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ABSTRACT
We present the Permutation Prefix Index (PP-Index), an in-
dex data structure that allows to perform efficient approxi-
mate similarity search.

The PP-Index belongs to the family of the permutation-
based indexes, which are based on representing any indexed
object with “its view of the surrounding world”, i.e., a list
of the elements of a set of reference objects sorted by their
distance order with respect to the indexed object.

In its basic formulation, the PP-Index is strongly biased
toward efficiency, treating effectiveness as a secondary as-
pect. We show how the effectiveness can easily reach opti-
mal levels just by adopting two “boosting” strategies: multi-
ple index search and multiple query search. Such strategies
have nice parallelization properties that allow to distribute
the search process in order to keep high efficiency levels.

We study both the efficiency and the effectiveness proper-
ties of the PP-Index. We report experiments on collections
of sizes up to one hundred million images, represented in a
very high-dimensional similarity space based on the combi-
nation of five MPEG-7 visual descriptors.

Categories and Subject Descriptors
E.1 [Data]: Data Structures; H.3.3 [Information Sys-
tems]: Information Storage and Retrieval—Search process

General Terms
Algorithms,Experimentation,Performance

Keywords
approximate similarity search, metric space, scalability

1. INTRODUCTION
The similarity search model [12] is a search model in

which, given a query q and a collection of objects D, all
belonging to a domain O, the objects in D have to be sorted
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by their similarity to the query, according to a given distance
function d : O × O → R+ (i.e., the closer two objects are,
the most similar they are considered). Typically only the
k-top ranked objects are returned (k-NN query), or those
within a maximum distance value r (range query).

One of the main research topics on similarity search is the
study of the scalability of similarity search methods when
applied to high-dimensional similarity spaces.

The well known “curse of dimensionality” [7] is one of the
hardest obstacles that researchers have to deal with when
working on this topic. Along the years, such obstacle has
been attacked by many proposals, using many different ap-
proaches. The earliest and most direct approach consisted
in trying to improve the data structures used to perform ex-
act similarity search. Research moved then toward the ex-
ploration of approximate similarity search methods, mainly
proposing variants of exact methods in which some of the
constraints that guarantee the exactness of the results are
relaxed, trading effectiveness for efficiency.

Approximate methods [17] that are not derived from ex-
act methods have been also proposed. On this field, the re-
cent research on permutation-based indexes (PBI) [1, 6] has
shown a promising direction toward scalable data structures
for similarity search.

In this work we present the Permutation Prefix Index (PP-
Index), an approximate similarity search structure belonging
to the family of the permutation-based indexes. We describe
the PP-Index data structures and algorithms, and test it on
data sets containing up to 100 million objects, distributed
on a very high-dimensional similarity space. Experiments
show that the PP-Index is a very efficient and scalable data
structure both at index time and at search time, and it also
allows to obtain very good effectiveness values. The PP-
Index has also nice parallelization properties that allow to
distribute both the index and the search process in order to
further improve efficiency.

2. RELATED WORKS
The PP-Index belongs to the family of the permutation-

based indexes, a recent family of data structure for approxi-
mate similarity search, which has been independently intro-
duced by Amato and Savino [1] and Chavez et al. [6].

The PP-Index has however a key difference with respect to
previously presented PBIs: as we detail in this section, such
PBIs use permutations in order to estimate the real distance
order of the indexed objects with respect to a query. The
PP-Index instead uses the permutation prefixes in order to
quickly retrieve a reasonably-sized set of candidate objects,



which are likely to be at close distance to the query object,
then leaving to the original distance function the selection
of the best elements among the candidates.

For a more detailed review of the most relevant methods
for similarity search in metric spaces we point the reader to
the book of Zezula et al. [18]. The recent work of Patella
and Ciaccia [8] more specifically analyzes and classifies the
characteristics of many approximate search methods.

Chávez et al. [6] present an approximate similarity search
method based on the intuition of “predicting the closeness
between elements according to how they order their distances
towards a distinguished set of anchor objects”.

