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ABSTRACT

Static index pruning methods have been proposeddoce size

of the inverted index of information retrieval sysis. The goal is

to increase efficiency (in terms of query respotisge) while
preserving effectiveness (in terms of ranking dypliCurrent
state-of-the-art approaches include the term-aenptuning
approach and the document-centric pruning approattile the
term-centric pruning considers each inverted listependently
and removes less important postings from each teddist, the
document-centric  approach  considers  each
independently and removes less important terms fieach
document. In other words, the term-centric approdoks not
consider the relative importance of a posting imparison with
others in the same document, and the documenticamproach
does not consider the relative importance of a ipgsin

comparison with others in the same inverted lise Tonsequence

is less important postings are not pruned in soto@t®ons, and
important postings are pruned in some other sinati We

propose a posting-based pruning approach, which ais

generalization of both the term-centric and docurecentric
approaches. This approach ranks all postings aegskenly a
subset of top ranked ones. The rank of a postimem#s on
several factors, such as its rank in its inverted its rank in its
document, its weighting score, the term weight treldocument
weight. The effectiveness of our approach is \edlifiby
experiments using TREC queries and TREC datasets.

Categories and Subject Descriptors
H.3.3 [Information Storage and Retrieval]: Information Search
and Retrieval +ndex pruning, Search process.
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Algorithms, Performance, Experimentation.
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1. INTRODUCTION

Text information retrieval systems are based omuaerted index
to efficiently process queries. The most importgatt of an
inverted index is its inverted file, a file thatntains posting list
for each term in the text collection [1]. In gereeaposting list of
a term contains its posting entries (or index st each in the
form of <doclID, freg>, wheredocID is the ID of a document that
contains the term, arfdeq is its frequency in the document. For a
multi-keyword query, all posting lists of querynes are retrieved
from the inverted file, and document scores areimetated for
each document in the union of the posting listssebdaon a
specified weighting scheme. A list of documentsdascending
order of rank scores is presented to the user.

For a large text corpus, the inverted file is taogé to fit into
memory of the search server. Thus, query procesavmjves a
lot of disk access, which increases query resptimee For a text
information retrieval system that has to processuslnds of
queries per second, it is critical to improve querpcessing
performance.

Beside the parallel query processing approachubes a cluster
of servers to process queries, the index compresgiproach is
widely used. The lossless compression approach dses
compression techniques to compress index datekiheeducing
the volume of data transferred from disk. The casped index
data is then decompressed in memory, and querepracessed
based on the original index information. Common adat
compression technique used in information retriesytems is
variable length data coding [2]. In contrast, log®mpression
approach opts for keeping only important informatimmn the
index, discarding other less important informati@i[5][6][8]
[11]. Thus ranking quality of queries processededasn a lossy
compressed index (i.e. a pruned index) might bectdtl.

In practice, a lossless compression technique eaapblied on a
lossy pruned index to further reduce index sizeaddition, both
types of compressed/pruned index can be used lyf@mation

retrieval system: a lossy pruned index is usednewar a large
portion of user queries, and a lossless compreissik is used
only if result quality is significantly hurt [4].

In this work, we concentrate on lossy index comgioes Current
state-of-the-art approaches include term-centrimipg [5] and
document-centric pruning [6]. While term-centriziping method
considers each inverted list independently and vesoless
important postings from each inverted list, docut@mtric



pruning considers each document independently amoves less
important terms from each document. In other wotlds, term-
centric method does not consider the relative ingmme of a
posting in comparison with others in the same damtmand
document-centric method does not consider the ivelat
importance of a posting in comparison with otherghe same
inverted list. The consequence is less importastipgs are not
pruned in some situations, and important postimgspauned in
some other situations.

We propose a posting-based pruning approach, wischa
generalization of both the term-centric and docurecentric
approaches. Our approach ranks all postings andskerly a
subset of the top ranked ones, removing the otNéesconsider a
couple of factors when ranking a posting, sucht@sank in its
posting list, its rank in its document, its weiglati score, the
normalized weight of the term, and the normalizezgit of the
document. Our experiments based on TREC queriesT&ELC
datasets [22] show that
outperforms both the term-centric and documentraentethods.

