces r index
shards where r is the number of reduce tasks created. For
these experiments we always allocate 72 map tasks and 24
reduce tasks. This means that for distributed indexing a
smaller number of index shards were created when indexing
on {1, 2, 4, 6} machines. However, we believe that this has
no significant impact on the overall throughput.

First, we investigate whether the MapReduce indexing
strategy proposed by Dean & Ghemawat is more efficient
than distributed indexing. Table 1 shows how the through-
put increases as we allocate more machines - in particular,
row 2 shows results for Dean & Ghemawat’s strategy, inter-
preted as emitting term <doc-ID,tf> tuples (Section 4.1.2).
We also implemented the other interpretation which emits
term,doc-ID tuples, however, it consumed excessive tempo-
rary storage space during operation due to its large number
of emit operations. This made it impossible to determine
throughput, as the worker machines ran out of disk space
causing the job to fail. Our implementation of Dean & Ghe-
mawat’s indexing method also creates the additional data
structures described in Section 2.1 - i.e. the lexicon and
document index - and uses the compressed Terrier inverted
index format. From Table 1, row 2, we can see that this
implementation performs very poorly in comparison to dis-
tributed indexing. Indeed, with 8 machines it indexes only at
half the speed of distributed indexing with the same number
of machines. Upon further investigation, as expected, this
speed degradation can be attributed to the large volume
of map output which is generated by this approach. How-
ever, it should be noted that unlike distributed indexing,
performance improvements do not stall after 4 machines.
This would indicate that while the indexing strategy is poor,
MapReduce in general will continue to garner performance
improvements as more machines are added. Therefore, we
believe this makes it more suitable for processing larger cor-
pora, where larger clusters of 100s-1000s of machines are
needed to index them in reasonable amounts of time.

We now experiment with our proposed implementation of
single-pass indexing in MapReduce, as described in Section
4.3. Our expectation is that this strategy should prove to
be more efficient as it lowers disk and network IO by build-
ing up posting lists in memory, thereby minimising map
output size. Table 1, row 3 shows the throughput of the
single-pass MapReduce indexing strategy. In comparison to
Dean & Ghemawat’s indexing strategy, we find our approach
to be markedly faster. Indeed, when using 8 machines our
method is over 2.7 times faster. Moreover, Figure 6 shows
the speedup achieved by both approaches as the number of
machines is increased. We observe that our single-pass based
strategy scales close to linearly in terms of indexing time as
the number of machines allocated for work is increased. In
contrast, the scalability of Dean & Ghemawat’s approach is
noticeably worse (5.5 times for 8 processors, versus 6.8 times
for single-pass based indexing). We believe that this makes
our proposed strategy suitable for scaling to large clusters of
machines, which is essential when indexing new large-scale
collections like ClueWeb09.
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6. CONCLUSION
In this paper, we detailed four different strategies for ap-

plying document indexing within the MapReduce paradigm,
with varying efficiency. In particular, we firstly showed that
indexing speed using a distributed indexing strategy was
limited by accessing a centralised file-store, and hence the
advantage of using MapReduce to allocate indexing tasks
close to input data is clear. Secondly, we showed that the
MapReduce indexing strategy suggested by Dean & Ghe-
mawat in the original MapReduce paper [5] generates too
much intermediate map data, causing an overall slowness
of indexing. In contrast, our proposed single-pass indexing
strategy is almost 3 times faster, and scales well as the num-
ber of machines allocated is increased.

Overall, we conclude that the single-pass based MapReduce
indexing algorithm should be suitable for efficiently index-
ing larger corpora, including the recently released TREC
ClueWeb09 corpus. Moreover, as a framework for distributed
indexing, MapReduce conveniently provides both data lo-
cality and resilience. Finally, it is of note that an imple-
mentation of the MapReduce single-pass indexing strategy
described in this paper is freely available for use by the com-
munity as part of the Terrier IR Platform6.
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ABSTRACT
We studied decentralized search in information networks and
focused on the impact of network clustering on the findabil-
ity of relevant information sources. We developed a multi-
agent system to simulate peer-to-peer networks, in which
peers worked with one another to forward queries to tar-
gets containing relevant information, and evaluated the ef-
fectiveness, efficiency, and scalability of the decentralized
search. Experiments on a network of 181 peers showed that
the RefNet method based on topical similarity cues outper-
formed random walks and was able to reach relevant peers
through short search paths. When the network was extended
to a larger community of 5890 peers, however, the advantage
of the RefNet model was constrained due to noise of many
topically irrelevant connections or weak ties.

By applying topical clustering and a clustering exponent
α to guide network rewiring, we studied the role of strong
ties vs. weak ties, particularly their influence on distributed
search. Interestingly, an inflection point was discovered for
α, below which performance suffered from many remote con-
nections that disoriented searches and above which perfor-
mance degraded due to lack of weak ties that could move
queries quickly from one segment to another. The inflec-
tion threshold for the 5890-peer network was α ≈ 3.5. Fur-
ther experiments on larger networks of up to 4 million peers
demonstrated that clustering optimization is crucial for de-
centralized search. Although overclustering only moderately
degraded search performance on small networks, it led to
dramatic loss in search efficiency for large networks. We ex-
plain the implication on scalability of distributed systems
that rely on clustering for search.

Categories and Subject Descriptors
H.3.4 [Information storage and retrieval]: Systems and
Software—Distributed systems, Information networks
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Keywords
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1. INTRODUCTION
Information exists in many distributed networked envi-

ronments, where a centralized repository is hardly possible.
In a peer-to-peer (P2P) environment, individual peers host
separate collections and interact with one another for in-
formation sharing and retrieval [18], exemplifying a large,
dynamic, and heterogeneous networked information space.
Efficient network navigation is critically needed in today’s
distributed environments, e.g., to route queries to relevant
information sources or to deliver information items to peers
of interest.

Research has found clustering useful for information re-
trieval. The Cluster Hypothesis states that relevant docu-
ments are more similar to one another than to non-relevant
documents and therefore closely related documents tend to
be relevant to the same requests [29]. Traditional IR re-
search utilized document-level clustering to support exploratory
searching and to improve retrieval effectiveness [12, 9, 14].
Distributed information retrieval, particularly unstructured
peer-to-peer IR, relied on peer-level clustering for better de-
centralized search efficiency. Topical segmentation based
techniques such as semantic overlay networks (SONs) have
been widely used for efficient query propagation and high
recall [3, 7, 17, 8]. Hence, overall, clustering was often re-
garded as beneficial whereas the potential negative impact
of clustering (or over-clustering) on retrieval has rarely been
scrutinized.

Research on complex networks indicated that a proper
degree of network clustering with some presence of remote
connections has to be maintained for efficient searches [15,
25, 30, 16, 24, 6]. Clustering reduces the number of “irrele-
vant” links and aids in creating topical segments useful for
orienting searches. With very strong clustering, however,
a network tends to be fragmented into local communities
with abundant strong ties but few weak ties to bridge re-
mote parts [10]. Although searches might be able to move
gradually to targets, necessary “hops” become unavailable.

We refer to this phenomenon as the Clustering Paradox,
in which neither strong clustering nor weak clustering is de-
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sirable. In other words, trade-off is required between strong
ties for search orientation and weak ties for efficient traver-
sal. In Granovetter’s terms, whereas strong ties deal with
local connections within small, well-defined groups, weak ties
capture between-group relations and serve as bridges of so-
cial segments [10]. The Clustering Paradox, seen in light of
strong ties and weak ties, has received attention in complex
network research and requires further scrutiny in a decen-
tralized IR context.

In this study, we examined network characteristics and
search optimization in a fully decentralized retrieval context.
We focused on the effect of network clustering, i.e., strong
ties vs. weak ties, on the efficient findability of relevant in-
formation sources. Outcome of this research will provide
guidance on how an information network can be structured
or self-organized to better support efficient discovery of rel-
evant information sources that are highly distributed.

2. RELATED WORK
In an open, dynamic information space such as a peer-

to-peer network, people, information, and technologies are
all mobile and changing entities. Identifying where relevant
collections are for the retrieval of information is essential.
Without global information, decentralized methods have to
rely on local intelligence of distributed peers to collectively
construct paths to desired targets.

2.1 P2P Information Retrieval
In some respect, decentralized IR in networks is concerned

with the cost of traversing a network to reach desired infor-
mation sources. Unstructured or loosely structured peer-to-
peer networks represent a connected space self-organized by
individuals with local objectives and constraints, exhibiting
a topological underpinning on which all can collectively scale
[1, 18].

While federated IR research has made advances in en-
abling searches across hundreds of repositories, a P2P net-
work usually has a much larger number of participants who
dynamically join and leave the network, and only offer idle
computing resources for sharing and searching [34]. Usually
there is no global information about available collections;
seldom is there centralized control or a central server for
mediating [18, 8].

Recent years have seen growing popularity of peer-to-
peer (P2P) networks for large scale information sharing and
retrieval [18]. With network topology and placement of
content tightly controlled, structured peer-to-peer networks
have the advantage of search efficiency [27, 21, 5, 19, 26].
However, their ability to handle unreliable peers and a tran-
sient population was not sufficiently tested. Unstructured
overlay systems work in an indeterministic manner and have
received increased popularity for being fault tolerant and
adaptive to evolving system dynamics [18, 8].

As the peer-to-peer paradigm becomes better recognized
for IR research, there have been ongoing discussions on the
applicability of existing P2P search models for IR, the ef-
ficiency and scalability challenges, and the effectiveness of
traditional IR models in such environments [33]. Some re-
searchers applied Distributed Hashing Tables (DHTs) tech-
niques to structured P2P environments for distributed re-
trieval and focused on building an efficient indexing struc-
ture over peers [5, 19, 26]. Others, however, questioned the
sufficiency of DHTs for dealing with high dimensionality of

IR in dynamic P2P environments [3, 18, 17]. For informa-
tion retrieval based on a large feature space, which often
requires frequent updates to cope with a transient popula-
tion, it is challenging for distributed hashing to work in a
traffic- and space-efficient manner.

2.2 Clustering and Decentralized Search
In recent years, topical segmentation based techniques

such as semantic overlay networks (SONs) have been widely
used for P2P IR, in which peers containing similar informa-
tion formed semantic groups for efficient searches [3, 7, 28,
17, 20]. Clustering, often in the form of hierarchical seg-
ments, was the key idea for bringing similar peers together
in a more organized way so that topically relevant peers or
information sources can be quickly identified. Existing P2P
IR research, however, often assumed the unitary benefit of
clustering and rarely scrutinized its potential negative im-
pact on decentralized search.

Research on complex networks has found that efficient
searching in some properly clustered networks is more promis-
ing than in others. Kleinberg (2000) studied decentralized
search in small world using a two dimensional model, in
which peers had rich connections with immediate neighbors
and sparse associations with remote ones [15]. The proba-
bility pr of connecting to a neighbor beyond the immediate
neighborhood was proportional to r−α, where r was the topi-
cal (search) distance between the two and α a constant called
clustering exponent1 . It was shown that only when cluster-
ing exponent α = 2, search time (i.e., search path length)
was optimal and bounded by c(log N)2, where N was the
network size and c was some constant [15].

Figure 1: Network Clustering

The clustering exponent α, as shown in Figure 1, describes
a correlation between the network (topological) space and
the search (topical) space [15, 6]. When α is large, weak ties
(long-distance connections) are rare and strong ties domi-
nate [10]. The network becomes highly segmented. When α
is small, connectivity has little dependence on topical close-
ness – local segments become less visible as the network is
built on increased randomness. In this way, the clustering
exponent α influences the formation of local clusters and
overall network clustering.

It was further demonstrated that optimal value of α for
search depends on dimensionality of the search space. Specif-

1The clustering exponent α is also known as the homophily
exponent [30, 24].

LSDS-IR’09 Strong Ties vs. Weak Ties: Studying the Clustering Paradox for Decentralized Search

50



ically, when α = d on a d-dimension space, decentralized
search is optimal. Further studies conducted by various re-
search groups have shown consistent results [30, 16, 24, 6].
These findings require closer scrutiny in an IR context where
some assumptions might be voilated, e.g, when orthogonal
feature dimensions cannot be precisely defined.

3. APPROACH OVERVIEW
We have developed a decentralized search architecture

named RefNet for finding distributed information sources
in a simulated networked environment. We relied on multi-
agent systems to study the problem of decentralized search
and focused on the impact of clustering in an information
retrieval context. Similar agent-based approaches have been
adopted by various research groups to study efficient infor-
mation retrieval, resource discovery, service location, and ex-
pert finding in decentralized peer-to-peer environments [25,
32, 36, 35]. One common goal was to efficiently route a query
to a relevant agent or peer2. We illustrate the conceptual
model in Figure 2 and elaborate on major components.

Assume that agents or peers, representatives of informa-
tion seekers, providers (sources), and mediators, reside in
an n dimensional space. An agent’s location in the space
represents its information topicality. Therefore, finding rel-
evant sources for an information need is to route the query
to agents in the relevant topical space. To simplify the dis-
cussion, assume all agents can be characterized using a two-
dimensional space. Figure 2 visualizes a 2D representation
of the conceptual model. Let agent Au be the one who
has an information need whereas agent Av has the relevant
information. The problem becomes how agents in the con-
nected society, without global information, can collectively
construct a short path to Av. In Figure 2, the query tra-
verses a referral chain Au → Ab → Ac → Ad → Av to reach
the target. While agents Ab and Ad help move the query
on the horizontal dimension, agent Ac primarily works on
the vertical dimension and has a remote connection for the
query to jump.

Figure 2: Conceptual Model of RefNet. A circle
represents an agent or peer. The black/white seg-
ments of each circle illustrate agent representation
according to its topical dimensions (coverage).

3.1 Local Indexing & Classification
For decentralized search, direction matters. Pointing to

the right direction to the relevant topical space means the

2In this paper, the terms agent and peer are exchangeable.

agents or peers have some ability to differentiate items on
certain dimensions. For instance, one should be able to tell
if a query is related to mathematics or not in order to route
the query properly on that dimension. Each agent derives
clusters or major topics from its local information collection
through document clustering3. The local index provides the
basis of an agent’s “knowledge” and enables abstraction of
queries. Now, when a query is routed to it, the agent will be
able to tell what it is about and assign a label to it through
query classification based on identified clusters [23]. The
label associated with the query serves as a clue for potential
referral directions.

3.2 Neighbor Selection
Pointing to the right direction also requires that each

agent or peer knows which neighbor(s) should be contacted
given a labeled query. Therefore, there should be a mech-
anism of mapping classification output to a potential good
neighbor. By good neighbor, we mean agents on a short path
to the targeted information space – either the neighbor is
likely to have a relevant information collection to answer
the query directly or in a neighborhood closer to relevant
targets. Agents explore their neighborhoods through inter-
actions and develop knowledge of who serves or connect to
what types of information collections.