A set of reference objects R = {r0, . . . , r|R|−1} ⊂ O is
defined by randomly selecting |R| objects from D. Every
object oi ∈ D is then represented by Πoi , consisting of the
list of identifiers of reference objects, sorted by their dis-
tance with respect to the object oi. More formally, Πoi is
a permutation of 〈0, . . . , |R| − 1〉 so that, for 0 < i < |R|
it holds either (i) d(oi, rΠox (i−1)) < d(oi, rΠox (i)), or (ii)
d(oi, rΠox (i−1)) = d(oi, rΠox (i)) and Πox(i − 1) < Πox(i),
where Πox(x) returns the i-th value of Πox .

All the permutations for the index objects are stored in
main memory. Given a query q, all the indexed permutations
are sorted by their similarity with Πq, using a similarity mea-
sure defined on permutations. The real distance d between
the query and the objects in the data set is then computed
by selecting the objects from the data set following the order
of similarity of their permutations, until the requested num-
ber of objects is retrieved. An example of similarity measure
on permutations is the Spearman Footrule Distance [9]:

SFD(ox, oy) = Σr∈R|P (Πox , r)− P (Πoy , r)| (1)

where P (Πox , r) returns the position of the reference object
r in the permutation assigned to Πox .

Chávez et al. do not discuss the applicability of their
method to very large data sets, i.e., when the permutations
cannot be all kept in main memory.

Amato and Savino [1], independently of [6], propose an
approximate similarity search method based on the intuition
of representing the objects in the search space with “their
view of the surrounding world”.

For each object oi ∈ D, they compute the permutation
Πoi in the same manner as [6]. All the permutations are
used to build a set of inverted lists, one for each reference
object. The inverted list for a reference object ri stores the
position of such reference object in each of the indexed per-
mutations. The inverted lists are used to rank the indexed
objects by their SFD value (equation 1) with respect to a
query object q, similarly to [6]. In fact, if full-length per-
mutations are used to represent the indexed objects and the
query, the search process is perfectly equivalent to the one
of [6]. In [1], the authors propose two optimizations that
improve the efficiency of the search process, not affecting
the accuracy of the produced ranking. Both optimizations
are based on the intuition that the information about the
order of the closest reference objects is more relevant than
the information about distant ones.

One optimization consists in inserting into the inverted
lists only the information related to Πki

oi
, i.e., the part of

Πoi including only the first ki elements of the permutation,

thus reducing by a factor |R|
ki

the size of the index. For

example, given |R| = 500 a value of ki = 100 reduces by
five times the number of disk accesses with respect to using

full-length permutations, with a negligible loss in accuracy.
Similarly, a value ks is adopted for the query, in order to

select only the first ks elements of Πq. Given |R| = 500 a
value of ks = 50 reduces by ten times the number of disk
accesses, also slightly improving the accuracy.

3. THE PP-Index
The PP-Index represents each indexed object with a very

short permutation prefix.
The PP-Index data structures consists of a prefix tree kept

in main memory, indexing the permutation prefixes, and a
data storage kept on disk, from which objects are retrieved
by sequential disk accesses.

This configuration of data structures is interestingly simi-
lar to the one used by Bawa et al. [4], however, it is relevant
to note that our work and [4] are based on completely dif-
ferent approaches to the problem. The latter proposes the
LSH-Forest, an improvement to the LSH-Index [11] that is
based on using hash keys of variable lenght. These are used
to identify a set of candidate objects with hash keys that
have a prefix match with the hash key of to the query. Thus
the LSH-Forest, like the other LSH-based methods, is based
only on probabilistic considerations, while the PP-Index, like
the other PBIs, relies on geometrical considerations.

More generally, a key difference between the PBI model
and the LSH model is that the hash functions of the LSH
model are solely derived from the similarity measures in use,
independently of the way the indexed objects are distributed
in the similarity space, while in the SPI model the reference
objects provide information about this aspect.

The PP-Index is designed to allow very efficient indexing
by performing bulk processing of all the objects indexed.
Such bulk processing model is based on the intuitive assump-
tion that the data, in the very large collections the PP-Index
is designed for, have a relatively static nature. However, it is
easy to provide the PP-Index with update capabilities (see
Section 3.6).

3.1 Data structures
Given a collection of objects D to be indexed, and the

similarity measure d, a PP-Index is built by specifying a set
of reference objects R, and a permutation prefix length l.

Any object oi ∈ D is represented by a permutation prefix
woi consisting of the first l elements of the permutation Πoi ,
i.e., woi = Πl

oi
. Any object oi ∈ D is also associated with

a data block. A data block boi contains (i) the information
required to univocally identify the object oi and (ii) the es-
sential data used by the function d in order to compute the
similarity between the object oi and any other object in O.