2. RELATED WORK

Lossless index compression techniques are welliestudfor

example, see Witten et al. [2][3]. Those technigass mainly

based on the fact that the frequencies of termgdcuments,
which are stored in the inverted index, follow aewkd

distribution. In that case, variable length codiaghnique can be
used to encode index information, consuming onlgva bits for

most of term frequency values. In general, thipieb reduce
index size by about one-tenth. However, for largeales
information retrieval systems, the compressed irgatill too big

to fit into memory. In addition, using a compresgedex reduces
time to access index data from disk, but does edtice time to
process the posting lists. Thus, using losslessximmpression
alone cannot significantly improve efficiency.

Lossy index compression techniques opt for disogrgiostings
that are not informative. By removing a large numbfepostings
from the inverted index, lossy index compressiathtéques not
only significantly reduce index size, but also #igantly reduce
length of posting lists. Therefore, lossy index po@ssion
techniques can reduce both time to access index fdan disk

and time to process posting lists. However, as samakex

information is lost, lossy index compression teges may lead
to a drop in query ranking quality.

In [5], Carmel et al. introduced a term-centric eggeh to static
index pruning. Entries in each posting list are tesbrin

descending order of a weighting scores. Only emntrighose
weighting scores are greater than a threshold \aiei&ept in the
pruned index. The threshold value can be the samallf terms
(uniform pruning), or it can be different for eaglnm (term-based
pruning).

Buttcher and Clarke introduce a document-centriciniog
technique [6]. Instead of posting list pruning, ythpropose
document pruning. For each document, they keep angmall
number of representative, highly-ranked terms ie iruned
index. Terms in each document are ranked basedheir t
contribution to the Kullback-Leibler divergence [1fetween the
document and the text collection. The intuition indhthis is that
those document-representative terms are powerfolughn to
distinguish the document from others. They also wsho

posting-based pruning ndetho

experimentally that if the document is ranked hfgh a given
query, it is very likely that query terms are amoiitg

representative terms. Thus indexing sets of reptaee terms is
a good method to preserve ranking quality whileuoiuly index
size.

Other index pruning techniques (some are for disted, peer-to-
peer information retrieval systems) belong to eittiee term-
centric approach or document-centric approach. @lat al. [8],
and Shokouhi et al. [10], try to find terms whosesting lists can
be completely removed. De Moura et al. [11] propmsendex a
set of representative sentences for each documerand Callan
[7] propose a number of methods to identify a repngative term
set for each document. Podna et al. [12] and Sksjeét al. [13]
propose to index term combinations to reduce tlyatine effect
of posting list pruning to ranking quality. Blanaad Barreiro [9]
improve the precision of term-centric pruning bynsidering a
number of designs overlooked by the original work.

Looking at other aspect of static index pruningol@Mtsyn et al.
[14] point out that the use of results caching amentally affects
the performance of a pruned index, due to the ahangjuery
pattern introduced by results caching. They theoppse to
combine results caching and index pruning to redheequery
workload of back-end servers.

3. TERM-CENTRIC PRUNING VERSUS
DOCUMENT-CENTRIC PRUNING

3.1 Term-Centric Index Pruning

Term-centric pruning fits very well with the inved index
structure of information retrieval systems. As de®r are
processed based on inverted lists, it is naturaiutacate inverted
lists in order to reduce index size. Based on thiverted index
structure, the “idealized, term-based” pruning teghe proposed
by Carmel et al. is well-formed and mathematicpligvable. This
clearly shows that a pruned index, even thoughcontaining all
information, still can guarantee the ranking quyatit some extent
[5]

There are several properties that are specific emn-tentric
pruning. It preserves the collection vocabularyr Every term,
there are always some entries in its invertedifisthe pruned
index. (The works of Blanco et al. [8] and Shokoehal. [10] are
exceptions, as their work reduces the vocabulaes)sin contrast,
term-centric pruning does not necessarily presdhee set of
documents. As posting entries are removed, it issipte that
some documents will be totally removed from thengdiindex.

