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ABSTRACT
We studied decentralized search in information networks and
focused on the impact of network clustering on the findabil-
ity of relevant information sources. We developed a multi-
agent system to simulate peer-to-peer networks, in which
peers worked with one another to forward queries to tar-
gets containing relevant information, and evaluated the ef-
fectiveness, efficiency, and scalability of the decentralized
search. Experiments on a network of 181 peers showed that
the RefNet method based on topical similarity cues outper-
formed random walks and was able to reach relevant peers
through short search paths. When the network was extended
to a larger community of 5890 peers, however, the advantage
of the RefNet model was constrained due to noise of many
topically irrelevant connections or weak ties.

By applying topical clustering and a clustering exponent
α to guide network rewiring, we studied the role of strong
ties vs. weak ties, particularly their influence on distributed
search. Interestingly, an inflection point was discovered for
α, below which performance suffered from many remote con-
nections that disoriented searches and above which perfor-
mance degraded due to lack of weak ties that could move
queries quickly from one segment to another. The inflec-
tion threshold for the 5890-peer network was α ≈ 3.5. Fur-
ther experiments on larger networks of up to 4 million peers
demonstrated that clustering optimization is crucial for de-
centralized search. Although overclustering only moderately
degraded search performance on small networks, it led to
dramatic loss in search efficiency for large networks. We ex-
plain the implication on scalability of distributed systems
that rely on clustering for search.

Categories and Subject Descriptors
H.3.4 [Information storage and retrieval]: Systems and
Software—Distributed systems, Information networks
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1. INTRODUCTION
Information exists in many distributed networked envi-

ronments, where a centralized repository is hardly possible.
In a peer-to-peer (P2P) environment, individual peers host
separate collections and interact with one another for in-
formation sharing and retrieval [18], exemplifying a large,
dynamic, and heterogeneous networked information space.
Efficient network navigation is critically needed in today’s
distributed environments, e.g., to route queries to relevant
information sources or to deliver information items to peers
of interest.

Research has found clustering useful for information re-
trieval. The Cluster Hypothesis states that relevant docu-
ments are more similar to one another than to non-relevant
documents and therefore closely related documents tend to
be relevant to the same requests [29]. Traditional IR re-
search utilized document-level clustering to support exploratory
searching and to improve retrieval effectiveness [12, 9, 14].
Distributed information retrieval, particularly unstructured
peer-to-peer IR, relied on peer-level clustering for better de-
centralized search efficiency. Topical segmentation based
techniques such as semantic overlay networks (SONs) have
been widely used for efficient query propagation and high
recall [3, 7, 17, 8]. Hence, overall, clustering was often re-
garded as beneficial whereas the potential negative impact
of clustering (or over-clustering) on retrieval has rarely been
scrutinized.

Research on complex networks indicated that a proper
degree of network clustering with some presence of remote
connections has to be maintained for efficient searches [15,
25, 30, 16, 24, 6]. Clustering reduces the number of “irrele-
vant” links and aids in creating topical segments useful for
orienting searches. With very strong clustering, however,
a network tends to be fragmented into local communities
with abundant strong ties but few weak ties to bridge re-
mote parts [10]. Although searches might be able to move
gradually to targets, necessary “hops” become unavailable.

We refer to this phenomenon as the Clustering Paradox,
in which neither strong clustering nor weak clustering is de-



sirable. In other words, trade-off is required between strong
ties for search orientation and weak ties for efficient traver-
sal. In Granovetter’s terms, whereas strong ties deal with
local connections within small, well-defined groups, weak ties
capture between-group relations and serve as bridges of so-
cial segments [10]. The Clustering Paradox, seen in light of
strong ties and weak ties, has received attention in complex
network research and requires further scrutiny in a decen-
tralized IR context.

In this study, we examined network characteristics and
search optimization in a fully decentralized retrieval context.
We focused on the effect of network clustering, i.e., strong
ties vs. weak ties, on the efficient findability of relevant in-
formation sources. Outcome of this research will provide
guidance on how an information network can be structured
or self-organized to better support efficient discovery of rel-
evant information sources that are highly distributed.