The prefix tree of the PP-Index is built on all the permu-
tation prefixes generated for the indexed objects. The leaf
at the end of a path relative to a permutation prefix w keeps
the information required to retrieve the data blocks relative
to the objects represented by w from the data storage.

The data storage consists of a file in which all the data
blocks are sequentially stored. The order of objects (repre-
sented by data blocks) in the data storage is the same as the
one produced by performing an ordered visit of the prefix
tree. This is a key property of the PP-Index, which allows
to use the prefix tree to efficiently access the data storage.

Specifically, the leaf of the prefix tree relative to permu-
tation prefix w contains two counter values hstart

w and hend
w ,

and two pointer values pstart
w and pend

w . The counter values



BuildIndex(D, d, R, l)
1 prefixTree← EmptyPrefixTree()
2 dataStorage← EmptyDataStorage()
3 for i← 0 to |D − 1|
4 do oi ← GetObject(D, i)
5 dataBlockoi ← GetDataBlock(oi)
6 poi ← Append(dataBlockoi , dataStorage)
7 woi ← ComputePrefix(oi, R, d, l)
8 hoi ← i
9 Insert(woi , hoi , poi , prefixTree)

10 L← ListPointersByOrderedVisit(prefixTree)
11 P ← CreateInvertedList(L)
12 ReorderStorage(dataStorage, P )
13 CorrectLeafValues(prefixTree, dataStorage)
14 index← NewIndex(d, R, l, prefixTree, dataStorage)
15 return index

Figure 1: The BuildIndex function.

indicate the ordinal position in the sequence of data blocks
in the data storage of the first and the last data blocks rela-
tive to the permutation prefix w. The pointer values indicate
instead the byte offset in the data storage where the data
blocks are effectively serialized. In case the data blocks have
a fixed size s, the p values can be omitted and computed
when necessary as pw = hw · s.

The data storage implementation must allow, given any
two pointers p′ and p′′, to sequentially retrieve all the data
blocks included between them.

3.2 Building the index
Figure 1 shows a pseudo-code description of the indexing

function for the PP-Index.
The indexing algorithm first initializes an empty prefix

tree in main memory, and an empty file on disk, to be used
as the data storage.

The algorithm takes in input an object oi ∈ D, for i from
0 to |D − 1|, and appends its data block at the current
end position pend of the data storage file. Then the algo-
rithm computes, for the object oi, the permutation prefix
woi (ComputePrefix), and inserts woi into the prefix tree.
The values hoi = i and poi = pend are stored in the leaf
of the prefix tree corresponding to permutation prefix woi .
When more that one value has to be stored in a leaf, a list
is created.

Figure 2 shows an example list of permutation prefixes
generated for a set of objects and the data structures result-
ing from the above discussed first phase of data indexing.

The successive phase (ReorderStorage) consists in re-
ordering the data blocks in the data storage to satisfy the
order constrains described in the previous section. An or-
dered visit of the prefix tree is made in order to produce
a list L of the hoi values stored in the leaves. Thus, the
hoi values in the list L are sorted in alphabetical order of
the permutation prefixes their relative objects are associated
with.

Data blocks in the data storage are reordered following
the order of appearance of hoi values in list L. For example,
given a list for L = 〈0, 4, 8, 6, 1, 3, 5, 9, 2, 7〉, the data block
relative to object o7, identified in the list by the value ho7 =
7, has to be moved to the last position in the data storage,
since ho7 appears in the last position of the list L (see the
values in the leaves of the prefix tree in Figure 2).

To efficiently perform the reordering, the list L is in-
verted into a list P . The i-th position of the list P in-
dicates the new position in which the i-th element of the
data storage has to be moved. For the above example,

0ow   =<1, 3, 2>

2ow   =<5, 2, 3>

4ow   =<1, 3, 2>

6ow   =<1, 3, 4>

8ow   =<1, 3, 2>

1ow   =<2, 3, 0>

3ow   =<4, 1, 3>

5ow   =<4, 1, 3>

7ow   =<5, 2, 3>

9ow   =<4, 3, 5>

Permutation prefixes
|D|=10, |R|=6, l=3
Index characteristics

|

1 2 4 5

3 3 31 2

3 32 4 0 5

3p 5p 7p2pp0 p4 p8 6p 1p p9
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Prefix tree
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3 5 72h0 4 8 6 1 9h h h h h h h h h

main memory
secondary memory

Figure 2: Sample data and partially-built index data
structure after the first indexing phase.
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Figure 3: The final index data structure.