3.3 Network Clustering and Rewiring
Network topology plays an important role in decentralized

search. Topical segmentation based techniques such as se-
mantic overlay networks (SONs) have been widely used for
efficient peer-to-peer information retrieval [8]. Through self-
organization, similar peers form topical partitions, which
provide some association between the topological (network)
space and the topical space to guide searches. Research has
found that such an association, in the form of a cluster-
ing exponent α that defines an inverse relationship between
connectivity probability and topical distance, is critical for
efficient navigation in networks without global information
[15, 16, 6]. The RefNet framework has a mechanism for
clustering-based rewiring, which influences the balance of
strong ties vs. weak ties for efficient routing, as illustrated
in Figure 1.

4. ALGORITHMIC DETAIL
In the previous section, we proposed and described a con-

ceptual model for decentralized search of relevant informa-
tion sources. Figure 3 illustrates how various components
work together within each agent. This section will elaborate
on specific algorithms used in the RefNet model for decen-
tralized search.

We used the Vector-Space Model (VSM) for information
(document and query) representation [2]. Given that infor-
mation is highly distributed, a global thesaurus was not as-
sumed. Instead, each agent had to parse information items
it individually had and produced a local thesaurus. This
thesaurus was then used to represent each information item
using the TF*IDF (Term Frequency * Inverse Document

3Note that document clustering refers to mining a peer’s lo-
cal collection of documents to identify significant topics and
topical overlap whereas network clustering is to determine
how similar peers connect to each other to form groups and
is the main focus of this study.
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Figure 3: Agent Internal View

Frequency) weighing scheme. Note that for the DF compo-
nent of TF*IDF, values were computed within the informa-
tion space of an agent. This was to follow the assumption
that global information was not available to individuals and
it is impossible to aggregate all documents in the network
to get global DF values.

Provided TF*IDF representation, pair-wise similarity val-
ues were computed based on the Cosine coefficient that mea-
sures cosine of the angle between a pair of vectors [2]. For
document clustering, we used the well-known K-means method
based on cosine similarities [11].

Section 4.1 elaborates on a centroid-based method for
query classification. Section 4.2 introduces a single-perceptron
neural network (NN) algorithm for neighbor relevance pre-
diction given query classification output. Section 4.3 dis-
cusses the formula for rewiring based on a clustering expo-
nent α. For comparison, we also adopted a Random Walk
model. The only difference was that in Random Walk, an
agent simply ignored the neighbor selection step in Sec-
tion 4.2 and forwarded a query to a random neighbor.

4.1 Centroid-based Query Classification
Given limited information each agent has, many widely

appreciated classification methods, such as the Support Vec-
tor Machine (SVM), require a fair amount of training data
and are therefore not applicable [23]. In this study, we used
a simple centroid-based approach that produced competitive
decentralized search results on a benchmark news collection
[13].

Suppose an agent had k identified clusters/classes. Each
class, c ∈ [c1, c2..ck], contained a set of documents [d1, d2..dn].
Let Wd|i denote the weight of the ith term in document d.

The weight of the ith term in class centroid c was computed
by:

Wc|i =

Pnc
d=1 Wd|i

nc
(1)

where nc was the number of documents in class c. To
classify a query, the query was first locally vectorized using
the TF*IDF method and then compared to each class using
the cosine similarity measure. The relevance of the classes
to the query was sorted using the similarity scores.

4.2 Neural-Net for Neighbor Prediction
After query classification, the relevance (or similarity) of

a query to each class was known. The topical relevance
scores were then used to infer which neighbor was the best
neighbor to contact if the current agent did not have rele-

vant information. We assumed that the association between
the classification output (a vector of topics’ relevance scores)
and the prediction (a vector of neighbors’ relevance scores)
is linear. A single perceptron neural network (NN) is suit-
able for the estimation of linear associations [23]. In this
study, we implemented a feedforward perceptron NN with
backprop and a sigmoid signal transfer function (please re-
fer to [22] for details). To initialize learning, agents interact
with their neighbors and learn about their topicality by us-
ing local documents as queries.

4.3 Peer Clustering and Network Rewiring
We introduced a clustering exponent α to rewire (recon-

nect peers through self-organization) a network and studied
its impact on decentralized search. First, for each peer, some
random peers were picked and added to its existing neigh-
bors. Then, the current peer (i) queried all these neighbors
(j) to determine their topical distance rij by sending them
local documents as queries. Finally, the following connectiv-
ity probability function was used by the peer to decide who
should remain as neighbors:

Pij ∝ r−α
ij (2)

where α is the clustering exponent (or homophily expo-
nent) and rij the pairwise topical distance. The finalized
neighborhood size depended on the number of neighbors be-
fore rewiring. With a positive α value, the larger the topical
distance, the less likely two peers will connect. Large α val-
ues lead to a highly clustered network while small values
produce many topically remote connections or weak ties.

5. EXPERIMENTAL SETUP
We constructed a peer-to-peer network by using a large

scholarly communication data collection and treating each
unique scholar as a peer, who possessed a local collection
of documents published by the scholar (author). The task
involved finding a peer with relevant topic(s) in the net-
work, given a query. Applications of this framework include,
but are not limited to, distributed IR, P2P resource discov-
ery, expert location in work settings, and reviewer finding in
scholarly networks. However, we focused on the general de-
centralized search problem in large networked environments.

5.1 Data Collection
Data used in the experiments were from the TREC Ge-

nomics track 2004 benchmark collection, a Medline subset
of about 4.5 million citations from 1994 to 2003. The data
collection included metadata about publication titles, ab-
stracts, and authors. We chose six scholars in the medi-
cal informatics domain and identified their direct co-authors
(1st degree) who published 10 to 80 articles in the TREC
collection, resulting in a small network of 181 peers. Then
the network was extended to the 2nd degree (co-authors’ co-
authors) to total 5890 peers for experiments on a larger scale.
Both networks had a diameter (the longest of all shortest
pairwise paths) of 8 and roughly followed a power-law de-
gree distribution with irregularities on the tail. For each
peer, which represented a scholar/author, all articles (with
titles and abstracts) authored or co-authored by the scholar
were loaded as the local information collection.
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5.2 Relevant Peers and Tasks
Relevant peers or information sources are considered few,

if not rare, given a particular information need. To opera-
tionalize it, we defined a relevant peer as one of those who
have the most similar information to a query. Specifically,
we considered those scholars whose topical (cosine) similar-
ity to a given query was ranked above the fifth percentile.
Hence, for evaluation purposes, peers were sampled to esti-
mate a threshold similarity score for each query, which was
then used in experiments to judge whether a relevant peer
had been found. We retrieved citations to articles published
in the Journal of the American Medical Informatics Associa-
tion (JAMIA) in the Genomics track collection and used all
(498) articles with titles and abstracts as simulated queries.

5.3 Software and Hardware Setup
We developed a multi-agent system called RefNet, which

takes advantage of the JADE [4] agent platform and the
Weka machine learning framework [31]. RefNet has inte-
grated the two major software packages (both in Java) to
facilitate research experiments on decentralized search in
networked environments.

Experiments were conducted on a Linux cluster of 9 nodes,
each has Dual Intel Xeon e5405 (2.0 Ghz) Quad Core Proces-
sors (8 processors), 8 GB fully buffered system memory, and
a Fedora 7 installation. The nodes were connected internally
through a dedicated 1Gb network switch. The agents were
equally distributed among the 72 processors, each of which
loaded an agent container in Java, reserved 1GB memory,
and communicated to each other. The Java Runtime Envi-
ronment version for this study was 1.6.0 07.

5.4 Simulation Procedures
We ran experiments on the proposed RefNet model and

a random-walk model and conducted comparative analyses.
In both models, agents tried to forward a query to one an-
other until one of the following conditions was met: 1) a rel-
evant peer was found, or 2) the search path length reached
its defined maximum. When concluded, the query would fol-
low the search path in the reverse order back to the querying
peer. Multiple runs were conducted in each parameter con-
figuration. In each run, the 498 queries were submitted to
the network one after another.

After experiments on initial co-authorship networks, we
introduced the clustering exponent α to rewire the networks
and studied its impact on decentralized search. Twenty ran-
dom peers were added to each existing neighborhood, which
was finalized based on the connectivity probability function
defined in Section 4.3. It was further required that the final
neighborhood size, for each peer, was in the range between
3 and 100.

5.5 Evaluation
The dependent variables of this study were effectiveness

and efficiency of decentralized searches. We used completion
rate of all tasks to measure retrieval effectiveness, Rc = NS

NT
,

where NT is the total number of queries and NS the number
of them with a relevant peer found within given parameter
limits.

For efficiency, the maximum search path length Lmax was
controlled in each experiment and the actual path length of
each task was measured. We computed average length of all

searches in each experiment run, i.e., L̄ =
PN

i=1 Li

NT
, where

Li was the path length of the ith query and NT the total
number of queries. With shorter path lengths, the entire
distributed system is considered more efficient given fewer
peers involved in computation.

For scalability, we ran experiments on different network
sizes: 181 peers and 5890 peers. Effectiveness vs. efficiency
patterns were compared. Various clustering exponent α val-
ues were controlled in experiments to examine its impact on
the above variables. We further investigated the scaling of
clustering impact in very large networks of up to 4 million
peers based on synthetic data.

6. EXPERIMENTAL RESULTS
In this section, we present effectiveness and efficiency re-

sults on initial and rewired networks of 181 and 5890 peers,
focus on the impact of clustering on decentralized search,
and examine how the impact of network clustering scales.

6.1 181-Peer Network
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Figure 4: Completion Rate (Y) vs. Path Length (X)
on 181 Peers

Figure 4 shows experimental results on 181-peers net-
works. With the initial network (dotted lines), the RefNet
model consistently outperformed random walks, especially
within small path lengths. For instance, within two hops,
RefNet already achieved a completion rate of more than 50%
while random-walk was still at 20%. Increasing the path
length helped both models but neither reached a completion
rate higher than 90%, suggesting that there were particular
characteristics of the initial network that disoriented some
searches after a long path.

Clustering analysis, as plotted in Figure 5 (a) on log/log
coordinates, showed that the association between connec-
tivity frequency and topical distance has a power-law region
(in the middle) with irregularities. We believe that RefNet
searches were well guided by the network in most instances
(when routed through peers with regular clustering-guided
connections) but was lost in others (disoriented in regions
where irregular connections dominated).

To demonstrate potential utility of network clustering, we
rewired the network (throug self-organization) based on the
connectivity probability function described in Section 4.3.
Experimental results with clustering exponent α = 3.0 are
shown as solid lines in Figure 4, in which proper network
clustering better guided RefNet search and further improved
the results – a higher than 95% completion rate was already
achieved at max search path length 20 (Figure 4 (a)) or
average path length 5 (Figure 4 (b)).
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Figure 5: Initial Network Clustering: Connectivity
(Y) vs. Topical Distance (X). Compare to Figure 1.

6.2 5890-Peer Network
On the initial 5890-peer network, experimental results in-

dicated that the RefNet model had limited advantage over
random walk, as shown by dotted lines in Figures 6 (a) and
(b). Further analysis revealed that the network was insuf-
ficiently clustered. As shown in Figure 5 (b) on log/log
coordinates, the correlation between connectivity and topi-
cal distance departed quite a bit from a power-law function
(linear on log/log) with which efficient searches can be well-
guided [15, 16, 24]. The curve suggests that there were too
many topically remote connections that disoriented searches
as peers were more likely to connect to topically irrelevant
neighbors.
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Figure 6: Completion Rate (Y) vs. Path Length (X)
on 5890 Peers

Again, we used the method discussed in Section 4.3 to
fine tune the 5890-peer network for a proper level of clus-
tering. As shown by solid lines in Figure 6, given clustering
exponent α = 4.0, the RefNet model performed much better
and achieved above 90% completion rate within a max path
length of 40 (Figure 6 (a)) and with an average path length
of about 10 (Figure 6 (b)).

6.3 Impact of Clustering
In the results above, we have demonstrated that some

level of network clustering improved decentralized search of
relevant peers or information sources. It is unclear yet how
much clustering is enough or how much is too much. Setting
max search path length at 10, experiments based on various
clustering exponent α values on the 5890-peer network pro-
duced results shown in Figures 7 (a) and (b).

Given a constant max search path length at 10, Figure 7
(a) shows completion rate vs. clustering exponent α results,
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Figure 7: Impact of Clustering Exponent α (X)

in which best completion rate was achieved at α ≈ 3.5,
which also enabled optimal search path length in Figure 7
(b). Both smaller and larger α values resulted in less opti-
mal searches. As discussed, smaller α values produced less
visible topical segments and more remote connections that
disoriented searches. Larger α values, on the other hand,
led to an over-clustered and fragmented network without
sufficient weak ties for searches to move fast.

This result, obtained in a decentralized information re-
trieval context, is consistent with findings from previous
research on complex networks with simpler representations
of the search (topical) space [15, 16, 24]. The Clustering
Paradox suggests that when we use clustering-based tech-
niques (e.g., topical segmentation and semantic overlay in
P2P networks), some balance between strong ties and weak
ties should be maintained.

Previous research also suggested that the optimal cluster-
ing exponent (the absolute value) is equal to the number of
dimensions that describe topical distances among peers [15,
16]. We observed that the 181-peer network was optimal at
α ≈ 3.0. With a larger number of peers and more diverse
contents, the 5890-peer network seemed to require a little
higher dimensionality to accurately depict all pairwise rela-
tionships, thus a slightly larger optimal clustering exponent
α ≈ 3.5.

6.4 Scaling of Clustering Impact
One may argue that the impact of network clustering on

decentralized search is small especially in the case of over-
clustering – in Figure 7, for instance, there were roughly 10%
loss in completion rate (effectiveness) and an increase of 1
in average search path length (efficiency) when α increased
from 3.5 (optimum) to 5.0. Nonetheless, we will show in very
large networks, the Clustering Paradox has a huge impact
on search efficiency.

Relying on a 2-dimensional network model used in previ-
ous research [15, 16, 6], we ran decentralized search simu-
lations on various network size scales N ∈ [104, .., 4 × 106]
and with clustering exponent α ∈ [0, 4] (see [15] for detailed
configurations). Results indicated that while optimum α ap-
proaches 2 with increased network size, there is a dramatic
constrast between optimal clustering and overclustering in
very large networks (see steeper curves in log-transformed
Figure 8).
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On smaller scales (e.g., in the 104-peer network), as shown
in Figure 8, optimization curves are much flatter. Overclus-
tering in small networks only resulted in a moderate increase
of search path length. However, in the network of four mil-
lion peers, as shown in Figure 8, when α increased from 2
(nearly optimum) to 4, the average search path length in-
creased from roughly 80 to more than 700 – a huge loss in
search efficiency. Seen in this light, methods achieving good
results on small or medium network sizes will not necessarily
function well on large scales. Little performance disadvan-
tage in small networks might become too big to ignore in
large networks. Scrutiny of the Clustering Paradox for net-
work optimization is crucial for scalability of decentralized
search.