2. RELATED WORK
In an open, dynamic information space such as a peer-

to-peer network, people, information, and technologies are
all mobile and changing entities. Identifying where relevant
collections are for the retrieval of information is essential.
Without global information, decentralized methods have to
rely on local intelligence of distributed peers to collectively
construct paths to desired targets.

2.1 P2P Information Retrieval
In some respect, decentralized IR in networks is concerned

with the cost of traversing a network to reach desired infor-
mation sources. Unstructured or loosely structured peer-to-
peer networks represent a connected space self-organized by
individuals with local objectives and constraints, exhibiting
a topological underpinning on which all can collectively scale
[1, 18].

While federated IR research has made advances in en-
abling searches across hundreds of repositories, a P2P net-
work usually has a much larger number of participants who
dynamically join and leave the network, and only offer idle
computing resources for sharing and searching [34]. Usually
there is no global information about available collections;
seldom is there centralized control or a central server for
mediating [18, 8].

Recent years have seen growing popularity of peer-to-
peer (P2P) networks for large scale information sharing and
retrieval [18]. With network topology and placement of
content tightly controlled, structured peer-to-peer networks
have the advantage of search efficiency [27, 21, 5, 19, 26].
However, their ability to handle unreliable peers and a tran-
sient population was not sufficiently tested. Unstructured
overlay systems work in an indeterministic manner and have
received increased popularity for being fault tolerant and
adaptive to evolving system dynamics [18, 8].

As the peer-to-peer paradigm becomes better recognized
for IR research, there have been ongoing discussions on the
applicability of existing P2P search models for IR, the ef-
ficiency and scalability challenges, and the effectiveness of
traditional IR models in such environments [33]. Some re-
searchers applied Distributed Hashing Tables (DHTs) tech-
niques to structured P2P environments for distributed re-
trieval and focused on building an efficient indexing struc-
ture over peers [5, 19, 26]. Others, however, questioned the
sufficiency of DHTs for dealing with high dimensionality of

IR in dynamic P2P environments [3, 18, 17]. For informa-
tion retrieval based on a large feature space, which often
requires frequent updates to cope with a transient popula-
tion, it is challenging for distributed hashing to work in a
traffic- and space-efficient manner.

2.2 Clustering and Decentralized Search
In recent years, topical segmentation based techniques

such as semantic overlay networks (SONs) have been widely
used for P2P IR, in which peers containing similar informa-
tion formed semantic groups for efficient searches [3, 7, 28,
17, 20]. Clustering, often in the form of hierarchical seg-
ments, was the key idea for bringing similar peers together
in a more organized way so that topically relevant peers or
information sources can be quickly identified. Existing P2P
IR research, however, often assumed the unitary benefit of
clustering and rarely scrutinized its potential negative im-
pact on decentralized search.

Research on complex networks has found that efficient
searching in some properly clustered networks is more promis-
ing than in others. Kleinberg (2000) studied decentralized
search in small world using a two dimensional model, in
which peers had rich connections with immediate neighbors
and sparse associations with remote ones [15]. The proba-
bility pr of connecting to a neighbor beyond the immediate
neighborhood was proportional to r−α, where r was the topi-
cal (search) distance between the two and α a constant called
clustering exponent1 . It was shown that only when cluster-
ing exponent α = 2, search time (i.e., search path length)
was optimal and bounded by c(log N)2, where N was the
network size and c was some constant [15].

Figure 1: Network Clustering

The clustering exponent α, as shown in Figure 1, describes
a correlation between the network (topological) space and
the search (topical) space [15, 6]. When α is large, weak ties
(long-distance connections) are rare and strong ties domi-
nate [10]. The network becomes highly segmented. When α

is small, connectivity has little dependence on topical close-
ness – local segments become less visible as the network is
built on increased randomness. In this way, the clustering
exponent α influences the formation of local clusters and
overall network clustering.