P = 〈0, 4, 8, 5, 1, 6, 3, 9, 2, 7〉.
Once P is generated the data storage is reordered accord-

ingly, using an m-way merge sorting method [13]. The ad-
vantages of using this method are that it involves only se-
quential disk accesses, and that it has a small (and config-
urable) main memory space occupation.

In order to obtain the final index structure, the values in
the leaves of the prefix tree have to be updated accordingly
to the new data storage (CorrectLeafValues). This is
obtained by performing an ordered visit to the prefix tree,
the same performed when building the list L, synchronized
with a sequential scan of the reordered data storage. The
number of elements in the list of a leaf determines the two
hstart and hend values that replace such list, and also the
number of data blocks to be sequentially read from the data
storage, in ordered to determine the pstart and pend values.

Figure 3 shows the final index data structure.

3.3 Search function
The search function is designed to use the index in order to



Search(q, k, z, index)
1 (pstart, pend)← FindCandidates(q, index.prefixTree,
2 index.R, index.d, index.l, z)
3 resultsHeap← EmptyHeap()
4 cursor ← pstart

5 while cursor ≤ pend

6 do dataBlock ← Read(cursor, index.dataStorage)
7 AdvanceCursor(cursor)
8 distance← index.d(q, dataBlock.data)
9 if resultsHeap.size < k

10 then Insert(resultsHeap, distance, dataBlock.id)
11 else if distance < resultsHeap.top.distance
12 then ReplaceTop(resultsHeap, distance,
13 dataBlock.id)
14 Sort(resultsHeap)
15 return resultsHeap

FindCandidates(q, prefixTree, R, d, l, z)
1 wq ← ComputePrefix(q, R, d, l)
2 for i← l to 1
3 do wi

q ← SubPrefix(wq , i)

4 node← SearchPath(wi
q , prefixTree)

5 if node 6= nil
6 then minLeaf ← GetMin(node, prefixTree)
7 maxLeaf ← GetMax(node, prefixTree)
8 if (maxLeaf.hend −minLeaf.hstart + 1) ≥ z
9 ∨i = 1

10 then return (minLeaf.pstart,
11 maxLeaf.pend)
12 return (0, 0)

Figure 4: The Search function.

efficiently answer to k nearest neighbor queries. The search
strategy consists in searching a subtree of the prefix tree
that identifies a specified number of candidate objects all
represented by permutation prefixes having a prefix match
with the permutation prefix representing the query.

A k-NN query is composed of the query object q, the k
value, and the z value, indicating the minimum number of
candidate objects among which the k nearest neighbors have
to be selected.

The FindCandidates function determines the smallest
subtree of the prefix tree having a prefix match with the
permutation prefix wq, i.e., the permutation prefix relative
to the query q, and retrieving at least z objects. The func-
tion returns two pointers pstart and pend to the positions in
the data storage of the data blocks of the first and the last
candidate objects.

The distance of each candidate object with the query is
computed, using the distance function d. A heap is used to
keep track of the k objects closest to the query.

3.4 Prefix tree optimizations
In order to reduce the main memory occupation of the pre-

fix tree it is possible to simplify its structure without affect-
ing the quality of results. These are search-specific optimiza-
tions, and a non-optimized version of the prefix tree should
be saved for other operations (e.g., update and merge).

A first optimization consists in pruning any path reaching
a leaf which is composed of only-child, given that this kind
of path does not add relevant information to distinguish be-
tween different existing groups in the index. Another opti-
mization consists in compressing any path of the prefix tree
composed entirely of only-children into a single label [15],
thus saving the memory space required to keep the chain of
nodes composing the path.

A PP-Index-specific optimization, applicable when the z
value is hardcoded into the search function, consists in re-

ducing to a single leaf the subtrees of the prefix tree that
points to less than z objects, given that none of such sub-
trees will be ever selected by the search function.