7. CONCLUSION
In this paper, we presented a multi-agent framework for

information retrieval in distributed networked environments
and focused on the impact of network clustering on decen-
tralized search. Particularly, we studied search optimization
in the face of the Clustering Paradox, in which either too lit-
tle or too much clustering leads to degraded findability of
relevant information sources. Experiments showed that the
similarity based RefNet model outperformed random walks
on the initial 181-peer network and did not show much ad-
vantage on the initial 5890-peer network, which was shown
to have too many topically remote connections or weak ties
that disoriented searches.

By introducing a clustering exponent α to guide network
rewiring, we studied the impact of clustering and found that
a balanced level of network clustering produced optimal re-
sults. Particularly, in the network of 5890 scholars, relevant
peers were best findable at α ≈ 3.5. Smaller α values re-
sulted in less visible topical segments and many remote con-
nections that disoriented searches. Larger α values, on the
other hand, led to an over-clustered and fragmented network
with rich strong ties but scant weak ties for searches to move
fast.

Further experiments on various larger networks of up to
4 million peers demonstrated that clustering optimization

is crucial for decentralized search. Although overclustering
only moderately degraded search performance on small net-
works, it led to dramatic loss in search efficiency for large
networks. So did weak clustering. Search methods that work
well on small scales might function badly in large networks,
in which little performance disadvantage in small networks
might become too big to ignore. As many research rely on
clustering for decentralized search (e.g., in semantic over-
lay networks for P2P), scrutiny of the Clustering Paradox is
crucial for scalability of existing methods.
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ABSTRACT
This paper explores the problem of “stragglers” in Map-
Reduce: a common phenomenon where a small number of
mappers or reducers takes significantly longer than the oth-
ers to complete. The effects of these stragglers include un-
necessarily long wall-clock running times and sub-optimal
cluster utilization. In many cases, this problem cannot sim-
ply be attributed to hardware idiosyncrasies, but is rather
caused by the Zipfian distribution of input or intermedi-
ate data. I present a simple theoretical model that shows
how such distributions impose a fundamental limit on the
amount of parallelism that can be extracted from a large
class of algorithms where all occurrences of the same ele-
ment must be processed together. A case study in parallel
ad hoc query evaluation highlights the severity of the strag-
glers problem. Fortunately, a simple modification of the in-
put data cuts end-to-end running time in half. This example
illustrates some of the issues associated with designing effi-
cient MapReduce algorithms for real-world datasets.

Categories and Subject Descriptors: H.3.3 [Informa-
tion Storage and Retrieval]: Information Search and Re-
trieval

General Terms: Algorithms, Performance

1. INTRODUCTION
The only practical solution to large data problems to-

day is to distribute computations across multiple machines
in a cluster. With traditional parallel programming mod-
els (e.g., MPI, pthreads), the developer shoulders the bur-
den of explicitly managing concurrency. As a result, a sig-
nificant amount of the developer’s attention must be de-
voted to managing system-level details (e.g., synchroniza-
tion primitives, inter-process communication, data trans-
fer, etc.). MapReduce [2] presents an attractive alterna-
tive: its functional abstraction provides an easy-to-under-
stand model for designing scalable, distributed algorithms.

Taking inspiration from higher-order functions in func-
tional programming, MapReduce provides an abstraction for

Copyright c© 2009 for the individual papers by the papers’ authors. Copy-
ing permitted for private and academic purposes. Re-publication of material
from this volume requires permission by the copyright owners. This volume
is published by its editors.
LSDS-IR Workshop. July 2009. Boston, USA.

programmer-defined “mappers” and “reducers”. Key-value
pairs form the processing primitives in MapReduce. The
mapper is applied to every input key-value pair to generate
an arbitrary number of intermediate key-value pairs. The
reducer is applied to all values associated with the same
intermediate key to generate output key-value pairs. This
two-stage processing structure is illustrated in Figure 1.

Under the MapReduce framework, a programmer needs
only to provide implementations of the mapper and reducer.
On top of a distributed file system [3], the runtime trans-
parently handles all other aspects of execution on clusters
ranging from a few to a few thousand processors. The run-
time is responsible for scheduling, coordination, handling
faults, and the potentially very large sorting problem be-
tween the map and reduce phases whereby intermediate key-
value pairs must be grouped by key. The availability of
Hadoop, an open-source implementation of the MapReduce
programming model, coupled with the dropping cost of com-
modity hardware and the growing popularity of alternatives
such as utility computing, has brought data-intensive dis-
tributed computing within the reach of many academic re-
searchers [5].

This paper explores a performance issue frequently en-
countered with MapReduce algorithms on natural language
text and other large datasets: the“stragglers problem”, where
the distribution of running times for mappers and reducers
is highly skewed. Often, a small number of mappers takes
significantly longer to complete than the rest, thus blocking
the progress of the entire job. Since in MapReduce the re-
ducers cannot start until all the mappers have finished, a
few stragglers can have a large impact on overall end-to-end
running time. The same observation similarly applies to the
reduce stage, where a small number of long-running reduc-
ers can significantly delay the completion of a MapReduce
job. In addition to long running times, the stragglers phe-
nomenon has implications for cluster utilization—while a
submitted job waits for the last mapper or reducer to com-
plete, most of the cluster is idle. Of course, interleaving the
execution of multiple MapReduce jobs alleviates this prob-
lem, but presently, the scheduler in the open-source Hadoop
implementation remains relatively rudimentary.

There are two main reasons for the stragglers problem.
The first is idiosyncrasies of machines in a large cluster—
this problem is nicely handled by“speculative execution” [2],
which is implemented in Hadoop. To handle machine-level
variations, multiple instances of the same mapper or re-
ducer are redundantly executed in parallel (depending on
the availability of cluster resources), and results from the
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map map map map

input input input input

Barrier: group values by keys

reduce reduce reduce

output output output

Figure 1: Illustration of MapReduce: “mappers” are
applied to input records, which generate intermedi-
ate results that are aggregated by “reducers”.

first instance to finish are used (the remaining results are
discarded). This, however, does not address skewed run-
ning times caused by the distribution of input or intermedi-
ate data. To illustrate this, consider the simple example of
word count using MapReduce (for example, as the first step
to computing collection frequency in a language-modeling
framework for information retrieval): the mappers emit key-
values pairs with the term as the key and the local count as
the value. Reducers sum up the local counts to arrive at the
global counts. Due to the distribution of terms in natural
language, some reducers will have more work than others
(in the limit, imagine counting stopwords)—this yields po-
tentially large differences in running times, independent of
hardware idiosyncrasies.

This paper explores the stragglers problem in MapReduce,
starting first with a theoretical analysis in Section 2. A spe-
cific case study in parallel ad hoc query evaluation is dis-
cussed in Section 3; for that specific task, a simple manipu-
lation of the input data yields a significant decrease in wall-
clock running time. I conclude with some thoughts on the
design of MapReduce algorithms in light of these findings.

2. A THEORETICAL ANALYSIS
It is a well-known observation that word occurrences in

natural language, to a first approximation, follow a Zipfian
distribution. Many other naturally-occurring phenomena,
ranging from website popularity to sizes of craters on the
moon, can be similarly characterized [7]. Loosely formu-
lated, Zipfian distributions are those where a few elements
are exceedingly common, but contain a “long tail” of rare
events. More precisely, for a population of N elements, or-
dered by frequency of occurrence, the frequency of the ele-
ment with rank k can be characterized by:

p(k; s, N) =
k−s∑N

n=1 1/ns
(1)

where s is the characteristic exponent. The denominator is
known as the Nth generalized harmonic number, often writ-
ten as HN,s. For many types of algorithms, all occurrences
of the same type of element must be processed together.
That is, the element type represents the finest grain of paral-
lelism that can be achieved. Let us assume that the amount
of “work” associated with processing a type of element is

 0

 2

 4

 6

 8

 10

 12

 14

 16

 0  1  2  3  4  5

m
ax

im
um

 th
eo

re
tic

al
 s

pe
ed

up

s (characteristic exponent)

HN,s (N=106)

y = 1

Figure 2: Plot of HN,s, the Nth generalized harmonic
number with N = 106, based on different values of
s, the characteristic exponent of the Zipfian distri-
bution. This plot shows the maximum theoretical
speedup of a parallel algorithm where all instances
of an element type must be processed together.

O(n) with respect to the number of element instances. In
other words, the amount of work necessary to process an
element is proportional to its frequency. If we normalize the
total amount of work to one, then the fraction of the total
work that must be devoted to processing the most common
element is:

1∑N
n=1 1/ns

=
1

HN,s
(2)

Even if we assume unlimited resources and the ability to
process all element types in parallel, the running time of
an algorithm would still be bound by the time required to
process the most frequent element. In the same spirit as Am-
dahl’s Law [1], Zipf’s Law places a theoretical upper bound
on the amount of parallelism that can be extracted for cer-
tain classes of algorithms. In short, an algorithm is only as
fast as the slowest of the sub-tasks that can run in parallel.

As a concrete example, suppose N = 106 and s = 1. The
most frequently-occurring element would be observed about
6.95% percent of the time—which means that the maximum
theoretical speedup of any parallel algorithm is about a fac-
tor of 14 (assuming that all instances of the same element
must be processed together). For this class of algorithms,
the maximum theoretical speedup is simply HN,s. Figure 2
plots HN,s with varying values of s for N = 106. This simple
theoretical model shows that Zipfian distributions present a
serious impediment to the development of efficient parallel
algorithms for a large class of real-world problems.

This analysis can be directly applied to MapReduce al-
gorithms. In a common scenario, each key corresponds to
a single type of element, and the fraction of total values
associated with each key can be characterized by a Zipfian
distribution. In other words, a few keys have a large number
of associated values, while a very large number of keys have
only a few values. Take the two following examples:

Inverted indexing. The well-known MapReduce algo-
rithm for inverted indexing begins by mapping over input
documents and emitting individual postings as intermediate
key-value pairs. All postings associated with each term are
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gathered in the reducer, where the final postings lists are
created and written to disk. The most straightforward im-
plementation of the algorithm divides the term space into
roughly equal-sized partitions and assigns each to a reducer
(typically, through hashing). This, however, does not take
into account the inherent distribution of document frequen-
cies (which characterizes the length of each postings list, and
hence the amount of work that needs to be done for each
term). Due to the Zipfian distribution of term occurrences,
the reducers assigned to very frequent terms will have sig-
nificantly more work than the other reducers, and therefore
take much longer to complete. These are the stragglers ob-
served in the execution of the algorithm.

Computing PageRank over large graphs. Although
Google recently revealed that it has developed infrastruc-
ture specifically designed for large-scale graph algorithms
(called Pregel), the implementation of PageRank [8] in Map-
Reduce is nevertheless instructive. The standard iterative
MapReduce algorithm for computing PageRank maps over
adjacency lists associated with each vertex (containing infor-
mation about outlinks); PageRank contributions are passed
onto the target of those outlinks, keyed by the target ver-
tex id. In the reduce stage, PageRank contributions for each
vertex are totaled.1 In the simplest implementation, vertices
are distributed across the reducers such that each is respon-
sible for roughly the same number of vertices (by hashing).
However, the highly skewed distribution of incoming links to
a page presents a problem: the vast majority of pages have
few inbound links, while a few (e.g., the Google homepage)
have many orders of magnitude more. In computing Page-
Rank, the amount of work required to process a vertex is
roughly proportional to the number of incoming links. The
stragglers are exactly those assigned to process vertices in
the graph with large in-degrees.

In practice, faster speed-ups than predicted are possible
because in most cases some amount of local aggregation can
be performed, thus making the skewed key-value distribu-
tions less pronounced. In MapReduce, this is accomplished
with“combiners”, which can dramatically increase efficiency.
Nevertheless, the stragglers problem remains both common
and severe.

In both of the examples presented above, the stragglers
problem is most severe in the reduce stage of processing,
since the distribution of the intermediate data can be char-
acterized as Zipfian. However, depending on the distribu-
tion of input key-value pairs, it is also possible to have the
stragglers problem in the map phase—in fact, the case study
presented in the next section examines such a case.

3. PARALLEL QUERIES: A CASE STUDY
This paper presents a case study of the stragglers prob-

lem that builds on the parallel queries algorithm described in
SIGIR 2009 [6]. This piece is meant to serve as a companion
to the paper in the main conference proceedings. The prob-
lem explored here nicely illustrates how the running time of
a MapReduce algorithm is dominated by the slowest parallel
sub-task. Fortunately, for this problem, a simple manipula-
tion of the input data cuts running time in half.

1This algorithm sketch ignores details such as handling of dan-
gling links and the jump factor.

1: procedure Map(Term t,Postings P )
2: [Q1, Q2, . . . Qn]← LoadQueries()
3: for all Qi ∈ [Q1, Q2, . . . Qn] do
4: if t ∈ Qi then
5: Initialize.AssociativeArray(H)
6: for all 〈a, f〉 ∈ P do
7: H{a} ← wt,q · wt,d

8: Emit(i, H)

1: procedure Reduce(Qid i, [H1, H2, H3, . . .])
2: Initialize.AssociativeArray(Hf )
3: for all H ∈ [H1, H2, H3, . . .] do
4: Merge(Hf , H)

5: Emit(i, Hf )

Figure 3: Pseudo-code of the parallel queries algo-
rithm in MapReduce.

3.1 Background
Computing pairwise similarity on document collections is

a task common to a variety of problems such as clustering,
unsupervised learning, and text retrieval. One algorithm
presented in [6] treats this task as a very large ad hoc re-
trieval problem (where query-document scores are computed
via inner products of weighted feature vectors). This pro-
ceeds as follows: First, the entire collection is divided up into
individual blocks of documents; these are treated as blocks
of “queries”. For each document block, the parallel retrieval
algorithm in Figure 3 is applied. The input to each map-
per is a term t (the key) and its postings list P (the value).
The mapper loads all the queries at once and processes each
query in turn. If the query does not contain t, no action is
performed. If the query contains t, then the corresponding
postings must be traversed to compute the partial contri-
butions to the query-document score. For each posting el-
ement, the partial contribution to the score (wt,q · wt,d) is
computed and stored in an associative array H, indexed by
the document id a—this structure holds the accumulators.
The mapper emits an intermediate key-value pair with the
query number i as the key and H as the value. The result of
each mapper is all partial query-document scores associated
with term t for all queries that contain the term.