The fact that term-centric index pruning preseiesset of terms
demonstrates its support for the possibility oftatins appearing
in user queries. Due to this support, in ordegt@arantee the
quality of top-K results for any queries, term-geanpruning must
not prune any of the top-K entries in any postiisyy IObviously,

pruning any of these makes the pruned index urtabigiarantee
the top-K results of the query containing only thiagle term. In
addition, term-centric pruning assumes (implicitlyat every term
in the vocabulary is equally important. In contydst documents,
term-centric pruning assumes that some are morertant than

others. This is inferred from the fact that termmcie pruning

might totally removed some documents from the padundex.



3.2 Document-Centric Data Pruning
Document-centric pruning does not make any assompbout
the index structure and how queries are procesBeetisely,
document-centric pruning should be considered a%daa”
pruning technique instead of an index pruning téeqpi as what
it actually does is to prune the documents, ndheex structure.

In contrast to term-centric pruning, document-gengrruning
preserves the set of documents, not the set ofstevhile any
document in the collection is represented by aetubkits terms
(i.e., its set of representative terms), there asgmarantee that
every term will be indexed. It is likely that theaee terms that are

always ranked low in any document and are removgd b

document-centric pruning.

The first assumption implied by document-centriarpng is that
every document can be ranked first by some quédme such
query might be the query that contains all its espntative
terms). Due to this assumption, document-centii@ing opts for
including every document in the pruned index. Theosd
implied assumption is that terms are not equallpdrtant, and
some terms can be totally removed from the prundex.

4. POSTING-BASED INDEX PRUNING

As pointed out above, term-centric pruning prunesiex
elements, which are posting lists; while documeanttigc pruning
prunes data elements, which are documents. Bothoapipes
assume that all elements are equally important, tmd the
pruned index should keep some information aboutyesiement,
either they are posting lists or documents.

We first find that the decision to keep some amouwrfit
information for each posting list or document to fleasonable.
Without any information about the user queries,mest assume
any term can be used by users. Thus no term catothlly

removed. Similarly, without any information abouhat users
will search for, we also have to assume any doctiwem be an
answer (to some queries). Therefore, no documanbeatotally
removed.

However, given the requirement of significantly wehg index
size, it is not affordable to keep information fdt posting lists
and all documents. We believe that the pruned instesuld
contain neither all terms, nor all documents, baolydhe most
important postings, given the desired pruning level

We suspect that non-informative terms are commoaniy large
text collection. Non-informative terms are thosent that do not
help to discriminate documents. One example of infermative
terms is a term that appears in every document) asche term
“abstract” in a collection of scientific papers. cEe terms are
expected to have similar weighting scores to ewdmgument.
Therefore, eliminating those terms will not hurbkang quality.
Unfortunately, term-centric pruning tends not tamp any entries
from the posting lists of those terms. The reaspas entry scores
are almost similar, all scores are likely to beatge than the
threshold value computed by the term-based methopoged in
[5].

We also suspect that there are many “rarely asikédibcuments
in any large text collection. A document is calledrely asked
for” if it does not appear in the top-ranked resuif any real
world query. In practice, users normally look atyothe top 20
results, so any document that does not appeaeitofi+20 results

of a large number of queries can be removed. Pugpal. [17]

observed that, for a collection of 5,939,061 doautmie&nd a set
of 190,000 unique queries, around 52% of the dootsneere

not returned among the first 100 top-ranked resifltmy query.

We propose a posting-based index pruning method.chdéese
neither posting lists, nor documents as our workibgments.
Instead, we choose postings, i.e. tuples of thenfeterm ID,
document ID, term frequency>. Postings are conthiimeboth
index elements (as posting entries in posting )listsd data
elements (as terms in documents). Also, choosirgginmp entries
as working elements, we open the possibility of aeimg any
document and any term’s posting list from the pcuimelex. With
this flexibility, our method is able to remove nuoriermative
terms as well as “rarely asked for” documents.