3.5 Improving the search effectiveness
The “basic” search function described is Section 3.3 is

strongly biased toward efficiency, treating effectiveness as
a secondary aspect. The PP-Index allows to easily tune
effectiveness/efficiency trade-off, and effectiveness can eas-
ily reach optimal levels just by adopting the two following
“boosting” strategies:

Multiple index : t indexes are built, based on different
R1 . . . Rt sets of reference objects. This is based on the intu-
ition that different reference object sets produce many dif-
ferently shaped partitions of the similarity space, resulting
in a more complete coverage of the area around queries.

A search process the using multiple index strategy can be
parallelized by distributing the indexes over multiple ma-
chines, or just on different processes/CPUs on the same ma-
chine, maintaing almost the same performance of the basic
search function, with a negligible overhead for merging the t
k-NN results, as far as there are enough hardware resources
to support the number of indexes involved in the process.

Multiple query : at search time, p additional permutation
prefixes from the query permutation prefix wq are gener-
ated, by swapping the position of some of its elements. The
geometric rationale is that a permutation prefix w′ differ-
ing from another permutation prefix w′′ for the swap of two
adjacent/near elements identifies an area Vw′ of the similar-
ity space adjacent/near to Vw′′ allowing to extend the search
process to areas of the search space that are likely to contain
relevant objects.

The heuristic we adopt in our experiments for swapping
permutation prefix elements consists in sorting all the ref-
erence objects pairs appearing in the permutation prefix by
their difference of distance with respect to the query object.
Then the swapped permutation prefixes are generated by
first selecting for swap those pairs of identifiers that have
the smallest distance difference.

The multiple query strategy can be parallelized by dis-
tributing the queries over different processes/CPUs on the
machine handling the index structure.

3.6 Update and merge, distributed indexing
The PP-Index data structures allows to very efficiently

merge indexes built using the same parameters into a single
index. The merge functionality supports three operations:

Supporting update operations: it is easy to add update
capabilities to an index by maintaining a few additional
data structures. Deleted objects are managed using a vector
of their identifiers. Newly inserted or modified objects are
stored in an all-in-memory secondary PP-Index used in con-
junction with the main index structure. A periodic merge
procedure is used when the secondary index reaches a given
memory occupation limit.

Indexing very large collection: the main memory occu-
pation of a prefix tree reaches its maximum during the in-
dexing process, when it has to be entirely kept in memory,
while during search, thanks to the optimization methods de-
scribed in Section 3.4, its size can be reduced by orders of
magnitude. This issue is solved building a number of smaller
partial indexes and then merging them into the final index.

Distributing the indexing process: the indexing process



of smaller indexes can be distributed of different machines,
given that the information contained in any smaller index is
completely independent of the one contained in the others.
Also the merge process can be distributed, if it is performed
in a number of steps that involve the creation of intermediate
indexes.

The merge process consists in merging the prefix trees
of the source indexes into a single prefix tree, i.e., by enu-
merating, in alphabetical order, all the permutation prefixes
contained in the source indexes.

Such enumeration can be easily produced by performing
a parallel ordered visit of all the prefix trees being merged.
If the prefix trees of the source indexes are saved to the
storage using a depth first visit, the merge process requires
only a single read of the serialized prefix trees. Obviously,
the new prefix tree is directly serialized on disk during the
permutation prefix enumeration process.

In the case of an update process, the identifiers of the
deleted objects are used to skip deleted objects during the
merge process.

The data storages are merged during the permutation pre-
fix enumeration.

4. EXPERIMENTS

4.1 The CoPhIR data set
The CoPhIR1 [5] data set has been recently developed

within the SAPIR project, and it is currently the largest
multimedia metadata collection available for research pur-
poses. It consists of a crawl of 106 millions images from the
Flickrphoto sharing website.

The information relative to five MPEG-7 visual descrip-
tors [16] have been extracted from each image, resulting in
more than 240 gigabytes of XML description data.

We have randomly selected 100 images from the collec-
tion as queries and we have run experiments using the first
million (1M), ten millions (10M), and 100 millions (100M)
images from the data set.

We have run experiments on a linear combination of the
five distance functions for the five descriptors, using the
weights proposed in [3].

Descriptor Type Dimensions Weight
Scalable Color L1 64 2

Color Structure L1 64 3
Color Layout sum of L2 80 2

Edge Histogram L1 62 4
Homogeneous Texture L1 12 0.5

Table 1: Details on the five MPEG-7 visual descrip-
tors used in CoPhIR.