In the reduce phase, all associative arrays belonging to
the same query are brought together. The reducer performs
an element-wise sum of all the associative arrays (denoted
by Merge in the pseudo-code): this adds up the contri-
butions for each query term across all documents. The fi-
nal result is an associative array holding complete query-
document scores. In effect, this algorithm replaces random
access to the postings with a parallel scan of all postings. In
processing a set of queries, each postings list is accessed only
once—each mapper computes partial score contributions for
all queries that contain the term. Pairwise similarity for the
entire collection can be computed by running this algorithm
over all blocks in the collection. For more details, please re-
fer to additional discussions of this algorithm in the SIGIR
2009 main proceedings paper.

3.2 Experimental Results
Experiments using the algorithm presented in Figure 3

were conducted on a collection of 4.59m MEDLINE ab-
stracts (from journals in the life and health sciences domain),
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Figure 4: Distribution of document frequencies of
terms in the MEDLINE collection.

used in the TREC 2005 genomics track [4]. From the list of
relevant documents for the evaluation, 472 (approximately
one tenth) were selected to serve as the “queries”. The en-
tire text of each abstract was taken verbatim as the query.
On average, each query contained approximately 120 terms
after stopword removal. All runs were performed on a large
cluster running the Hadoop implementation of MapReduce
(version 0.17.3) with Java 1.5; jobs were configured with 500
mappers and 200 reducers. The parallel queries algorithm
was implemented in pure Java. Although the cluster con-
tains a large number of machines, each individual machine
is relatively slow, based on informal benchmarks.2

An inverted index was built from the entire collection.3

Figure 4 shows the document frequencies of all 1.3m unique
terms in the collection: on the x-axis, the document fre-
quency of a term, and on the y-axis, the number of terms
that have that df. Approximately 753k terms appear only
once, and approximately 168k terms appear only twice. The
term with the largest df appeared in 1.62m documents (or
about one in three documents). This distribution is fairly
typical of information retrieval text collections.

The thick line in Figure 5 plots the progress of the Map-
Reduce job on the unmodified index of the document collec-
tion: wall-clock time (in seconds) on the x-axis and number
of active workers (either mappers or reducers) on the y-axis.
At the beginning of the job, 500 mappers are started by the
MapReduce runtime; the number of running mappers de-
creases as the job progresses. When all the mappers have
finished, 200 reducers start up after a short lull (during this
time the framework is copying intermediate key-value pairs
from mappers to reducers). Finally, the job ends when all
reducers complete and the results have been written to disk.

The map phase of execution completes in 1399s; the re-
duce phase begins at the 1418s mark, and the entire job
finishes in 1675s. The long tail of the plot in the map phase
graphically illustrates the stragglers problem. Consider the
following statistics, which can be interpreted as checkpoints
corresponding to 98.0%, 99.0%, and 99.8% mapper progress:

• At the 467s mark, all except for 10 mappers (2% of
the total) have completed.

2The hardware configuration is the same as the setup in [6].
3The tokenizer from the open-source Lucene search engine was
adapted for document processing. A list of stopwords from the
Terrier search engine was used.
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Figure 5: Progress of the MapReduce parallel
queries algorithm (472 full-abstract “queries” on the
MEDLINE collection), comparing original postings
lists (thick black line) and postings lists split into
100k segments (thin red line).

• At the 532s mark, all except for 5 mappers (1% of the
total) have completed.

• At the 1131s mark, all except for one mapper have
finished—the last mapper would run for about another
4.5 minutes before finishing.

Since all mappers must complete before the reducers can
begin processing intermediate key-value pairs, the running
time of the map phase is dominated by the slowest mapper,
which as shown here takes significantly longer than the rest
of the mappers. Repeated trials of the same experiment
produced essentially the same behavior (not shown).

The behavior of the parallel queries algorithm is explained
by the empirical distribution of the length of the postings
lists (see Figure 4). There are a few very long postings
lists (corresponding to common terms such as “gene” or “pa-
tient”), while the vast majority of the postings lists are very
short. Since for each query term the postings must be tra-
versed to compute partial document score contributions, the
amount of work involved in processing a query term is on
the order of the length of the postings list. Therefore, the
mappers assigned to process common query terms will run
for a disproportionately long time—these are exactly the
stragglers observed in Figure 5. These empirical results are
consistent with the theoretical model presented in Section 2.
However, the situation is not quite as grim in some cases—in
a retrieval application, user queries are less likely to contain
common terms since they are typically less helpful in speci-
fying an information need.

A natural solution to the stragglers problem, in this case,
is to break long postings lists into shorter ones. Exactly
such a solution was implemented: postings lists were split
into 100k segments, so that terms contained in more than
100k documents were associated with multiple postings lists.
Furthermore, the ordering of all the postings segments were
randomized (as opposed to alphabetically sorted by term,
as in the original inverted index).4 Note that this modifi-
cation to the inverted index did not require any changes to

4This algorithm was straightforwardly implemented in Map-
Reduce, by mapping over the original inverted index and writing
a new copy.
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Postings 98.0% 99.0% 99.8% 100.0%

original 467s 532s 1131s 1399s
segmented 425s 498s 576s 636s

Table 1: Progress of mappers in the parallel queries
algorithm, comparing original postings lists and
postings lists split into 100k segments.

the parallel queries algorithm. Although partial score con-
tributions for a single query term might now be computed
in different mappers, all partial scores will still be collected
together in the same reducer during the element-wise sum
across associative arrays keyed by the same query id.

The thin (red) line in Figure 5 plots the progress of the
MapReduce job on the modified index. The map phase of
execution completes in 636s; the reduce phase begins at the
665s mark, and the entire job finishes in 831s. With this sim-
ple modification to the inverted index, the same algorithm
runs in about half the wall-clock time. Table 1 compares the
98.0%, 99.0%, 99.8%, and 100.0% progress of the mappers
for both the original and segmented postings list. Multiple
trials of the same experiment gave rise to similar results.

As a follow up, additional experiments were conducted
with even smaller postings segments, but finer splits did
further decrease running time. This is likely due to the dis-
tribution of query terms—some postings lists will never be
traversed no matter how finely segmented they are, since the
query documents contain only a subset of all terms in the
collection (and by implication, some mappers will do little
work regardless).

Why does this simple manipulation of the input data work
so well? It is important to note that the technique does
not actually reduce the number of computations required to
produce query-document scores. The total amount of work
(i.e., area under the curve) is the same—however, with the
segmented index, work is more evenly distributed across the
mappers. In essence, splitting long postings lists is a simple,
yet effective, approach to “defeating” Zipfian distributions
for this particular application.

4. DISCUSSION
The limits on parallelization imposed by Zipfian distri-

butions is based on one important assumption—that all in-
stances of the same type of element must be processed to-
gether. The simple approach to overcoming the stragglers
problem is to devise algorithms that do not depend on this
assumption. In the parallel queries case, this required only
manipulating input data and no modifications to the algo-
rithm: query-document scores could be computed indepen-
dently, since the associative arrays in which they are held
would eventually be brought together and merged in the
reduce stage.

Although the parallel queries case study dealt with strag-
glers in the map phase due to distributional characteristics
of the input data, the same principles can be applied to
stragglers in the reduce phase as well. However, there are
additional complexities that need to be considered. Often,
it is known in advance that intermediate data can be char-
acterized as Zipfian—but devising algorithms to address the
issue may require actually knowing which elements occupy
the head of the distribution. This in turn requires executing

the algorithm itself, which may be slow precisely because of
the stragglers problem. This chicken-and-egg dependency
can be broken by sampling strategies, but at the cost of
greater complexity in algorithm design.

For solving reduce-phase stragglers, once the distribution
of intermediate data has been characterized, a more intel-
ligent partitioner can better distribute load across the re-
ducers. Unfortunately, this may still be insufficient in some
cases, for example, PageRank computations. Recall that in
computing PageRank all contributions from inbound links
must be summed, thereby creating the requirement that all
values associated with the same key (i.e., vertex in graph)
be processed together. The only recourse here is a modifi-
cation of the original algorithm (e.g., a multi-stage process
for totaling the PageRank contributions of pages with large
in-degrees).

The upshot of this discussion is that to overcome the effi-
ciency bottleneck imposed by Zipfian distributions, develop-
ers must apply application-specific knowledge to parallelize
the processing of common elements. This, in turn, depends
on the ingenuity of the individual developer and requires
insight into the problem being tackled.

5. CONCLUSION
This paper explores the stragglers problem in MapReduce

caused by Zipfian distributions common in many real-world
datasets. What are the broader implications of these find-
ings? I believe that two lessons are apparent:

• First, efficient MapReduce algorithms are not quite as
easy to design as one might think. The allure of Map-
Reduce is that it presents a simple programming model
for designing scalable algorithms. While this remains an
accurate statement, the deeper truth is that there is still
quite a bit of “art” in designing efficient MapReduce algo-
rithms for non-toy problems—witness the case study pre-
sented in this paper, where a simple tweak to the input
data cut running time in half.5

• Second, MapReduce algorithms cannot be studied in iso-
lation, divorced from real-world applications—the strag-
glers problem is caused by properties of datasets (criti-
cally, not from the processing architecture or inherent bot-
tlenecks in the algorithm). Furthermore, since there does
not appear to be a general-purpose, universally-applicable
solution to the problem, it is of limited value to discuss
algorithmic performance without reference to specific ap-
plications.

Hopefully, these two lessons will be useful to future de-
signers of MapReduce algorithms.
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ABSTRACT 
We consider the potential impact of comments on search accuracy 
in social Web sites.  We characterize YouTube comments, 
showing that they have the potential to distinguish videos.  
Furthermore, we show how they could be incorporated into the 
index, yielding up to a 15% increase in search accuracy. 

Categories and Subject Descriptors 
H.3.3 [Information Systems]: Information Search and Retrieval – 
search process. 

General Terms 
Measurement, Performance, Experimentation. 

Keywords 
search, comments, YouTube. 

1. INTRODUCTION 
The popularity of modern Web information sharing sites (e.g., 
online newspapers, shopping or video sharing sites), where users 
can post comments about the subject matter has increased the 
need for effective content search functionality.  Work has been 
done on keyword (or “tag”)-based search (e.g., [2][3]), but little 
work has been done on using user comments to improve search 
accuracy.  We consider the impact of comments on search 
accuracy in the context of YouTube video search. 

Search in YouTube currently involves comparing a query to a 
video’s title, description and keywords.  Comments are not 
factored into search ostensibly because they are unreliable 
indicators of content and do not exist when a video is first posted.  

Note that external, non-YouTube search engines, such as Google, 
also do not index video comments (but do index video title, 
description and keywords).  We confirmed this via informal 
experiments where we issued video comments chosen for their 
apparent selectivity as queries.  The results of these queries did 
not include the corresponding videos.  On the other hand, queries 
consisting of any combination of title, description or keywords of 

a video returned the corresponding video. 

If content is poorly described by the title/description/keywords, 
however, comment information may supplement or replace 
traditional forms of search.  The title/description/keywords of a 
Westminster Kennel Show video, for example, may fail to 
mention “dog” (not to mention particular dog breeds), and thus 
not turn up in the results for “dog show.” Searching through 
comment information will almost certainly solve this problem. 

In this paper, we explore the “nature” of user comments and how 
they may aid in search.  Specifically, we analyze the term 
distributions of user comments and attempt to apply this 
information to improve search accuracy.   

The hazard associated with the use of comments to improve 
search accuracy is that they may contain noisy terms that hurt 
performance as well as significantly increase the size of the index.  
Our experimental results, however, suggest that while some 
queries are negatively affected by comments, overall, they can 
improve query accuracy by nearly 15%.  Furthermore, we apply 
techniques that can reduce the cost of using comments by up to 
70%. 

2. ANALYSIS OF THE YOUTUBE DATA 
We crawled YouTube during February, 2009 and collected the 
text associated with the 500 most popular and 3,500 random 
videos.  Popular videos were identified using the YouTube API.  
Random videos were retrieved by randomly selecting results of 
queries consisting of terms selected randomly from the SCOWL 
English word list [12].  For each video, we retrieved several 
information “fields,” including: 

• Title – A title assigned to the video by the user who posted it. 

• Description – A video description by the user who posted it. 

• Keywords – Video “tags” by the user who posted it. 

• Comments – Comments by viewers of the video. 

In total, for the 4,000 videos, we retrieved over 1 million 
comments made by over 600,000 users.  We refer to the random 
3,500 videos and the popular 500 videos together as the “small” 
data set. 

We also similarly created a “large” data set, also consisting of a 
random and a popular part, crawled in May, 2009.  This data set 
consists of 10,000 randomly crawled videos and 1,500 popular 
videos.  The four data sets are thus: 

• rand3500:  This data set contains data on 3,500 videos, 
randomly crawled from YouTube in February, 2009.  This 
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data was found on YouTube by issuing random queries from 
the SCOWL word list [12]. 

• pop500:  This data set contains data on the 500 most popular 
videos according to YouTube as of February, 2009. 

• rand10K:  This data set contains data on 10,000 videos 
randomly crawled from YouTube (is the same way that 
rand3500 was collected) in May, 2009. 

• pop1500:  This data set contains data on the 1,500 most 
popular videos according to YouTube as of May, 2009. 

In our experiments, we pre-processed the data using the Porter 
stemming algorithm [10].  We also tried a more conservative 
stemming algorithm [11] in anticipation of problems with 
overstemming from the unique language usage found in video 
comments.  However, the different stemmer had little effect on the 
final results.  We also remove stop words using the Lucene stop 
word list. 

2.1 Basic Statistics 
As shown in Table 1a, popular videos have more than 3 times the 
number of viewers than do random videos and more than 6 times 
the number of comments.  Comment length for both types of 
videos is about 12 to 15 terms.  On average, there are 2,280 terms 
describing a video from the rand3500 data set and 12,132 terms 
describing a video in the pop500 data set..  In the large data set, 
there is an even greater disparity between the random and popular 
videos, with more viewers and more comments. 

The length statistics of the title, description and keyword fields, 
shown in Table 2, indicate that on average only 34 to 58 terms are 
used to describe a (random) video (assuming that comments are 
not used to describe videos).  Including the comment field in the 
search returns a potential richer database of information because 
the average number of comment terms is at least 1,485. 

Table 1. Average values for various comment statistics. 

 #Views/Video #Comments/Video Comment Len  
Popular 247,226 1,011 12 
Random 71,654 152 15 
Average 93,601 259 13 

a. Small data set. 
 #Views/Video #Comments/Video Comment Len  

Popular 874,805 2,425 10 
Random 62,807 135 11 
Average 168,720 434 11 

b. Large data set. 
 

Table 2. Average lengths for non-comment video fields. 

 Title Description Keywords 
Popular 5 33 13 
Random 5 44 9 
Average 5 43 10 

a. Small data set. 
 Title Description Keywords 

Popular 5 42 14 
Random 5 24 10 
Average 5 26 11 

b. Large data set. 