It was further demonstrated that optimal value of α for
search depends on dimensionality of the search space. Specif-

1The clustering exponent α is also known as the homophily
exponent [30, 24].



ically, when α = d on a d-dimension space, decentralized
search is optimal. Further studies conducted by various re-
search groups have shown consistent results [30, 16, 24, 6].
These findings require closer scrutiny in an IR context where
some assumptions might be voilated, e.g, when orthogonal
feature dimensions cannot be precisely defined.

3. APPROACH OVERVIEW
We have developed a decentralized search architecture

named RefNet for finding distributed information sources
in a simulated networked environment. We relied on multi-
agent systems to study the problem of decentralized search
and focused on the impact of clustering in an information
retrieval context. Similar agent-based approaches have been
adopted by various research groups to study efficient infor-
mation retrieval, resource discovery, service location, and ex-
pert finding in decentralized peer-to-peer environments [25,
32, 36, 35]. One common goal was to efficiently route a query
to a relevant agent or peer2. We illustrate the conceptual
model in Figure 2 and elaborate on major components.

Assume that agents or peers, representatives of informa-
tion seekers, providers (sources), and mediators, reside in
an n dimensional space. An agent’s location in the space
represents its information topicality. Therefore, finding rel-
evant sources for an information need is to route the query
to agents in the relevant topical space. To simplify the dis-
cussion, assume all agents can be characterized using a two-
dimensional space. Figure 2 visualizes a 2D representation
of the conceptual model. Let agent Au be the one who
has an information need whereas agent Av has the relevant
information. The problem becomes how agents in the con-
nected society, without global information, can collectively
construct a short path to Av. In Figure 2, the query tra-
verses a referral chain Au → Ab → Ac → Ad → Av to reach
the target. While agents Ab and Ad help move the query
on the horizontal dimension, agent Ac primarily works on
the vertical dimension and has a remote connection for the
query to jump.

Figure 2: Conceptual Model of RefNet. A circle
represents an agent or peer. The black/white seg-
ments of each circle illustrate agent representation
according to its topical dimensions (coverage).

3.1 Local Indexing & Classification
For decentralized search, direction matters. Pointing to

the right direction to the relevant topical space means the

2In this paper, the terms agent and peer are exchangeable.

agents or peers have some ability to differentiate items on
certain dimensions. For instance, one should be able to tell
if a query is related to mathematics or not in order to route
the query properly on that dimension. Each agent derives
clusters or major topics from its local information collection
through document clustering3. The local index provides the
basis of an agent’s “knowledge” and enables abstraction of
queries. Now, when a query is routed to it, the agent will be
able to tell what it is about and assign a label to it through
query classification based on identified clusters [23]. The
label associated with the query serves as a clue for potential
referral directions.

3.2 Neighbor Selection
Pointing to the right direction also requires that each

agent or peer knows which neighbor(s) should be contacted
given a labeled query. Therefore, there should be a mech-
anism of mapping classification output to a potential good
neighbor. By good neighbor, we mean agents on a short path
to the targeted information space – either the neighbor is
likely to have a relevant information collection to answer
the query directly or in a neighborhood closer to relevant
targets. Agents explore their neighborhoods through inter-
actions and develop knowledge of who serves or connect to
what types of information collections.

3.3 Network Clustering and Rewiring
Network topology plays an important role in decentralized

search. Topical segmentation based techniques such as se-
mantic overlay networks (SONs) have been widely used for
efficient peer-to-peer information retrieval [8]. Through self-
organization, similar peers form topical partitions, which
provide some association between the topological (network)
space and the topical space to guide searches. Research has
found that such an association, in the form of a cluster-
ing exponent α that defines an inverse relationship between
connectivity probability and topical distance, is critical for
efficient navigation in networks without global information
[15, 16, 6]. The RefNet framework has a mechanism for
clustering-based rewiring, which influences the balance of
strong ties vs. weak ties for efficient routing, as illustrated
in Figure 1.

4. ALGORITHMIC DETAIL
In the previous section, we proposed and described a con-

ceptual model for decentralized search of relevant informa-
tion sources. Figure 3 illustrates how various components
work together within each agent. This section will elaborate
on specific algorithms used in the RefNet model for decen-
tralized search.