4.2 Configurations and evaluation measures
We have explored the effect of using different sized R sets,

by running the experiments using three R set sizes consist-
ing of 100, 200, 500, and 1, 000 reference objects. We have
adopted a random selection policy of objects from D for the
generation of the various R sets, following [6], which reports
the random selection policy as a good performer.

In all the experiments we have used a fixed value of l = 6.

1http://cophir.isti.cnr.it/
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Figure 5: Search time w.r.t. to the size of R, for
z = 1, 000 and k = 100 (single index, single query).

We have tested a basic configuration based on the use of
a single index and the search function described in Section
3.3, i.e., an efficiency-aimed configuration.

We have then tested the use of multiple indexes , on con-
figurations using 2, 4 and 8 indexes, and also the multiple
query search strategy by using a total of 2, 4, and 8 multi-
ple queries. We have also tested the combination of the two
strategies.

We have applied the index optimization strategies de-
scribed in Section 3.4 to all the generated indexes.

On the held-out data we have tested various z val-
ues, in this paper we report the results obtained for z =
1, 000, which has produced a good trade-off in effective-
ness/efficiency.

The experiments have been run on a desktop machine run-
ning Windows XP Professional, equipped with a Intel Pen-
tium Core 2 Quad 2.4 GHz CPU, a single 1 TB Seagate
Barracuda 7,200 rpm SATA disk (with 32 MB cache), and 4
GB RAM. The PP-Index has been implemented in c#. All
the experiments have been run in a single-threaded applica-
tion, with a completely sequential execution of the multiple
index/query searches.

We have evaluated the effectiveness of the PP-Index by
adopting a ranking-based measure and a distance-based
measure [17], recall and relative distance error, defined as:

Recall(k) =
|Dk

q ∩ P k
q |

k
(2)

RDE(k) =
1

k

k∑
i=1

d(q, P k
q (i))

d(q, Dk
q (i))

− 1 (3)

where Dq is the list of the elements of D sorted by their
distance with respect to q, Dk

q is the list of the k closest

elements, P k
q is the list returned by the algorithm, and Lk

q (i)
returns the i-th element of the list L.

4.3 Results

|D| indexing prefix tree size data l′

time (sec) full comp. storage
1M 419 7.7 MB 91 kB 349 MB 2.1
10M 4385 53.8 MB 848 kB 3.4 GB 2.7
100M 45664 354.5 MB 6.5 MB 34 GB 3.5

Table 2: Indexing times (with |R| = 100), resulting
index sizes, and average prefix tree depth l′ (after
prefix tree compression with z = 1, 000).

Table 2 reports the indexing times for the various data set
sizes (|R| = 100), showing the almost perfect linear propor-
tion between indexing time and data set size. With respect
to the indexing times we note that: (i) the twelve hours
time, required to build the 100M index for the |R| = 100, is
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|R| |D|
1M 10M 100M

100 4,075 5,817 7,941
200 3,320 5,571 7,302
500 1,803 5,065 6,853
1,000 1,091 4,748 6,644

Table 3: Average z′ value, for z = 1, 000.

in line with the fourteen hours we have measured to build
a text search index on the descriptions and the comments
associated with the indexed images; (ii) this time refers to
a completely sequential indexing process, not leveraging on
the parallelization possibilities described in Section 3.6; (iii)
we have not explored the possibility of using a similarity
search data structure in order to answer l-NN query on the
R set necessary to build the permutation prefix.

The table also shows the resulting memory occupation
of the prefix tree before and after the application of the
compression strategies described in Section 3.4. The val-
ues shows how such strategies allows to reduce by orders of
magnitude the main memory requirement of the PP-Index
(at least by a factor fifty in our case) without affecting the
quality of the results.

As expected, the disk occupation is perfectly linear with
respect to the data set size, given that the disk data storage
contains only a sequential serialization of data blocks (375
bytes each one).

The last column of Table 2 reports the average depth of
the leaves of the prefix tree, after the compression. The l′

values show that the l value is not crucial in the definition
of a PP-Index, given that the only requirement is to choose
a l value large enough in order to perform a sufficient differ-
entiation of the indexed objects.