3. MEASURING INFORMATION 
CONTENT 
As demonstrated in opinion-mining applications, many comments 
often describe something’s “quality,” rather than its “content” 
(e.g., how good a product is rather than what the product is) [1].  
If we assume that quality-based comments come largely from a 
restricted vocabulary (i.e., adjectives, such as “good” or “bad”), 
then comments will have only a limited ability to distinguish one 
video from another apart from the subjective impression it left on 
the viewer. Specifically, comments from different videos in this 
case will have similar term distributions and therefore have poor 
discriminating power from the perspective of a search system.  
Furthermore, because queries generally contain content-based 
terms, they do not “match” the quality-based terms in the 
comments.  In other words, comments contain little information 
useful to search. 

To measure the discriminating power of each field, we compute 
each field’s language model and then compute the average KL-
divergence [13] of the individual field values to its corresponding 
language model.  This metric is one way of identifying the 
potential of the field to distinguish one video from others in a 
search system [5]. 

The results shown in Table 3 confirm that the comment field is 
generally the least discriminating based on KL-divergence.  For 
the most part, the title and the keyword fields are the most 
discriminating. 

Table 3. KL-divergences for each video field. 

Data Set Title Desc Keywds Comments All 

rand3500 6.77 6.14 6.82 4.98 5.19 

pop500 5.46 5.14 5.35 5.68 2.59 

rand10K 7.26 6.29 7.23 5.26 5.06 

pop1500 5.89 5.38 5.72 5.38 2.33 

4. DISTILLING INFORMATION 
CONTENT FROM COMMENTS  
A consideration of the relative length of the average comment 
field explains its low KL-divergence.  Intuitively, as a document 
(i.e., the comment field) gets longer, its divergence from the 
“background” language model decreases.  (In separate 
experiments – not shown – we verified this phenomenon on the 
comment field and on the WT10G Web corpus.)  In other words, 
the comment field becomes the language model if its size relative 
to the other fields is great enough. 

We contend that, as a document gets longer, however, it will 
contain more discriminating information – as well as less 
discriminating information.  To verify this, we identify the terms 
“most associated” with the comment field and see if these terms 
are unique to the field.  We do this by pruning all but the “top 
terms” of each video’s comment field and compare these terms to 
the background language model.  We identify top terms with a 
variation of TF-IDF score (where TF measures the number of 
times a term appears in the video’s comment field and IDF 
measures the number of videos’ comment fields in which the term 
appears, as analogous to the typical definition of TF-IDF).  We 
consider the top 68 unique terms to make the number comparable 
to that which is typically available in the title, description and 

LSDS-IR’09 Are Web User Comments Useful for Search? (SHORT PAPER)

64



keyword fields, combined.  (Recall our discussion on the results 
shown in Table 2.) 

As shown in Figure 1, the KL-divergence of the top 68 comment 
terms increases quickly with the number of comment terms.  The 
KL-divergence stabilizes at approximately 7.6 when the number of 
comment terms reaches 250 (when most of the terms are unique to 
the comment).  This KL-divergence exceeds that of all the other 
fields (Table 3), indicating its potential in discriminating videos.   

This result shows that longer comment fields contain more 
discriminating information.  However, it is also likely that the rate 
of discriminating terms in comment fields decreases with 
comment length.  Therefore, while we claim that longer comment 
fields contain more discriminating information, the rate at which 
we yield this information should decrease as the comment field 
gets longer.  In any case, the long comment fields are more 
discriminating than the other fields. 

 

Figure 1. KL-divergences of the top 68 terms in each comment 
field as a function of number of terms in the comment field 
with the rand3500 data set (the trendline indicates the 50-
point moving average). 

Note that we only consider comment fields with at least 100 
terms.  With fewer terms, the comments often lacked 68 unique 
terms, making their KL-divergences as a function of length 
unstable, obscuring the results.  Also, experiments with different 
numbers of top terms yielded similar, predictable results. 

Table 4. Overlap percentage of top 30 terms and various fields 
with the rand3500 data set. 

N Title Description Keywords Comments 
10 12.58% 22.44% 31.93% 52.05% 
20 10.05% 18.71% 30.24% 52.24% 
30 8.14% 15.49% 27.90% 52.41% 

 

4.1 Potential Impact of Comments on Query 
Accuracy 
To estimate the potential of using comment terms to improve 
search accuracy, we use a technique described in [4] that 
effectively identifies the terms that are most likely to occur in a 
query that retrieves a given document.  For each video, we extract 
the top N of these terms and calculate their overlap with the 
various video information fields.  Note that the overlap is not 
necessarily disjoint, so the overlap percentages may exceed 100%. 

The results in Table 4 show that most of these terms come from 
the comments.  Of course, the comment field contains many more 
terms than the other fields, so the overlap will be greater.  (For 
example, the title field’s overlap is limited because titles generally 
contain fewer than 30 terms.)  But the point is that it is exactly the 
size of the comment field that is the source of its potential.  
Although it contains many meaningless terms, it also contains a 
lion’s share of the top terms.  This suggests including comment 
terms in queries can improve search accuracy. 

4.2 Waiting for Comments 
One of the problems with using comments in search is that they 
take time for users to generate.  In the results discussed in Section 
4, we need about 250 comment terms before the KL-divergence 
stabilizes.  If we assume each comment is 13 terms long, then we 
would need about 20 comments to yield 250 terms. 

 

Figure 2.  Number of comments as a function of time for the 
small data set. 

Based on our data, popular and random videos receive 
approximately 20 and 1.4 comments per day, respectively.  
Therefore, popular videos collect enough comments in one day 
and random videos require about 2 weeks to yield enough terms to 
be useful for search.  In Figure 2, we show the number of 
comments for the data set as a function of time.  Popular videos 
are commented at a higher rate as expected, but both types of 
videos have a consistent increase in the number of comments. 
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Table 5.  Analysis of DTC results on the rand3500 data set with length 3 top-IDF queries. 

MRR 
Improvement 

# of 
Videos 

Avg(Len(DT)) Avg(Len(C)) |C∩K| / |K| |DT∩K| / |K| 

-1.00 - -0.75 40 19.225 719.475 0.2734 0.5314 

-0.75 - -0.50 67 22.8209 345.6268 0.2904 0.4992 

-0.50 - -0.25 188 27.1436 386.6968 0.2372 0.5081 

-0.25 – 0.00  165 48.3273 118.8242 0.1764 0.5383 

0 2576 33.5093 277.5613 0.2557 0.5617 

0.00 - 0.25 152 58.4145 304.3158 0.3600 0.4049 

0.25 - 0.50 151 45.4172 533.2848 0.4766 0.4402 

0.50 - 0.75 38 66.2105 492.9474 0.3900 0.5529 

0.75 - 1.00 116 37.2931 895.0776 0.6260 0.3291 

 

5. EXPERIMENTAL RESULTS 
5.1 Data Set and Metrics 
We use data sets mentioned in Section 1 for our experiments.  We 
simulate user queries by removing the keyword field from the 
video data set and using them to generate known-item queries.  
From the keyword set, we generate queries in two ways: 

• top-IDF – Top-IDF queries are generated by the top K terms 
in the keyword field, where IDF is computed based on 
keyword fields. 

• random – Random queries are generated by randomly 
picking K terms from the keyword field. 

In the alternatives above, we use K values 2, 3, and 4 as these are 
the most common query lengths in Web and P2P applications 
[7][8]. 

We generate queries in this way because keywords are meant to 
help users index content.  Top-IDF queries are meant to simulate 
users who generate very specific queries and their generation is 
similar to the query generation techniques described in [4][9].  
Random queries are appropriate if we assume that all keywords 
are appropriate for queries. 

Note that the choice of using the keyword field to create queries is 
somewhat arbitrary.  Recent work shows that the terms used as 
keywords do not necessarily match those used in user queries 
[20].  For example, people tagging music would use the terms 
associated with genre, such as “pop,” whereas people generally do 
not search for music via genre – title and artist are more likely in 
cases of known-item search.  In future work, we will consider 
queries generated by other techniques described in [4][9]. 

Because we use keywords to generate queries, we also strip the 
keywords from the data set that we index.  If we did not do this, 
then the baseline query accuracy would be so high – given our 
experimental setup – that we would not be able to reasonably run 
experiments that would show any meaningful positive change.  
One might worry that stripping keywords from the data set will 
result in an artificially low baseline for performance because 
keywords are expected to match queries very precisely.  However, 
referring again to the results from [20], keywords do not 
necessarily match query behavior.  Furthermore, the title and 

description fields were shown in Table 3 to be at least as 
discriminating of the video as the keywords, so these fields could 
have been chose as well as sources for queries. 

In any case, our goal is to show whether the addition of comments 
can improve query performance over not using them.  We could 
have therefore generated queries from any field provided that we 
remove that field from the data that is indexed.  A positive result, 
therefore, would suggest that indexing comments in addition to all 
of the other fields is beneficial to query accuracy. 

Because we are assuming known-item search, we use MRR as our 
main performance metric, defined as the average reciprocal rank 
of the desired result over all queries: 

∑
=

=
QN

i iQ rN
MRR

1

11  

In the expression above, NQ is the number of queries issued and r i 
is the rank of the known item in the result set of query i.  MRR is a 
metric that ranges from 0 to 1, where MRR = 1 indicates ideal 
ranking accuracy. 

The data are indexed in the Terrier search engine [6].  Each of the 
videos is searched for via their respective queries. 

Table 6.  Query performance with and without comments with 
various query lengths on the rand3500 data set. 

Query 
Type 

Query 
Length 

DT DTC 
Pct 

Change 

top-IDF 2 0.5912 0.6045 2.24% 

top-IDF 3 0.6645 0.6761 1.74% 

top-IDF 4 0.7064 0.7136 1.01% 

random 2 0.4697 0.4761 1.36% 

random 3 0.5736 0.5839 1.80% 

random 4 0.6377 0.6459 1.29% 

5.2 Basic Results 
In our first experiment, we test the impact of indexing queries.  
We issue the queries twice.  First, we issue the queries on an 
index that contains the title and description (a setup that we refer 
to as DT) of each video, but not the comments.  Second, we issue 
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the queries on an index that contains the title, description, and 
comments (a setup that we refer to as DTC) of each video. 

In Table 6, we show query performance for different query 
lengths when the index does not and does contain comments.  The 
results show that there is a consistent difference in MRR in the 
range of about 1% to 2% when using the comments on the 
rand3500 data set. 

We search for the source of the performance improvement by 
dividing the results of each query into buckets based on the 
impact that the comment field has on the query results and then 
search for correlations between the change in MRR and “features” 
of the video data to which the query corresponds.  The goal is to 
find some correlation between MRR improvement and a video 
feature.  We considered several features of the video data, 
including, the lengths of the various fields in terms of the number 
of unique terms and the similarities between the fields. 

A subset of our correlation analysis is shown in Table 5.  Each 
bucket corresponds to a 0.25 point difference in MRR.  We see 
that approximately 450 videos have their MRRs improved and 
about the same number have their MRRs worsened.  Most videos 
(2,576 or about 75%) are not affected by the addition of 
comments. 

We see that the length of the title and description fields have little 
impact on MRR.  There is no clear correlation between them and 
change in MRR. 

On the other hand, both the length of the comment field and the 
similarity between the comment and keyword fields are correlated 
with MRR change.  Note that the similarity between the comment 
and keyword field is measured by how much the comment field 
covers the keyword field: 

K

KC ∩  

The coefficient of correlation between the similarity of the 
comment and keyword fields and the change in MRR is 0.7589.  
The coverage of the keyword field is also related to the length of 
the comments.  If we remove the comment length of the first row 
of Table 5, then the coefficient of correlation between the change 
in MRR and the length of the comment field is 0.7214.  (With the 
first row, the coefficient of correlation is 0.2964.)  Finally, the 
coefficient of correlation between the length of the comment field 
and the similarity between the comment and keyword fields is 
0.9351 without the first row of data and 0.7552 with the first row 
of data. 

There is also a negative correlation between the similarity of the 
title and description fields with the keyword field (|DT∩K| / |K|) 
and MRR (-0.5177) and between |DT∩K| / |K| and |C∩K| / |K| (-
0.8077).  These results show that in the cases where titles and 
descriptions do not contain enough information to match the 
queries, then the long comment field is able to compensate.  (We 
observe, for example, some videos with non-English descriptions  
and English keywords.) 

The conclusion that we draw from these results is that comments 
help: 

• MRR improves when the comments contain keywords 
(equivalently, query terms, since we generate queries from 
the keywords). 

• Comments are particularly important when the title and 
description do not contain the appropriate terms that match 
the query. 

• Longer comment fields are more likely to contain keywords. 

So, despite all of the irrelevant terms contained in the comments – 
particularly long comments – the existence of the relevant terms 
helps. 

In our next experiments, we run the same test on the pop500 data 
set.  The results of this experiment show how comments affect the 
search for videos that users actually want to find (i.e., popular 
videos). 

Table 7.  Query performance with and without comments with 
various query lengths on the pop500 data set. 

Query 
Type 

Query 
Length 

DT DTC 
Pct 

Change 

top-idf 2 0.5193 0.6239 20.14% 

top-idf 3 0.5984 0.6709 12.12% 

top-idf 4 0.6561 0.7150 8.99% 

random 2 0.4895 0.5455 11.44% 

random 3 0.5592 0.6010 7.48% 

random 4 0.6105 0.6650 8.93% 

 

Table 8.  Analysis of DTC results on the pop500 data set with 
length 3 top-IDF queries. 

MRR 

Improvemen

t 

# of 

Videos 
Avg(Len(C)) 

|C∩K| / 

|K| 

-1.00 - -0.75 18 2267.7 0.5071 

-0.75 - -0.50 10 2842.0 0.6795 

-0.50 - -0.25 45 2481.2 0.6927 

-0.25 – 0.00  16 2328.4 0.7800 

0 267 3337.4 0.6546 

0.00 - 0.25 41 3668.8 0.6731 

0.25 - 0.50 38 4103.5 0.7710 

0.50 - 0.75 10 8933.5 0.8430 

0.75 - 1.00 53 5230.6 0.8204 

Our results are shown in Table 7.  Comments are much more 
effective on popular videos.  For top-IDF queries, the MRR 
improvement ranges from 9% to 20%.  For random queries, the 
MRR improvement ranges from 7% to 9%.  Results are somewhat 
better for shorter queries and for top-IDF queries. 

In Table 8, we again search for features that are correlated to the 
change in MRR.  First, we notice that a greater percentage of 
videos are affected by the comments in the pop500 data set than 
in the rand3500 data set (about 47% versus 26%).  Of the affected 
videos, 89 videos’ MRRs worsened and 142 videos’ MRRs 
improved with the use of comments. 
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We again see a correlation between the similarity between the 
comment and keyword fields and the change in MRR.  The 
coefficient of correlation between these two variables is even 
greater than that of the rand3500 data set: 0.8295 versus 0.7589.  
The correlation between the length of the comment field and the 
change in MRR is 0.7404 with the pop500 data set versus 0.7214 
with the rand3500 data set.   