4.1 Term Weighting

When building a pruned index, terms should not katéd
equally. Non-informative terms appear in a largambar of

documents, results in long posting lists. Howeven-

informative terms do not help much in ranking doeuis. Thus,
the pruned index should significantly prune thetipgslists of

non-informative terms and reserve places for oth@armative

terms. Our posting-based pruning method assignsighivto each
term as its informativeness value. Blanco and Barr8] have

studied a number of term-weighting schemes forpghmose of
posting list pruning. Their finding is that residumverse

document frequency (RIDF) is a good quantity to soea the
informativeness of terms, among other schemes asithe classic
inverse document frequency and the term discrirvieatalue.

We adopt RIDF to calculate term informativenessusal As
specified in [8], the RIDF value of a term is

RIDF = —|og(%j + |og(1— ezj (1)

wheredf is the term’s document frequency adds the number of
documents in the collection. As pointed out by B@nRIDF
values can be computed efficiently.

4.2 Document Weighting

Documents in a large text collection are not equaiportant and
therefore, in the pruned index, more terms showddképt for
important documents. As for term weighting, we afssign a
weight to each document in the collection to reflémw
important it is. For a Web collection, the PageRE®#] or HITS
[19] algorithm can be used to compute document napoO
values. However, PageRank and HITS are not apj¢idab non-
Web documents, as there is no link structure anumayments.
We adopt the approach of Buttcher and Clarke [@] tfus
purpose. For each document, we assign its Kullthadler
distance to the collection as its important valdi&us, “out
standing” documents (i.e., documents which are \gifferent
from the collection) will be assigned high impottaalues, while
documents which are similar to others will be ass@y low
important values. Our important value for a docuiteis defined
as

5O, (EO, IC]
KLD(d ||c)_gd: | Iog( ] XTF(t)j 2

wheretf(t) is the term frequency of termmTF(t) is the collection
term frequency of terry [d| is the length of documeant(i.e., the



number of terms im), and €| is the length of the collection (i.e.,
the sum of document lengths).

4.3 Posting Ranking Function

Our static pruning method evaluates postings asijes each a
usefulness value. We then build the pruned indesedban these
values. Given a desired level of pruning, postimgries are
selected based on their usefulness values and aidtiedhe

pruned index until the pruned index size reactseknit.

According to term-centric pruning, we should assignhigh

usefulness value to a posting entry which appdattseatop of its
posting list. According to document-centric pruninge should
not assign a high usefulness value to a postingsa/term does
not belong to the set of top-ranked terms of theudwent. In

addition, as discussed above, we should assigivddwes to non-
informative terms and “rarely asked for” documerdasd vice

versa. Also, we obviously want to assign high usefss value to
posting entries with high scores.

To rank postings, for each posting, <>, we compute the
following quantities:

e 4, d) = the score tern contributes to the rank score of
documentd.

¢ RIDF(t) = the informativeness value of tetm
e KLD(d ||C) = the important value of document

¢ Rank(t) = the rank of term relatively with other terms in
document.

¢ Rank(d) = the rank of documerd relatively with other
documents in the posting list of tetm

Among the quantities above(t, d) is computed using a
weighting scheme, such as the classic TFIDF waighsicheme,
or the state-of-the-art BM25 weighting schenfDF(t) is
calculated as specified in (I§LD(d || C) is calculated according
to (2); Rank(d) is the position of documentin the posting list of
termt, where posting entries are sorted in descendidgraf its
scoresy(t,d;); andRank(t) is the position of termhin document,
where terms are sorted in descending order oféextback” score
[6], defined below:

tf tf _|C
) o 7

In this work, we use the BM25 weighting scheme [2@iven
below) to calculat&(t, d) due to its widely use in other research
works.

@)

tf (k, +1)
tf + ki((l—b)ﬂoﬂj @

Seu zs(trd) = |0g[ N -df + 0.5] N

df +05
avgdl

whereavgdl is the average length of documerks,is set to its
“standard” value of 1.2 anb is set to its “standard” value of
0.75.

In combination, our posting entry ranking functidakes as
parameters all the above quantities and returrsefulmess value.
Note that we apply normalization and transformatmparameter
values. First, RIDR] values are normalized so that they sum up
to one. Similar normalization is applied to KLdD{| C) values.
Normalization step is necessary, as the range &FR) and
KLD(d || C) are different. Second, we use a sigmoid functmn

transform the term rank values and document ramkesga This
transformation is necessary, too. Using the termk raalues
makes it appears that the™l@rm is ten time less important than
the top ranked term, which does not seem rightr&fbee, we use
a non-linear function specified below (5) as a ¢farm function.
The parametex, is used to shift the “transition” point, where the
sigmoid function switches from high value stateldav value
state, and the parametaris used to control the slope of the
transition period of the function.