The graph of Figure 5 plots the search time with respect
to the size of R and the data set size, for k = 100 (single
index, single query). For the worst case, with |R| = 100,
we have measured an average 0.239 seconds search time on
the 100M index, with an average of less than eight thou-
sands candidates retrieved from the data storage (see Table
3). The search time decreases in a direct proportion the de-
crease of the z′ value, which follows from the more detailed
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Figure 7: Multiple index search strategy on the
100M index, using |R| = 1, 000 and z = 1, 000.

partitioning of objects into the permutation prefix space, de-
termined by the increase of |R|. Even though the z′ value
increases as D gets larger, the increase of z′ is largely sub-
proportional to the growth of D: when D grows by a factor
100, z′ increases at worst by a factor 6.6.

A possible issue with the z′ value is that it is not so close
the z value, and it has potentially no limits. However, dur-
ing the experiments the z′ value has never been a critical
factor with respect to efficiency: we have not observed any
extreme case in which z′ >> z, and the z′ value has never
required more than a single read operation from disk to re-
trieve all the candidate objects (e.g., retrieving 10, 000 data
blocks from the data storage involves reading only 3.7 MB
from disk). We leave to future works an investigation of the
relations of the z value with the other parameters.

Figure 6 shows the effectiveness of the PP-Index with re-
spect to the size of the R and the data set size, using a
single-index/single-query configuration, for k = 100.

Effectiveness values improve with the increase of |R| for
the 10M and 100M data sets, while the 1M data set shows
the inverse tendency. This confirms the intuition that larger
data sets requires a richer permutation prefix space (gener-
ated by a larger set R) to better distribute their elements,
until a limit is reached and objects became too sparse in the
permutation prefix space and the effectiveness worsen.

The maximum-efficiency (0.210 seconds answer time) con-
figuration of PP-Index has obtained a 18.3% recall and 8.1%
RDE on the 100M data set, for k = 100.

Figures 7 and 8 show respectively the effects on effective-
ness of the multiple index and multiple query strategies, for
three k values.

With respect to the multiple index strategy we have mea-
sured a great improvement on both measures reaching a 74%
recall (four times better than the single-index case) and a
0.7% RDE (eleven times better) for the eight index case.

For the above mentioned eight index configuration we have
measured an average 1.72 seconds search time, for a com-
pletely sequential search process. The four index configura-
tion allows to reach a 52% recall (67% for k = 10) and just
a 2.2% RDE with a sub-second answer time.

It is relevant to note that, given the small memory occu-
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Figure 8: Multiple query search strategy on the
100M index, using |R| = 1, 000 and z = 1, 000.

pation of the compressed prefix tree, we have been able to
simultaneously load eight 100M indexes into the memory,
thus practically performing search on an 800 million objects
index, though with replicated data, on a single computer.

The multiple query strategy also shows relevant improve-
ments, though of minor entity with respect to the multiple
index strategy. This is in part motivated by the fact that
many of the queries, generated by permuting the elements
of the original query permutation prefix, actually resulted
in retrieving the same candidates of other queries2. On the
100M index, for |R| = 1, 000, on the average, 1.92 distinct
queries to be effective in retrieving candidates for the two
queries configuration, 3.18 queries for the four queries config-
uration, and 5.25 queries for the eight queries configuration.

Figure 9 shows the effectiveness of the combined multi-
ple query and multiple index search strategies, using eight
queries and eight indexes, for |R| = 1, 000. We have mea-
sured an average search time of 12.45 seconds, for a fully
sequential search process. This setup produces almost exact
results, with a recall > 97% and a RDE < 0.01%.

We have measured, on the average, a total of 370, 000 data
blocks retrieved from the data storage among the average
44.5 queries being effectively used to access the data storages
for each original query. Although this z′ value is relatively
high, it just represents the 0.3% of the whole collection. This
is a very low value considering, for example, that Lv et al.
[14], proposing a multiple query strategy for the LSH-Index,
have measured a percentage of distance computations with
respect to the data set size, in order to obtain a 96% recall,
of 4.4% on a 1.3 million objects data set and of 6.3% on a
2.6 million objects data set.