We used the Vector-Space Model (VSM) for information
(document and query) representation [2]. Given that infor-
mation is highly distributed, a global thesaurus was not as-
sumed. Instead, each agent had to parse information items
it individually had and produced a local thesaurus. This
thesaurus was then used to represent each information item
using the TF*IDF (Term Frequency * Inverse Document

3Note that document clustering refers to mining a peer’s lo-
cal collection of documents to identify significant topics and
topical overlap whereas network clustering is to determine
how similar peers connect to each other to form groups and
is the main focus of this study.



Figure 3: Agent Internal View

Frequency) weighing scheme. Note that for the DF compo-
nent of TF*IDF, values were computed within the informa-
tion space of an agent. This was to follow the assumption
that global information was not available to individuals and
it is impossible to aggregate all documents in the network
to get global DF values.

Provided TF*IDF representation, pair-wise similarity val-
ues were computed based on the Cosine coefficient that mea-
sures cosine of the angle between a pair of vectors [2]. For
document clustering, we used the well-known K-means method
based on cosine similarities [11].

Section 4.1 elaborates on a centroid-based method for
query classification. Section 4.2 introduces a single-perceptron
neural network (NN) algorithm for neighbor relevance pre-
diction given query classification output. Section 4.3 dis-
cusses the formula for rewiring based on a clustering expo-
nent α. For comparison, we also adopted a Random Walk
model. The only difference was that in Random Walk, an
agent simply ignored the neighbor selection step in Sec-
tion 4.2 and forwarded a query to a random neighbor.

4.1 Centroid-based Query Classification
Given limited information each agent has, many widely

appreciated classification methods, such as the Support Vec-
tor Machine (SVM), require a fair amount of training data
and are therefore not applicable [23]. In this study, we used
a simple centroid-based approach that produced competitive
decentralized search results on a benchmark news collection
[13].

Suppose an agent had k identified clusters/classes. Each
class, c ∈ [c1, c2..ck], contained a set of documents [d1, d2..dn].
Let Wd|i denote the weight of the ith term in document d.

The weight of the ith term in class centroid c was computed
by:

Wc|i =

Pnc

d=1
Wd|i

nc

(1)

where nc was the number of documents in class c. To
classify a query, the query was first locally vectorized using
the TF*IDF method and then compared to each class using
the cosine similarity measure. The relevance of the classes
to the query was sorted using the similarity scores.

4.2 Neural-Net for Neighbor Prediction
After query classification, the relevance (or similarity) of

a query to each class was known. The topical relevance
scores were then used to infer which neighbor was the best
neighbor to contact if the current agent did not have rele-

vant information. We assumed that the association between
the classification output (a vector of topics’ relevance scores)
and the prediction (a vector of neighbors’ relevance scores)
is linear. A single perceptron neural network (NN) is suit-
able for the estimation of linear associations [23]. In this
study, we implemented a feedforward perceptron NN with
backprop and a sigmoid signal transfer function (please re-
fer to [22] for details). To initialize learning, agents interact
with their neighbors and learn about their topicality by us-
ing local documents as queries.

4.3 Peer Clustering and Network Rewiring
We introduced a clustering exponent α to rewire (recon-

nect peers through self-organization) a network and studied
its impact on decentralized search. First, for each peer, some
random peers were picked and added to its existing neigh-
bors. Then, the current peer (i) queried all these neighbors
(j) to determine their topical distance rij by sending them
local documents as queries. Finally, the following connectiv-
ity probability function was used by the peer to decide who
should remain as neighbors:

Pij ∝ r
−α
ij (2)

where α is the clustering exponent (or homophily expo-
nent) and rij the pairwise topical distance. The finalized
neighborhood size depended on the number of neighbors be-
fore rewiring. With a positive α value, the larger the topical
distance, the less likely two peers will connect. Large α val-
ues lead to a highly clustered network while small values
produce many topically remote connections or weak ties.