1

sigmoid(x)=l—1+e(-w

®)
The sigmoid function above returns a value betvwesen and one.
Rank value close to zero (i.e., top ranked elemavil) be
transformed to a value close to one, while othak nealues will
be transformed depend on two paramekgranda. In Figure 1,
we show the shape of the sigmoid function for saver
combinations of parameters.

—— a=1,x0=50
—=®— a=15x0=50
—&— a=5,x0=60
—e— a=50,x0=60

Figure 1. Sigmoid functions.

Our posting entry ranking function is given below:

f((t,d))= Sowas(t,d)Da CRIDF (t) Gigmoid (Rank(d)) +

(1~ @) tKLD(d || C) sigmoid(Rank t)} (6)

whereo. is a parameter taking value between zero and one.

4.4 Posting-Based Pruning ver sus Document-

Centric Pruning and Term-Centric Pruning

We show that our posting entry ranking function erafizes
document-centric index pruning method and term+geptruning
method.

If we set the value of to zero, replace the document weighting
function KLD(d||C) with the unity functionu(d) = 1, and set the
parametera of the sigmoid function to 1 so that the sigmoid
function in (5) becomes a threshold functiorxgtthen for each
documentd, our ranking functiorf() assigns a non-zero value to
the posting entry & d> if t is ranked in the togy among all
unique terms ird, otherwisef() returns a zero value. In this case,
our posting-based pruning technique is equivalemt tihe
“constant” document-centric pruning technique pg®Ib by
Buttcher and Clarke in [6], which select a fixedmher of top
ranked terms from each document. Obviously, thdatire”
document-centric pruning technique proposed ircgg] be easily
obtained from our posting entry ranking function dgjustingxg

for each document according to its length.

Similarly, if we set the value o6 to one, replace the term
weighting functionRIDF(t) with the unity functionu(t) = 1, set
the parametea of the sigmoid function to 1, and set the paramete
%o to the rank of the i-th posting entry in the pogtlist of termt
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such thaS(t, d;) > 7 (t) andS(t, d;.1) < 7 (t), wherer (t) is the cut-
off threshold proposed by Carmel et al. in [5],rthaur posting
entry ranking function assigns a non-zero valueang posting
entry selected by term-centric pruning technique, a zero value
to any non-selected posting entry.

Our posting-based pruning technique is differertmfrterm-

centric and document-centric pruning techniques si&veral

aspects. By using term weighting function and dosoim
weighting function other than the unity functione wllow the
pruned index to include more information for infative terms
and outstanding documents. By using a sigmoid fandhstead
of a threshold function to transform the term andument ranks,
we open the possibility that a posting entry whihanked low in
a posting list could be selected, if it is rankeghhin the

document, and vice versa.

5. EXPERIMENTAL SETTINGS

We use the WT10G collection as our data set. Thikdation
contains 1,692,096 Web documents crawled from tled.VWe
use the Terrier platform [21] to index and rank rigee and we
develop our posting-based index pruning technigaseth on
Terrier.

We use the BM25 weighting scheme for both calcogptierm-
document scores and query ranking. Potter stemmliggrithm
[23] and a standard list of stop-words are usedfeprocessing
documents. After stemming and stop-word
vocabulary contains 3,161,488 unique terms. Thepruned
index contains 280,632,807 posting entries.

We use TREC [22] topics 451-500 as our query geciston is
measured for each pruned index using the set avamte
judgment provided by TREC for topics 451-500. FroaREC
topics 451-500, we build two sets of queries: oeedf long
queries, wherein each query includes the title taeddescription

removalg th

fields from the TREC topic, and one set of shoerigs, wherein
each query includes only the title field from thRHT topic.