We summarize the performance results on the rand3500 and 
pop500 data sets in Table 9.  We see that comments are clearly 
more effective on popular data.  The change in MRR is greater and 
the number of videos whose MRR improves is greater.  This is 
likely because of the similarity between the comment and 
keyword fields. 

Table 9.  Summary of the performance differences between 
experiments on rand3500 and pop500 data sets with length 3 

top-IDF queries. 

Metric \ Data Set rand3500 pop500 

MRR change 0.0175 0.1212 

Pct of video MRRs improved 0.1306 0.2840 

Pct of video MRRs worsened 0.1314 0.1780 

Correl(MRR change, len(C)) 0.7214 0.7404 

Correl(MRR change, |C∩K| / |K|) 0.7589 0.8295 

Table 10.  Query performance with and without comments 
with various query lengths on the rand10K data set with top-

IDF queries. 

Query 
Length 

DT DTC 
Pct 

Change 

2 0.6271 0.6442 2.65% 

3 0.6842 0.7052 2.98% 

4 0.7199 0.7388 2.56% 

Table 11.  Analysis of DTC results on the rand10K data set 
with length 3 top-IDF queries. 

MRR 
Improvement 

# of 
Videos 

Avg(Len(C)) |C∩K| / 
|K| 

-1.00 - -0.75 121 838.7686 0.3614 

-0.75 - -0.50 167 481.4551 0.3633 

-0.50 - -0.25 421 411.7316 0.3627 

-0.25 – 0.00  552 246.5326 0.2078 

0 7248 291.2323 0.2947 

0.00 - 0.25 538 480.7993 0.4043 

0.25 - 0.50 461 553.7852 0.4892 

0.50 - 0.75 121 724.9669 0.5224 

0.75 - 1.00 349 874.0029 0.6521 

5.2.1 Results on Larger Data Sets 
To simplify our explication, in this section, we only report results 
using the top-IDF-type queries.  Also, as done above, if no query 
length is specified, we use queries of length 3. 

As shown in Table 10, comments also improve the query 
performance in the rand10K data set.  MRR improvements are 
about 3%, which is similar to the improvements with the smaller, 
rand3500 data set (Table 6). 

An analysis of the MRR change table for rand10K (Table 11) 
reveals that there is a again correlation between the length of the 
comments and the change in MRR (0.7515), and the similarity 
between the comment and keyword fields and the change in MRR 
(0.7064).  In this case, most of the videos (72%) are unaffected by 
comments, however, while 13% have their MRRs worsened and 
15% have their MRRs improved. 

Table 12.  Query performance with and without comments 
with various query lengths on the pop1500 data set with top-

IDF queries. 

Query 
Length 

DT DTC 
Pct 

Change 

2 0.5596 0.5991 6.59% 

3 0.6228 0.6465 3.67% 

4 0.6592 0.6818 3.31% 

Table 13.  Analysis of DTC results on the pop1500 data set 
with length 3 top-IDF queries. 

MRR 
Improvement 

# of 
Videos 

Avg(Len(C)) |C∩K| / 
|K| 

-1.00 - -0.75 86 1966.686 0.6623 

-0.75 - -0.50 49 2972.674 0.7259 

-0.50 - -0.25 128 2573.914 0.7766 

-0.25 – 0.00  78 2611.885 0.7254 

0 706 2323.965 0.7587 

0.00 - 0.25 165 2789.746 0.7826 

0.25 - 0.50 121 2619.744 0.8201 

0.50 - 0.75 24 3690.25 0.8609 

0.75 - 1.00 136 3170.044 0.8430 

Again, as shown in Table 12, the improvement in MRR with 
popular data is greater than that with random data.  With the 
pop1500 data set, the percentage MRR improvement ranges from 
3% to 7% compared with 3% for the rand10K data set.  In this 
case, 47% of the videos MRRs are unaffected by the comments, 
23% are worsened, and 30% are improved. 

The coefficient of correlation between MRR change and comment 
length is 0.6769 and the coefficient of correlation between MRR 
change and similarity of comment and keyword fields is 0.9192.  
Again, long comment fields are able to substitute for keywords in 
search. 

The fact that MRR is better for popular data has been shown in 
other work (e.g., [9]).  This is clearly due to the fact that popular 
data have more comments.  This result is significant as it shows 
that increasing the number of comments does not only increase 
the ability for videos to naively match queries, but also increases 
the ability for queries to distinguish the relevant videos. 
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5.3 Improving our Results 
Our next goal is to improve on our improvement-in-MRR results 
based on our observations.  If we detect a correlated feature, we 
use the correlation in our indexing strategy. 

Our main observation is that as the length of the comments field 
increases, so does its effectiveness in search.  Therefore, we 
should only index comments if they are above a certain length.   

We also acknowledge that there is a correlation between the 
change in MRR and the similarity between the comment and 
keyword fields.  However, as there is also a correlation between 
comment length and similarity, we roughly cover both features by 
considering just the comment length. 

Our first strategy is to index comments only if they are above a 
given length threshold.  We refer to this strategy as “length-
selective indexing.”  We show the experimental results in Table 
14, where the threshold is in terms of number of terms (words). 

The performance of length-selective indexing is negative.  MRR 
consistently decreases with increasing thresholds.  The problem 
with this strategy is that it creates a situation where certain videos 
are too eager to match queries.  In other words, videos that have 
their comments indexed are ranked higher than other videos 
compared with the base case regardless of whether they are 
relevant to the query or not.  Because videos are only relevant to a 
single query (by definition of MRR), MRR must decrease with 
this type of indexing. 

Table 14.  Percentage change in MRR with length-selective 
indexing on the rand3500 data set. 

Len(C) Threshold Pct Change in MRR 

0 0 

50 -0.19% 

100 -0.40% 

150 -0.64% 

200 -0.97% 

250 -1.09% 

300 -1.25% 

350 -1.38% 

400 -1.60% 

450 -1.76% 

500 -1.95% 
This was not a problem in the case where all videos’ comments 
were indexed because the “eager matching” problem is offset by 
the fact that all videos (with comments) have additional terms 
associated with them.  We expect that the additional terms 
contained in the comments are more likely to help match relevant 
queries. 

5.3.1 Comment Pruning 
The problem with length-selective indexing is that it un-uniformly 
adds “noise” to the description of videos making them match 
irrelevant queries.  If noise were applied uniformly to all videos, 
then such a problem would be attenuated.  The problem is that 
noise still causes the incorrect matching of query to results. 

This observation inspires a solution whereby we index each video 
with its comments, but then prune away noise from the comments, 

leaving only the most relevant terms in the description of each 
video.  This solution is expected to do two things: 

1. Reduce the irrelevant matches of a query, and 

2. Decrease the size of the index. 

The technique we use to prune the comment field is that which 
was proposed to shrink indices in [4], known as document-centric 
pruning.  With document-centric pruning, each term in each 
document is ranked based on its contribution to the KL-
divergence [13] of the document to the background language 
model.  The lower-ranked terms are removed from the documents 
before they are indexed.  This technique was shown to be able to 
shrink the index by up to 90% with little loss in precision. 

In these experiments, we prune a percentage of the comments of 
each video.  We assume that there is a “fixed rate” at which terms 
that are useful to search accuracy appear in the comments.  If this 
rate is r, then a comment field of length len(C) will have rlen(C) 
useful terms.  If we pick a pruning rate of r, then all of the terms 
left in the comment field will be useful. 

 

Figure 3.  Percentage change in MRR for different comment 
field sizes for various data sets. 

In Figure 3, we see the effect that comment pruning has on MRR. 
The data on the left of the figure corresponds to a complete 
comment fields, whereas the data on the right corresponds to no 
comments.  We see that pruning initially increases the MRR for 
all data sets.  MRR then drops dramatically as the comment field 
size decreases to zero. 

The effect of pruning is more pronounced for the popular data sets 
than for the random data sets.  With the random data set, the 
maximum MRR percentage increase is about 0.7% (60% pruning 
on the rand10K data set), while with the popular data set, the 
maximum MRR percentage increase is 2.4% (50% pruning with 
the pop500 data set). 

The reason for this is that the random data sets’ comment fields 
contain so few comments in the first place.  They are therefore 
less likely to contain terms that make eagerly match irrelevant 
results.  Second of all, the MRR improvement with using 
comments with random videos is low in the first place, suggesting 
the marginal impact that such comments have.  We do not expect 
there to be much of an increase in performance with pruning. 

Based on these results, a pruning rate of 50% is reasonable 
choice.  We are able to eliminate half of the index overhead 
introduced by the comments and are safe from losing MRR 
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performance.  MRR starts to decrease first with the rand3500 data 
set with 70% pruning. 

6. RELATED WORK 
In [14], the authors consider the impact that indexing blog 
comments have on query recall.  Their conclusion is that recall is 
boosted by the comments, that they are useful.  This result is 
expected, but little consideration was given to the precision of the 
results. 

In [17], it was shown the comments do have discriminating 
power.  The authors clustered Blog data and by using high 
weights for comments, were able to improve the purity and 
decrease the entropy of their clusters significantly. 

Much of the work on “social” Web sites – where users are free to 
modify the metadata associated with shared data – focus on “tag” 
analysis, where a tag is a keyword that a user can associate with 
data to, say, make it easier to index.  Findings related to tag 
analysis are they indicate data popularity and are useful in 
describing content [15][16][18][19].  This is somewhat 
orthogonal to our goal of determining if casual user comments 
can help improve search accuracy. 

Table 15.  Summary of potential improvement with comments. 

Data Set 
No 

Comments 
Best MRR 

Percent 
Change 

rand3500 0.6645 0.6775 1.96% 

pop500 0.5984 0.6872 14.84% 

rand10K 0.6842 0.7068 3.30% 

pop1500 0.6228 0.6612 6.17% 

7. CONCLUSION 
Our results show that comments indeed improve the quality of 
search compared with just using titles and descriptions to describe 
videos.  They are particularly useful with popular videos, where 
the MRR is lower than with random videos (Table 15).   

This result is not a given, however, as some queries actually do 
worse with comments.  The reason for these cases of decreased 
accuracy is that the videos with fewer comments become “buried” 
by those with more comments in search results. 

The problem of skew in result sets toward videos with larger 
comment fields can be addressed by well-known index pruning 
techniques – which also shrink the size of the index. Index 
pruning technique work by removing terms deemed less 
distinguishing or relevant to the particular “document.”  Applying 
index pruning to the comments further improves accuracy by up 
to about 2% (with a decrease in index size of up to 70%).  
Overall, accuracy improved by up to about 15% as shown in 
Table 15. 

Our ongoing work includes further analyses and characterizations 
of comment terms and their impact on search accuracy.  For 
example, our observation that comments work best when they 
contain query terms (Section 5.2) and when the title and 
description fields do not may suggest that we should only index 
comments when they are “different” than the title and description. 
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ABSTRACT
For most users, Web-based centralized search engines are
the access point to distributed resources such as Web pages,
items shared in file sharing-systems, etc. Unfortunately, ex-
isting search engines compute their results on the basis of
structural information only, e.g., the Web graph structure or
query-document similarity estimations. Users expectations
are rarely considered to enhance the subjective relevance of
returned results. However, exploiting such information can
help search engines satisfy users by tailoring search results.
Interestingly, user interests typically follow the clustering
property: users who were interested in the same topics in the
past are likely to be interested in these same topics also in
the future. It follows that search results considered relevant
by a user belonging to a group of homogeneous users will
likely also be of interest to other users from the same group.
In this paper, we propose the architecture of a novel peer-
to-peer system exploiting collaboratively built search mech-
anisms. The paper discusses the challenges associated with a
system based on the interest clustering principle. The objec-
tive is to provide a self-organized network of users, grouped
according to the interests they share, that can be leveraged
to enhance the quality of the experience perceived by users
searching the Web.

Categories and Subject Descriptors
H.3 [Information Storage and Retrieval]: Information
Search and Retrieval—Clustering, Information filtering

General Terms
Algorithms, Measurement, Performance
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1. INTRODUCTION
The access to distributed resources such as Internet pages

or shared files usually require the use of a search tool, e.g., a
centralized search engine such as Yahoo! or Google. These
search engines compute and rank their results on the basis
of several different pieces of information taken from the Web
graph structure, such as document PageRank [5], and from
statistical estimates of query-document similarities like the
TF/IDF metric. The profile of users and their tastes are
rarely taken into account to enhance the users’ search ex-
perience, although they provide more accurate results with
respect to the interests of that particular user and such a
profiling would yield better results in many situations. A
first such situation occurs when there exist results along
several different domains for a given ambiguous query, e.g.,
the request for the keyword “jaguar” can give results about
cars, animals, operating systems, and several other unre-
lated subjects. The fact that the user issuing the query
usually browses the Internet for new car models would help
in determining automatically the interest domain to which
her query likely belongs. The second and more common
situation where user-centric profiling information would be
effective is when a search system attempts to offer sugges-
tions along with the results of a given query, e.g., when
the keywords were not selective enough. Users typically use
ambiguous and too general queries, instead of selective ones
that would filter out the results. Some tools included in
modern search engine (such as the “Searches related to:”
tool in Google) propose more targeted searches, but do not
take into consideration the users’ expectation and search
history in the process. Only the frequency of the queries
is used. For many users, and given the typically skewed,
long-tail distribution of interests observed for Web content,
the suggested queries may not give more satisfactory results
than the ones that are already proposed on the first results
pages of the search engine. This calls for new tools that
can take advantage of user-centric and interest-profiling in-
formation to enhance the search engines capabilities with
interest-awareness for better-tailored search.

An interesting observation is that, among groups of Inter-
net users, interests for data typically follow the clustering
property [1,2,14,19]: two users who were interested to same
topics in the past are more likely to be interested to the
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same topics in the future. More, it is likely that elements
searched by users interested in one such domain will also
interest other users from that group in their future searches,
either as additional results, or as suggestions to replace the
missing selectiveness of their query by the mean of interest
scoping based on collaboratively-built knowledge. Grouping
users with similar interests has already been successfully ex-
ploited for greatly increasing the chances to locate new data
when using unreliable search mechanisms such as flooding
or random walks [7, 10,14,20,23].

In this paper, we propose the general architecture of a
system that pushes further the idea of exploiting collabora-
tively built search mechanisms, based on interest clustering
and obtained through recommendations among users. The
envisioned system is meant to be used either as a stand-alone
search engine, e.g., for a peer-to-peer file sharing system, or
perhaps more interestingly, as a companion for some exist-
ing search engine. We will concentrate on the description of
the challenges that the design of such a companion system
raises and on the discussion of the corresponding technical
choices. Our overall objective is to construct a self-organized
network of peers, each peer being attached to a single-user,
with users (i.e., peers) grouped according to their shared in-
terests. Obviously, each peer can participate and belong to
several groups, for each of the main interest domains it has
been assigned to. Thereafter, the knowledge at the neigh-
bors from that peer is leveraged (1) to enhance the search
recall by proposing the resources that were deemed interest-
ing for the same requests by interest-neighbors, and (2) to
deal with ambiguous queries by comparing the results re-
turn by some search engine with the interest-communities
the querying user belongs to, and by re-ranking results ac-
cordingly.