5. EXPERIMENTAL SETUP
We constructed a peer-to-peer network by using a large

scholarly communication data collection and treating each
unique scholar as a peer, who possessed a local collection
of documents published by the scholar (author). The task
involved finding a peer with relevant topic(s) in the net-
work, given a query. Applications of this framework include,
but are not limited to, distributed IR, P2P resource discov-
ery, expert location in work settings, and reviewer finding in
scholarly networks. However, we focused on the general de-
centralized search problem in large networked environments.

5.1 Data Collection
Data used in the experiments were from the TREC Ge-

nomics track 2004 benchmark collection, a Medline subset
of about 4.5 million citations from 1994 to 2003. The data
collection included metadata about publication titles, ab-
stracts, and authors. We chose six scholars in the medi-
cal informatics domain and identified their direct co-authors
(1st degree) who published 10 to 80 articles in the TREC
collection, resulting in a small network of 181 peers. Then
the network was extended to the 2nd degree (co-authors’ co-
authors) to total 5890 peers for experiments on a larger scale.
Both networks had a diameter (the longest of all shortest
pairwise paths) of 8 and roughly followed a power-law de-
gree distribution with irregularities on the tail. For each
peer, which represented a scholar/author, all articles (with
titles and abstracts) authored or co-authored by the scholar
were loaded as the local information collection.



5.2 Relevant Peers and Tasks
Relevant peers or information sources are considered few,

if not rare, given a particular information need. To opera-
tionalize it, we defined a relevant peer as one of those who
have the most similar information to a query. Specifically,
we considered those scholars whose topical (cosine) similar-
ity to a given query was ranked above the fifth percentile.
Hence, for evaluation purposes, peers were sampled to esti-
mate a threshold similarity score for each query, which was
then used in experiments to judge whether a relevant peer
had been found. We retrieved citations to articles published
in the Journal of the American Medical Informatics Associa-
tion (JAMIA) in the Genomics track collection and used all
(498) articles with titles and abstracts as simulated queries.

5.3 Software and Hardware Setup
We developed a multi-agent system called RefNet, which

takes advantage of the JADE [4] agent platform and the
Weka machine learning framework [31]. RefNet has inte-
grated the two major software packages (both in Java) to
facilitate research experiments on decentralized search in
networked environments.

Experiments were conducted on a Linux cluster of 9 nodes,
each has Dual Intel Xeon e5405 (2.0 Ghz) Quad Core Proces-
sors (8 processors), 8 GB fully buffered system memory, and
a Fedora 7 installation. The nodes were connected internally
through a dedicated 1Gb network switch. The agents were
equally distributed among the 72 processors, each of which
loaded an agent container in Java, reserved 1GB memory,
and communicated to each other. The Java Runtime Envi-
ronment version for this study was 1.6.0 07.

5.4 Simulation Procedures
We ran experiments on the proposed RefNet model and

a random-walk model and conducted comparative analyses.
In both models, agents tried to forward a query to one an-
other until one of the following conditions was met: 1) a rel-
evant peer was found, or 2) the search path length reached
its defined maximum. When concluded, the query would fol-
low the search path in the reverse order back to the querying
peer. Multiple runs were conducted in each parameter con-
figuration. In each run, the 498 queries were submitted to
the network one after another.

After experiments on initial co-authorship networks, we
introduced the clustering exponent α to rewire the networks
and studied its impact on decentralized search. Twenty ran-
dom peers were added to each existing neighborhood, which
was finalized based on the connectivity probability function
defined in Section 4.3. It was further required that the final
neighborhood size, for each peer, was in the range between
3 and 100.

5.5 Evaluation
The dependent variables of this study were effectiveness

and efficiency of decentralized searches. We used completion
rate of all tasks to measure retrieval effectiveness, Rc = NS

NT
,

where NT is the total number of queries and NS the number
of them with a relevant peer found within given parameter
limits.

For efficiency, the maximum search path length Lmax was
controlled in each experiment and the actual path length of
each task was measured. We computed average length of all

searches in each experiment run, i.e., L̄ =
P

N
i=1

Li

NT
, where

Li was the path length of the ith query and NT the total
number of queries. With shorter path lengths, the entire
distributed system is considered more efficient given fewer
peers involved in computation.