4.4 Comparison experiments
It is a hard task to run comparative experiments on novel

and very large data sets, such as CoPhIR due to many rea-
sons: (i) lack of previous results on the same data set; (ii)
lack of a publicly available implementation for many of the
methods involved in the comparison; (iii) when an imple-
mentation is available, it is typically not designed to scale

2Such candidates are read only once from the data storage.
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Figure 9: Combined multiple query and multiple in-
dex strategies, using eight queries and eight indexes,
using |R| = 1, 000 and z = 1, 000.

to very large data sets, but just a proof of concept; (iv)
moreover, the implementation is usually designed to take in
input only a specific data type/format, which makes harder
to port the application to different data types.

For this reasons we have currently limited our comparison
to replicating two experiments that, among the others, are
most closely related to our work: Batko et al. [2], which have
run experiments using an early release of the CoPhIR data
set, and Amato and Savino [1], whose proposal is the most
closely related to our own.

Batko et al. [2] have run experiments on the CoPhIR data
set, with data sets size of 10 and 50 millions images3. They
reports an 80% recall level for 100-NN queries on both col-
lection. For the 50M they test both a 80-CPU infrastructure
with 250 GB RAM, keeping all the index data in memory,
and a 32-CPU infrastructure with 32 disks storing the index
data, obtaining a 0.44 seconds answer time for the memory-
based solution and 1.4 seconds for the disk-based one.

The PP-Index could achieve a better performance than
[2] by distributing the search process, yet using much less
resources than [2]. We have simulated the distribution of the
eight indexes on eight distinct computers, each one using two
processes executing four queries each, measuring the query
answer time as the time of the slowest of the 16 processes
plus the time to merge the 16 100-NN intermediate results.
We have measured an average 1.02 second answer time to
obtain > 95% recall on the 50M data set.

Amato and Savino [1] test their method on the Corel data
set4. The data set consists of 50, 000 32-dimensions color
HSV histograms extracted from the images. The distance
function used to compare the histograms is L1.

Replicating [1], we have selected 50 random objects as
queries, and indexed the rest of the collection. Given the
small size of the data set, we have set |R| = 50. The time
required for generating the PP-Index is 4.9 second, with a

3We suppose they use the same linear combination of visual
descriptors of our experiments, given that two authors are
also the authors of [3], from which we take our weights.
4http://kdd.ics.uci.edu/databases/CorelFeatures/
CorelFeatures.html



disk occupation of 13 MB and a memory occupation of 450
kB. In [1] the index structure generated by setting ki = 100
is estimated to require 20 MB. This value does not include
the HSV histograms, which are required to reorder the re-
trieved objects by the true similarity.

The maximum recall level obtained in [1] for k = 50 is
about 54%, requiring to read 2.4 MB of data from disk (600
blocks of 4 kB size). The PP-Index, in a single-index/four-
query configuration (z = 500), obtains a 89.6% recall, re-
quiring to read just 900 kB of data from disk, in four se-
quential reads. The single-index/single-query configuration
obtains a 66% recall.

5. CONCLUSIONS
We have introduced the PP-Index, an approximate simi-

larity search data structure based on the use of short per-
mutation prefixes. We have described the PP-Index data
structures and algorithms, including a number of optimiza-
tion methods and search strategies aimed at improving the
scalability of the index, its efficiency, and its effectiveness.

The PP-Index has been designed to take advantage of the
relatively static nature one could expect from very large col-
lections. However, as we have described, it is easy to support
fast update operations.

We have evaluated the PP-Index on a very large and high-
dimensional data set. Results show that it is both efficient
and effective in performing similarity search, and it scales
well to very large data sets.

We have shown how a limited-resources configuration ob-
tains good effectiveness results in less than a second, and
how almost exact results are produced in a relatively short
amount of time. The parallel processing capabilities of the
PP-Index allow to distribute the search process in order to
further improve its efficiency.

The comparison with experimental results published for
two closely related method, which are among the top-
performers on the task, shows that the PP-Index outper-
forms the compared methods, both in efficiency and effec-
tiveness. Only one [2] of the works we compare with uses a
data set of a size comparable to our largest one. We plan to
extend the comparison with some of the competing methods,
by porting them on the larger data set sizes.

The PP-Index has been already used to build a performing
similarity search system5 [10].

There are many aspect of our proposal that are worth to
be further investigated. For example, the R set is a crucial
element of the PP-Index. We plan to study element selec-
tion policies alternative to the random policy, e.g., selecting
centroids of clusters of D, or the most frequent queries from
a query log.
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