The proposed system is a two layers, peer-to-peer (P2P),
fully decentralized system. This choice is due a series of con-
siderations about the system goals. First of all, such systems
allow proposing a service without any centralized authority
(e.g., a single server that would store all profiles and brows-
ing histories of users) with the service implemented through
the collaboration of the peers. It is also potentially more
difficult for a node to cheat and bias the results given by
the system, as a single node will only have limited impact
for suggesting search results to its neighbors. Moreover, it is
possible, as we will see, to prevent peers from disturbing the
system by faking statistics about sites’ popularity, while it
is impossible to detect that form of cheating with a central-
ized server that could modify the order of sites, e.g., based
on commercial reasons. Next, P2P systems allow us to solve
the important problem of scale, as they do not require the
over- and proportional-provisioning of resources that would
be required with a centralized approach. The more peers
participate, the more power is added to the system. A P2P
approach scales well to large numbers of peers and it does
not suffer from the bootstrap problems [12] (i.e., the diffi-
culty, for a centralized and stand-alone service, to attract
enough users to fully sustain its specific functionalities—
here, the P2P system can be used in conjunction with an
existing search engine). Finally, P2P systems are known to
deal gracefully with system dynamism at no or very little
additional cost, whereas centralized systems need expensive
and complex techniques to ensure continuous operation un-
der node and link failures.

Such a system poses several design and engineering chal-

lenges. This is why our envisioned system is based on a
two level P2P organized network. First, it is necessary to
construct the interest-based network, so that peers are effec-
tively grouped with other peers that share similar interest
in their various interest domains. This requires maintaining
a representation of these interests (user profiling), to com-
pare these profiles to determine their similarity (similarity
metrics) and finally to propose distributed algorithms that
cluster peers in interest-based groups based on this metric
(clustering algorithm). Moreover, from an orthogonal point
of view, the system has to care about security and privacy.
Indeed, users would not want to use such a system if it al-
lows others to spy on their browsing activity, or if malicious
peers can extract the content of their cache in plain text
during proximity evaluation.

The remaining of this paper is as follows. First, Section 2
discusses related work. Next, Section 3 reviews the various
issues posed by the system construction and Section 4 elabo-
rates on what should be the adequate system architecture, as
well as the role of each of its components. Section 5 presents
in more details each component and discusses the different
issues that are to be faced by the implementer. Section 6
presents future work and concludes.

2. RELATED WORK
Many independent studies have observed the characteris-

tics of accesses to distributed data in various contexts. The
most important of these characteristics in the context of this
paper are: clustering of the graph that links users based on
their shared interests, correlation between past and futures
accesses by users or by groups of users that share similar
interests, skewness of the distribution of interests per peer,
skewness of the distribution of accesses per data element.
Skewness usually relates to Zipf-shape distributions, which
are a feature of access behaviors amongst large groups of hu-
mans [28]. We first review the work related to the detection
and use of interest correlation between users in large-scale
systems.

The presence of communities amongst user interests and
accesses in Web search traces [1,2], peer-to-peer file sharing
systems [14] or RSS news feeds subscriptions [19] can be
exhibited.

The existence of a correlation of interests amongst a group
of distributed users has been leveraged in a variety of con-
texts and for designing or enhancing various distributed sys-
tems. For peer-to-peer file sharing systems that include file
search facilities (e.g., Gnutella, eMule, . . . ), a sound ap-
proach to increase recall and precision of the search is to
group users based on their past search history or based on
their current cache content [10, 13, 23]. Interestingly, the
small-world [18] aspects of the graph of shared interests1

linking users with similar profiles is observed and can be
exploited not only for file sharing systems, but also in re-

1Small-world aspects for the shared interests graph are: (i) a
high clustering, (ii) a low diameter due to the existence of a
small proportion of long links, i.e., links to exotic domains
that are distant from the common interests of the node and
its regular neighbors and that act as cross-interest-domain
links, and (iii) the possibility to navigate through the graph
of interest proximity amongst peers and effectively find short
path between two interest domains based only on the one-
to-one distance relationships amongst these domains, i.e.,
without global knowledge of the graph.
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searcher communities or in web access patterns [14]. An-
other potential use of interest clustering is to form groups of
peers that are likely to be interested in the same content in
the future, hence forming groups of subscribers in a content-
based publish-subscribe [7]. Finally, interest correlation can
be used to help bootstrapping and self-organization of dis-
semination structures such as network-delay-aware trees for
RSS dissemination [20]. Finally, user interest correlation
can be used for efficiently prefetching data in environments
where access delays and resource usage constraints can be
competing [26], as it is an effective way of predicting future
accesses of the users with good accuracy.

The correlation between the users’ past and present ac-
cesses has been used for user-centric ranking. In order to
improve the personalization of search results, the most prob-
able expectations of users are determined using their search
histories stored on a centralized server [24,25]. Nevertheless,
the correlation between users with similar search histories is
not leveraged to improve the quality of result personaliza-
tion, hence making the approach sound only for users with
sufficiently long search histories.

An alternative class of clustering search engines uses se-
mantic information in order to cluster results according to
the general domain they belong in (and not as in our ap-
proach to cluster users based on their interests). This can
be seen as a centralized, server-side and user-agnostic ap-
proach to the use of characteristics of distributed accesses
to improve user experience. The clustering amongst data el-
ements is derived from their vocabulary. It presents the user
with results along different interest domains and can help her
to disambiguate these results from a query that may cover
several domains, e.g., the query word “apple” can relate to
both food/fruits and computers domains. Examples of such
systems are EigenCluster [8], Grouper [27], SnakeT [9] or
TermRank [11]. Nonetheless, these systems simply modify
the presentation of results so that the user decides herself in
which domain the interesting results may fall–these results
are not in any way automatically tailored to her expecta-
tions. They do not also consider the clustering of interest
amongst users, but only the clustering in content amongst
the data.

Aspects related to the distribution of the popularity of
te elements or to the number of interest domains of the
users are of particular importance in the peer-to-peer con-
text, where the responsibility for these elements (or for these
users) has to be distributed amongst a large set of nodes or
servers. To achieve scalability, it is necessary to balance
the load evenly amongst nodes. This is usually achieved
by letting all peers interested in one element serve that
element (e.g., as in the first versions of Gnutella) at the
cost of reducing availability of unpopular resources, or in a
more structured manner, to map elements to one or several
nodes [17]. An example of a system using reorganization of
the data responsibility to cope with skewed dynamic load is
Mercury [3]. An example of using data replication for load
balancing is given by the Beehive [21] system. An exam-
ple of replication or split of the responsibility for a group of
users is the publish/subscribe system SplitStream [6], which
is based on the Pastry [22] DHT.

3. CHALLENGES
This Section lists the various research challenges that are

associated with our system proposal. A clear definition of

pi

pj

links based on
shared interests

close interests community
e.g., gardening hobbyists

related interests 
community

e.g., organic food
growers

pl

pk

Figure 1: Interest-based network: general principle

these challenges helps in defining and justifying the corre-
sponding architecture, described in the next Section.

3.1 Construction of an interest-based network
We present the general principle of the construction and

use of a network of peers based on shared interest, in the con-
text of Web search enhancing mechanisms. Figure 1 presents
a coarse view of such a network. This example is purely fic-
tional but helps for presenting the global idea.

Peers (e.g., peer pi and pj) are linked as they share inter-
ests for the same kind of content (or, more correctly, have
been interested in the same content in the past and there-
fore are considered to have a high probability to be again
common interests in content in future, i.e. when issuing
searches for new content). Users are grouped by the means
of a clustering protocol, in two different ways. First, each
peer decides independently to which peer it is linked. These
one-to-one relationships are chosen based on an interest-
based distance, amongst the peer it encounters. Second,
based on these one-to-one relationships and on their associ-
ated distances, peers are grouped in collectively-known and
maintained interest groups (i.e., as collectively recognized
communities of interests). An important point here is that
a peer is not part of one single group but can participate
in as many groups it requires to cover its interests. For
instance, peer pj is interested in, i.e. has been accessing
resources about, both gardening and to a lesser extent to
organic food production. It hence has links to members of
these two groups and is “officially” part of one, but may as
well be part of a completely different group, say, one group-
ing researchers that often search the web for new information
retrieval papers.

Note that the labels given here are only for the sake of sim-
plifying explanations: there is no automatic labeling, nor is
there any ontology, in the system. The process of creating,
deleting, merging or splitting interest-based clusters is com-
pletely automatic and solely based on statistical properties.

The task of creating such a network requires the following
mechanisms: creating profiles of users that represent their
interests, finding a way to construct the one-to-one links

LSDS-IR’09 Peer-to-Peer clustering of Web-browsing users (SHORT PAPER)

73



with peers that are “close” in terms of shared interest, and
to that extent, to define a metric of interest proximity.

3.1.1 User Profiling
User interests ideally represent the comprehensive set of

thematic areas that are (most often) covered by the docu-
ments or items the user is accessing or is likely to access. The
automated detection of interest domains is not easy, indeed,
as typically user interests are dynamic and time-dependent.
Typically, users can be interested in a topic only for a cer-
tain period due to either some personal reasons (e.g. who
recently lost her/his job looks for a new position) or envi-
ronmental ones (e.g. who lives or will visit Italy looks at
Italian weather forecasting sites). Moreover, due to the fact
users have different interests, users can, in their daily con-
ducted browsing activity, access to web resources that are
very different in content and heterogeneous in type. As a
consequence, it makes the user behavior analysis for interest
detection even more complex.

For the implementer, user profiles also have to respect two
important properties: they have to be small and lightweight
to allow a fast transmission and computation, and they have
to hide as much as possible the plain content that is repre-
sented while allowing the comparison of what they repre-
sent (as part of the similarity metric computation). This
calls for the use of space-constrained representation. A typ-
ical example is to use Bloom filters [4] that map a large
set of elements2 to a fixed size bit vector. Each element
is hashed using k hash functions, setting the corresponding
bits. Inclusion tests are made by testing for these same k
bits, which require to know the resource name beforehand
(hence adding intrinsic privacy support to the structure: it is
impossible to reverse the process and obtain a plain text list
of the visited web pages, for instance). Interestingly, while
inclusion tests can yield false positives, comparing the size
of two sets encoded with bloom filters (or, the size of their
union/intersection, or their Jaccard similarity) gives good
approximations. Counting filters and compact approxima-
tors are two possible alternatives that gives better precision
(at the cost of a larger space usage). Time issues also have
to be taken into account for the profiles: how much time,
or how many elements, are to be kept in one profile, are
particularly sensitive settings.

3.1.2 Similarity Metrics
The measure of similarity between two users, represented

by some interest profiles, will eventually be used to form
clusters of users, grouped together based on affinities. In
this process, what matters is to be able to distinguish be-
tween two potential neighbors, which one is closest in terms
of interest. The presence of interest, first, is denoted by ac-
cesses by both peers to the same elements (e.g. two users
frequently visit a gardening-related webpage after looking
up for information on their favorite search engine, or access
Web pages that are described by similar keywords). Simply
using the number of common elements has been successfully
used in the context of P2P file sharing systems [23] or Web
cache design [13]. Nevertheless, this poses the problem of
the skewness in the number of elements represented by the

2These elements can be visited Web pages URL or their rep-
resenting keywords (snippet), bookmark tags from an online
annotation service such as http://delicious.com/, or any
other information that represents the user interests.

profiles (which is due to the skewness in the number of ac-
cesses by each peer [1]), unless the profiles are kept to a fixed
(or maximum) number of represented elements.

Moreover, it is important to note that a common interest
for non-popular resources, or to several of them, represents
future shared interests with higher accuracy. Therefore, a
good metric has to take into account the popularity of each
element that is encoded in each profile to weight the calcu-
lation. Nevertheless, this information is not available only
at the couple of peers that are computing their interest-
distance. The information about their local accesses would
bias unpopular elements that are by indeed popular amongst
these two peers, consider them as popular and reduce their
weight, hence loosing the benefits of using a popularity-
aware similarity metric. This requires some global knowledge
about accesses, i.e., statistics about each page usage based
on all accesses from all peers (or from an unbiased subset of
these accesses).

3.2 Membership, Trust and Privacy
Other important challenges that are faced in constructing

the envisioned system lie in the three closely related aspects
of membership, trust and user privacy. All require carefully
algorithmic designs that take them into account from the
beginning.

Membership relates to the following problem: it is nec-
essary to restrict peers from sending arbitrary data to the
network to bias the view of other peers, e.g. by partici-
pating in multiple interests domains which they would not
normally be part of. Moreover, each peer (user) has to be
given limited (but fairly distributed) credits to participate
in the creation of the global statistics.

Trust is linked to membership and is twofold: (1) for the
collection of global data coming from interest based com-
munities (2) for peers and users, the confidence they have
in using these statistics as a basis for creating one-to-one
relationships.

Finally, privacy is of particular concern. As the infor-
mation that is shared to allow the creation of interest-based
links is typically personal (URLs of visited Web pages, book-
marks, etc.) it is required that no peer can easily gather
statistics about one particular user, in particular recreat-
ing in plain text the list of visited Web pages. This means
that (1) a peer that manages information for one given page
(typically, as a result of a routing process in the distributed
index) does not need to know the original peer’s IP who is-
sued the information. Also, (2) a peer on that routing path
should not be able to spy on the information that is sees
when sending it to next hops.

4. SYSTEM ARCHITECTURE
Based on the challenges presented in the previous Sec-

tion, we sketch here a distributed system architecture that
has the necessary features and solidity. An overview of the
architecture is given by Figure 2.

4.1 Network Architecture
We consider the following network setting: a large num-

ber of regular peers are simply accessing the network re-
sources and issuing the queries, and some peers that dedicate
some of their processing and network capacities to the well-
functioning of the network, that we denote backbone peers.
Regular peers are unreliable, not trustable and can leave
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Figure 2: Two tier architecture and functional rela-
tionships between the interest-based layer and the
more stable indexing layer using backbone peers.

or join the network at any time. Backbone peers are more
reliable, and tend to leave the system gracefully. In their ma-
jority they are considered to be well behaving and trustable.
Backbone peers can be, for instance, machines dedicated by
ISPs or companies to the well functioning of the system. As
the number of the regular peers grows, the number of back-
bone peers is expected to grow accordingly. We recap in Ta-
ble 1 the characteristics of the two sets of peers, where we
also derive the characteristics of the infrastructure-related
aspects that better tie to each of them. The remaining of
this Section explains each such decision and characteristic.