For scalability, we ran experiments on different network
sizes: 181 peers and 5890 peers. Effectiveness vs. efficiency
patterns were compared. Various clustering exponent α val-
ues were controlled in experiments to examine its impact on
the above variables. We further investigated the scaling of
clustering impact in very large networks of up to 4 million
peers based on synthetic data.

6. EXPERIMENTAL RESULTS
In this section, we present effectiveness and efficiency re-

sults on initial and rewired networks of 181 and 5890 peers,
focus on the impact of clustering on decentralized search,
and examine how the impact of network clustering scales.

6.1 181-Peer Network
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Figure 4: Completion Rate (Y) vs. Path Length (X)
on 181 Peers

Figure 4 shows experimental results on 181-peers net-
works. With the initial network (dotted lines), the RefNet
model consistently outperformed random walks, especially
within small path lengths. For instance, within two hops,
RefNet already achieved a completion rate of more than 50%
while random-walk was still at 20%. Increasing the path
length helped both models but neither reached a completion
rate higher than 90%, suggesting that there were particular
characteristics of the initial network that disoriented some
searches after a long path.

Clustering analysis, as plotted in Figure 5 (a) on log/log
coordinates, showed that the association between connec-
tivity frequency and topical distance has a power-law region
(in the middle) with irregularities. We believe that RefNet
searches were well guided by the network in most instances
(when routed through peers with regular clustering-guided
connections) but was lost in others (disoriented in regions
where irregular connections dominated).

To demonstrate potential utility of network clustering, we
rewired the network (throug self-organization) based on the
connectivity probability function described in Section 4.3.
Experimental results with clustering exponent α = 3.0 are
shown as solid lines in Figure 4, in which proper network
clustering better guided RefNet search and further improved
the results – a higher than 95% completion rate was already
achieved at max search path length 20 (Figure 4 (a)) or
average path length 5 (Figure 4 (b)).
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Figure 5: Initial Network Clustering: Connectivity
(Y) vs. Topical Distance (X). Compare to Figure 1.

6.2 5890-Peer Network
On the initial 5890-peer network, experimental results in-

dicated that the RefNet model had limited advantage over
random walk, as shown by dotted lines in Figures 6 (a) and
(b). Further analysis revealed that the network was insuf-
ficiently clustered. As shown in Figure 5 (b) on log/log
coordinates, the correlation between connectivity and topi-
cal distance departed quite a bit from a power-law function
(linear on log/log) with which efficient searches can be well-
guided [15, 16, 24]. The curve suggests that there were too
many topically remote connections that disoriented searches
as peers were more likely to connect to topically irrelevant
neighbors.
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Figure 6: Completion Rate (Y) vs. Path Length (X)
on 5890 Peers

Again, we used the method discussed in Section 4.3 to
fine tune the 5890-peer network for a proper level of clus-
tering. As shown by solid lines in Figure 6, given clustering
exponent α = 4.0, the RefNet model performed much better
and achieved above 90% completion rate within a max path
length of 40 (Figure 6 (a)) and with an average path length
of about 10 (Figure 6 (b)).

6.3 Impact of Clustering
In the results above, we have demonstrated that some

level of network clustering improved decentralized search of
relevant peers or information sources. It is unclear yet how
much clustering is enough or how much is too much. Setting
max search path length at 10, experiments based on various
clustering exponent α values on the 5890-peer network pro-
duced results shown in Figures 7 (a) and (b).

Given a constant max search path length at 10, Figure 7
(a) shows completion rate vs. clustering exponent α results,
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Figure 7: Impact of Clustering Exponent α (X)

in which best completion rate was achieved at α ≈ 3.5,
which also enabled optimal search path length in Figure 7
(b). Both smaller and larger α values resulted in less opti-
mal searches. As discussed, smaller α values produced less
visible topical segments and more remote connections that
disoriented searches. Larger α values, on the other hand,
led to an over-clustered and fragmented network without
sufficient weak ties for searches to move fast.

This result, obtained in a decentralized information re-
trieval context, is consistent with findings from previous
research on complex networks with simpler representations
of the search (topical) space [15, 16, 24]. The Clustering
Paradox suggests that when we use clustering-based tech-
niques (e.g., topical segmentation and semantic overlay in
P2P networks), some balance between strong ties and weak
ties should be maintained.

Previous research also suggested that the optimal cluster-
ing exponent (the absolute value) is equal to the number of
dimensions that describe topical distances among peers [15,
16]. We observed that the 181-peer network was optimal at
α ≈ 3.0. With a larger number of peers and more diverse
contents, the 5890-peer network seemed to require a little
higher dimensionality to accurately depict all pairwise rela-
tionships, thus a slightly larger optimal clustering exponent
α ≈ 3.5.

6.4 Scaling of Clustering Impact
One may argue that the impact of network clustering on

decentralized search is small especially in the case of over-
clustering – in Figure 7, for instance, there were roughly 10%
loss in completion rate (effectiveness) and an increase of 1
in average search path length (efficiency) when α increased
from 3.5 (optimum) to 5.0. Nonetheless, we will show in very
large networks, the Clustering Paradox has a huge impact
on search efficiency.

Relying on a 2-dimensional network model used in previ-
ous research [15, 16, 6], we ran decentralized search simu-
lations on various network size scales N ∈ [104, .., 4 × 106]
and with clustering exponent α ∈ [0, 4] (see [15] for detailed
configurations). Results indicated that while optimum α ap-
proaches 2 with increased network size, there is a dramatic
constrast between optimal clustering and overclustering in
very large networks (see steeper curves in log-transformed
Figure 8).
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Figure 8: Scaling of Clustering Impact (100% com-
pletion rate). Note that search path length (Y) is
log transformed.

On smaller scales (e.g., in the 104-peer network), as shown
in Figure 8, optimization curves are much flatter. Overclus-
tering in small networks only resulted in a moderate increase
of search path length. However, in the network of four mil-
lion peers, as shown in Figure 8, when α increased from 2
(nearly optimum) to 4, the average search path length in-
creased from roughly 80 to more than 700 – a huge loss in
search efficiency. Seen in this light, methods achieving good
results on small or medium network sizes will not necessarily
function well on large scales. Little performance disadvan-
tage in small networks might become too big to ignore in
large networks. Scrutiny of the Clustering Paradox for net-
work optimization is crucial for scalability of decentralized
search.

7. CONCLUSION
In this paper, we presented a multi-agent framework for

information retrieval in distributed networked environments
and focused on the impact of network clustering on decen-
tralized search. Particularly, we studied search optimization
in the face of the Clustering Paradox, in which either too lit-
tle or too much clustering leads to degraded findability of
relevant information sources. Experiments showed that the
similarity based RefNet model outperformed random walks
on the initial 181-peer network and did not show much ad-
vantage on the initial 5890-peer network, which was shown
to have too many topically remote connections or weak ties
that disoriented searches.

By introducing a clustering exponent α to guide network
rewiring, we studied the impact of clustering and found that
a balanced level of network clustering produced optimal re-
sults. Particularly, in the network of 5890 scholars, relevant
peers were best findable at α ≈ 3.5. Smaller α values re-
sulted in less visible topical segments and many remote con-
nections that disoriented searches. Larger α values, on the
other hand, led to an over-clustered and fragmented network
with rich strong ties but scant weak ties for searches to move
fast.

Further experiments on various larger networks of up to
4 million peers demonstrated that clustering optimization

is crucial for decentralized search. Although overclustering
only moderately degraded search performance on small net-
works, it led to dramatic loss in search efficiency for large
networks. So did weak clustering. Search methods that work
well on small scales might function badly in large networks,
in which little performance disadvantage in small networks
might become too big to ignore. As many research rely on
clustering for decentralized search (e.g., in semantic over-
lay networks for P2P), scrutiny of the Clustering Paradox is
crucial for scalability of existing methods.
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