In our envisioned scenario, we face the problem of dealing
with two types of information. The first level of informa-
tion is related with global statistics (i.e., globally maintained
Web sites popularity measurement). This information is
used to bootstrap the interest-proximity layer, by allowing
nodes to find similar peers when they are not still part of any
group. These statistics are derived from data about groups.
We also need to keep at a global level the identifiers and
the signatures of existing groups, i.e.,the more relevant sites
that distinguish the groups members. This data is used to
ease all the global operation related with groups, e.g. re-

trieving existing groups and their features (i.e. signature),
easy join/leave operations and derive global visit scores for
the sites. The other level of information that is kept in the
system is the local data associated with every user. This
data is exploited by users to join to the network and find
other group of peers sharing similar interests. Due to pri-
vacy concerns and the high variability of this information,
it is not maintained at a global level. Instead, it is stored
locally in every peer and only what the users allow to use is
shared and used to compute similarities and contribute to
the computation of group signatures.

Given the above remarks, we believe that the different
nature and use of the two kinds of information present in
the system require different ways of dealing with them.

In order to reflect these different needs, the overall net-
work architecture of the system is composed of two different
layers. One layer is the backbone layer, composed of the
eponym stable and reliable peers. Due to their stability,
they constitute the layer upon which global operations are
possible. They are in charge of maintaining a long-lasting
index that stores information concerning the global data of
the network (hence, called global information).

In particular, the backbone layer stores the statistics about
visited sites both at a global and at community levels. For
this purpose it makes use of structured indices (i.e. DHT),
in order to have an easy deterministic global store and re-
trieve operations. This information are critical to allow fast
and fair community creations and maintenance.

The backbone network does not take in charge the forma-
tion and maintenance processes for the registered communi-
ties itself. Instead, this is delegated to the interest-proximity
layer. Indexing the regular peers content is not possible, nor
would be routing deterministically amongst those. More, the
churn rate of these peers can be high enough to incur signif-
icant costs for the maintenance of such an index. But, while
being self-structured and with no global view of the network
at any, or from any, of its peer, this layer can still successfully
leverage the indexed information from the backbone layer.
The backbone layer has the responsibility to maintain this
global data and the overall information (i.e. the signature)
of each community. This data changes over time and is thus
periodically refreshed. Nonetheless, is is not changed each
time a peer performs a new action (i.e., visits a new site or
increases the statistics about old sites).

The second layer is composed of more volatile, unreliable
peers. These peers are attached to the users of the system.
They usually have a high churn rate, since they constantly
and unpredictably connect and disconnect to the network.
Due to their nature, they are better organized using a self-
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structured network, i.e., not trying to implement a globally
coherent routing substrate amongst them. Those networks
are more suitable to deal with less reliable peers since they
can be more easily maintained. We are interested in form-
ing community of users based on their respective profiles.
Performing such a task using only a index-based substrate
(i.e. the backbone layer) will involve a very high degree of
requests and update activities for this layer. Network orga-
nizations based on a self-emerging paradigm have proven to
be more suitable for the creation of spontaneous communi-
ties. Hence, the network is based on a gossip-style manage-
ment system. P2P Gossip-based solutions for membership
management have proved to be very efficient [15, 16]. This
communication and information dissemination style is used
by volatile peers to start building the “core” of a commu-
nity that can be later used to build a stable community,
whose data can then be stored in the backbone layer, allow-
ing peers joining the system later on to speed-up their search
for suitable communities. Since this network is formed by
grouping together peers with similar interests, we call it the
interest-proximity layer.

In the interest-proximity layer, communities are formed
using similarities among volatile peer profiles. More similar
peers can get in touch and connect to form neighborhood
of similar users. Similarity is computed on the basis of user
profiles, that consist of the sites visited by them during their
browsing history.

5. COMPONENTS AND ALGORITHMS

5.1 Profile Creation
Profiles of peers are created based on the users’ interests,

represented by recently accessed resources.3 The popular-
ity of resources in a distributed system, e.g. the Web, is
usually very sparse, typically following a Zipf-like [28] dis-
tribution: the popularity of the ith least popular element
is proportional to i−α (the bigger α is, the sparsest is the
distribution—α is typically around 1 for web pages popular-
ity [1]). This means that in order to effectively decide that
two users both accessing the same resource denote some kind
of proximity in interest, one needs to make sure that that
particular resource is not simply a vastly popular resource
(e.g., www.weather.com or some search engine), that denotes
less shared interest than mid-popular ones [2].

As a result of the aforementioned observations, it is nec-
essary to track statistics about the popularity of pages to
carefully select and weight more those that that convey more
proximity of interest. To that extent, it is necessary to keep
pages frequencies, based on the number of accesses by users
(or on an unbiased sample or these). Clearly, the loose self-
emerging but not controlled structure, with no indexing or
routing mechanism, of the interest-proximity layer is not
adapted for this matter: the accesses of neighbors in the

3The information sources we use for extracting the data re-
lated to user browsing activity are, essentially, the history
of visited web sites, the bookmarks saved by the user, the
submitted queries and a either implicit or explicit user pro-
vided relevance feedback. Such gathered information have
to be considered in a proper way, hence taking care of the
time elapsed since the site have been visited. Indeed most
recently visited sites are very important ones whereas the
ones visited since a long time can be considered as not very
important ones.

interest-vicinity of some peer to Web content is itself biased
by that interest proximity used to build the network. In-
stead, it is necessary to propose a more global and organized
view of the system that would allow disposing of this infor-
mation (equivalent to inverse document frequencies for data
mining). This requires the different architectural choices
presented in the previous section.

Based on Web sites’ popularity that follow Zipf-like dis-
tributions, we extract and exploit what we call the MRFVS:
the middle-range frequently visited sites. Namely, the sites
that a user visited with high frequency individually but that
are not the most frequent ones over all accesses by all users.
The surrounding idea is that on one side the sites that are
too frequently visited are not eligible for representing the
user because they are accessed nearly by everyone but on
the other side, the sites that are accessed only a few time
are not sufficiently frequent in the user browsing activity for
being considered as interesting from the point of view of the
user.

The assumptions stating that MRFVS are the most rele-
vant among the whole set of sites is not new, indeed, it is
well-stated that the significance of the items in a Zipf-like
distribution follows a Gaussian distribution that is maxi-
mized in the area we are considering for extracting the MR-
FVS. Nevertheless, in order to be able to exploit that infor-
mation two issues have to be addressed: i) to decides the
proper range of sites to consider and ii) to store the global
statistical information for allowing to each single peer to ex-
tract from her/his browsing history the sites belonging to the
ones globally considered as relevant. The former issue is a
still open issue; the naive solution for finding the thresholds
indicating the range is an iterative process that empirically
decide the proper values. The latter issue can be addressed
storing global statistical information about the MRFVS in
the global index structure, which stores the (compacted and
anonymized) list of sites belonging to at least one commu-
nity signature, i.e., the sites representing the interests of that
community.

5.2 Profile Similarity
Once a suitable method to describe each user interests is

found and is coded in the peer profiles, we have to put atten-
tion on choosing a proper function to compare profiles. This
is a particular relevant point, since this function determines
the relationships between peers on the basis of their inter-
ests. As cited in the introduction, using simple functions,
like counting the number of common items in the profiles, is
not enough.

Instead, more accurate, although simple functions, should
be used. Our proposal is to use a metric that takes into
account the size of each profile, such as the Jaccard simi-

larity, |A∩B|
|A∪B| , that have proven to be effective for that mat-

ter [10,20].
We propose also to weight the mid-popular (MRVFS) ele-

ments in the profile at the moment of the calculation of the
similarity metric. The ratio between popularity and weight
in the similarity computation for pages is similar to the use
TF-IDF (Term Frequency - Inverse Document Frequency)
in data mining algorithms, except that the content of the
document itself is not indexed.

5.3 Community Creation
As soon as each peer is able to compute its interest-based
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distance to any other peer, based on both its profile and that
peer’s profile, and based on information about the popular-
ity of elements that compose the profiles (either directly or
indirectly), its objective is to group with other peers that
have close-by interests, in order to form the basis for inter-
ests communities. This process is done in a self-organizing
and completely decentralized manner. Each peer knows a
set of other peers, called its interest neighbors, and tries pe-
riodically to choose new such neighbors that are closer to its
interest than the previous ones. This is simply done by learn-
ing about new peers from some other peer or from a boot-
strap mechanism, then retrieving their profile, and finally
choosing the C nearest neighbors in the union of present
and potential neighbors.

The bootstrap mechanism leans on the backbone network.
A peer p that joins the network can ask to the backbone
layer to send it links to peers belonging to the most similar
communities available in the network. The similarity is com-
puted between p’s profile and the communities’ signatures.
The backbone layer selects the most suitable candidate com-
munities, sends their IDs and the computed similarity to p,
which, in turn, select the best and proper communities to
join, on the basis of thresholds on the similarity score. For
the selected communities, the backbone layer retrieves some
contact peers inside each community and puts p in contact
with those. The join process can then continue using the
volatile network. Indeed, the selected peers send to p some
other links from their neighbor list, these links lying inside
the chosen community. The process stops once p reaches
the desired number of neighbors for all the communities it
has joined, and the gossip exchanges of neighborhoods in-
formation helps with maintaining a high quality of peers
neighborhoods thereafter.

When a peer enters the network, it is put in contact
with one or more peers already taking part in the interest-
proximity network. They use the profile similarity function
to compute how similar they are. Moreover, the peers con-
tacted by p use the same similarity function to determine
which are, among their neighbors, the most similar to p and
route the join request of p toward them. All the peers that
receive that request will react using the same protocol de-
scribed above. This mechanism will lead p to learn the exis-
tence of its most similar nodes in the network and allow it to
connect with them. In doing this process, the involved peers
can only use global usage statistics to compare their respec-
tive profiles. Since close similarity scores can be obtained by
using different sets of sites in the peers’ profiles, p can use
the information given by its newly added neighbors to group
them on the basis of the most common visited sites. These
groups try to reflect how neighbors are divided, considering
p’s different interests.

Since p is not yet part of any community, it can try to cre-
ate a new one, starting from its neighbors’ groups. Groups
represent the seeds of new possible communities. If the car-
dinality of the group neighborhood exceeds a given thresh-
old, p can start a new community creation election process.
Using the public profiles of its neighbors, it constructs the
signature of the new potential community. Then, it asks its
neighbors whether or not they want to join the new com-
munity. In the case votes for the adhesions are over a given
threshold, the new community can be built. p can request
a new identifier to the backbone network, spreads it among
the other community members and then sends the signature

to the backbone layer. This layer will then keep the infor-
mation about the signature and the frequencies associated
with the signature’s sites.

Related with the communities’ maintenance processes are
also the split and fusion processes. The split process happens
when a community has grown too big. This kind of eval-
uation is performed locally, at the interest-proximity layer
level. The initiative can be taken by any peer of the commu-
nity that, by simply checking its neighbors table, discovers
that it has too high a number of neighbors for that commu-
nity. It can then decide to initiate a split.

The split proceeds as follows. The first step consists in
computing the similarity with the other community mem-
bers and tox take the first C (with C large enough) of them
as the possible candidates for building the new community.
Then, it computes the signature of the new community and
sends it to the new potential members asking them to cast
votes for the community creation. If the number of adhe-
sions is sufficient, the new community can be created, by
communicating it to the backbone layer. As a consequence,
the signature of the old community has to change. This
operation could be done by the backbone layer. Updates
of local routing tables can be done through the interest-
proximity layer, via messages propagated by the community
members to their old neighbors. In principle, a node can
take part to both the old and the new communities. The
split simply give more “specialization” to the neighbors, by
better focusing their interests and, thus, the relationship
among them.

The opposite operation of a split is a fusion or merge op-
eration. In this case, a peer may observe that the number of
neighbors, over some period of time for a given community
have fallen under a given threshold. Hence, it may start a
merge process. It works in a similar way as the join process
done by a single peer. The difference, in this case, is that
instead of using the peer profile, the community signature
is used. Once the most similar other community is found,
the new signature is computed and an election request to
the peers of both communities is sent. In case the two com-
munities decide to merge, a request for a new community
identifier is sent to the backbone network that register also
the new community signature.

5.4 Community Signature
The signature of a community represents the cumulative

(related with the neighborhood clustering for dealing with
heterogeneity) profile of the set of peer that has joined that
community. As for a single-peer’s profile, it is represented by
the sites with mid-frequency, considering all the sites visited
its members.

The signature is created at the creation of a commu-
nity. Peers that have agreed to become part of it communi-
cate their visited sites (again, in an aggregated and privacy-
preserving form) to the backbone network. In this case, they
communicate also the sites that have no relevance for the
community, with a frequency equal to 0. This is done just
to avoid further coming nodes to be restricted to the nodes
added so far and be able to increase the relevance of nodes
that have not yet considered relevant inside a community.

A community signature is maintained by the backbone
layer. It stores the community identifier and associates to
it the information about the community-visited sites. This
information consists in the identifiers of the sites in the back-
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bone network, since other stable peers are in charge main-
taining up-to-date data about sites frequencies.

Every time a peer joins or leaves a community, it may
introduce changes to the community signature. For this
purpose, every given amount of time T, members of a com-
munity have to start a renewal process of the community
signature. The signature has to be re-computed using the
new data and, when done, peers check whether they still
belong to that community or not. In case they do not, they
start searching new suitable communities, using the interest-
proximity layer.

6. CONCLUSIONS AND FUTURE WORK
The focus of this paper is on addressing the problem of

clustering Web users in a purely decentralized way. This
is particularly useful for enabling an automated creation of
communities made from users sharing common interests. In
this paper we presented the overall architecture of a peer-
to-peer system exploiting collaboratively built search mech-
anisms. The architecture is based on two different network
layers: the indexing layer and the interest-proximity layer.
The first one represent the so-called backbone of the net-
work, namely a set of “institutional”, reliable and trusted
peers provided by ISPs that are not expected to churn or
to exploit in an improper way the privacy related data.
The second layer consists of churn-prone unreliable and un-
trusted peers connected in a self-emerging topology accord-
ing to interest-based communities of users.

We have discussed in this paper the main challenges faced
in designing the architecture of our collaborative search sys-
tem. These issues include the creation of user profiles and
their maintenance, the similarity metrics for computing how
close users are in terms on interests, and issues related to
the security and privacy. We presented our main vision and
proposed a set of solutions for each challenge. Yet, much
work remains to be performed, both from a design and im-
plementation point of view, toward our vision of a peer-
to-peer system maintaining Web-user clusters in a scalable,
precise, secure, and privacy-preserving manner. Besides the
actual implementation of the system, we are currently val-
idating our algorithms using real-world Web browsing data
and working on improving the privacy-preserving and secu-
rity features.
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