We also implement term-centric index pruning anduhoent-

centric index pruning exactly as specified in thaiiginal works

[5][6]. The only difference is that in [5], Carmet al. used the
SMART term weighting scheme for both index prunémgl query
ranking. We instead use BM25 term weighting sché&nejuery

ranking, but still use SMART term weighting schefoe index

pruning.

We conduct experiments to compare the effectiveradssur
proposed posting-based pruning technique with énmm-based,
“score shifting” pruning technique proposed in [End the
“relative” document-centric pruning technique preed in [6]. In
the next section, we report precision at 10, piecist 20, and
average precision at each pruning level for eachrigue.

6. EXPERIMENTAL RESULTS

In Figure 2, we show the effectiveness of prunatices for the
set of short TREC queries; and in Figure 3, we shoe
effectiveness of pruned indices for the set of IGREC queries.
Posting-centric pruned index is marked as “pXX_Y'¥"Avhere
XX is the value of parameter (percentage), YY is the value of
parametera, and ZZ is the value of parametetr Figure 2 and
Figure 3 show experiment results for a posting+oentruned
index witha = 50%,a = 15, andx, = 50. With the pruning level
less than 70%, posting-centric pruning has sinixformance as
compare with document-centric pruning and term+@epruning.
However, for pruning level of 70% or more, postiagtric
pruning is outperformed by document-centric pruning

We turn our parameters for posting-centric indexunprg
technique. Table 1, Table 2, and Table 3 show éxjeeit results
for short queries of document-centric pruning teghe and
posting-centric pruning techniques with various bomations of



Table 1. Precision at 10 for short TREC queriedazfument-centric pruning technique and postingfteptuning techniques of
various parameter combinations.

Pt #posting Document- p50_15 50 p20_15 50 p50_35_200 p50_200_50 p80_200_1000 p50_300_1000 p80_300_1000 p80_400_1000
entry-pruned centric
0 0.25 0.25 0.25 0.2§ 0.2 0.26 0.25 0.5 025
10 0.2458 0.2542 0.2542 0.2542 0.2542 0.2942 0.2p42 0.2563 0.2521
20 0.2396 0.2521 0.2521 0.2542 0.2375 0.2338 0.2333 0.2364 0.2354
30 0.2396 0.2458 0.2458 0.2458 0.2292 0.2271 0.2292 0.2313 0.2292
40 0.2458 0.2479 0.2479 0.2271 0.2250 0.2271 0.2271 0.2260 0.2333
50 0.2500 0.2563 0.2542 0.2375 0.2292 0.225p 0.2312 0.2312 0.2208
60 0.2458 0.2521 0.2500 0.2250 0.2208 0.210¢ 0.2208 0.2167 0.2146
70 0.2396 0.2354 0.2354 0.2271 0.2396 0.2229 0.2364 0.2187 2180.
80 0.2500 0.1979 0.2167 0.2021 0.210¢ 0.2063 0.2383 0.1979 2020.
90 0.2458 0.15 0.1625 0.1625| 0.185: 0.1958 0.18f5 0.2021 00.20

Table 2. Precision at 20 for short TREC queriedazfument-centric pruning technique and postingfeeptuning techniques of
various parameter combinations.

Pct #posting Document- p50_15_50 p20_15 50 p50_35_200 p50_200_50 p80_200 1000 | p50_300_1000 | p80_300 1000 p80_400_1000
entry-pruned centric
0 0.2073 0.2073 0.2073 0.207B 0.2073 0.2473 0.2p73 0.2073 0.2073
10 0.2052 0.2042 0.2042 0.2052 0.205p 0.2082 0.2062 0.2052 0.2052
20 0.201 0.2031 0.2031 0.2021 0.199d 0.1938 0.1948 0.1948 0.1958
30 0.1979 0.2052 0.2063 0.1990 0.1854 0.1844 0.1834 0.1854 0.1844
40 0.1979 0.2042 0.2042 0.1917 0.1750 0.174p 0.1740 0.1760 0.1y81
50 0.1969 0.2083 0.2073 0.1875 0.1771 0.174p 0.1781 0.17P2 0.1719
60 0.1958 0.2031 0.2010 0.1802 0.1813 0.181B8 0.1844 0.1813 0.1833
70 0.2010 0.2031 0.1990 0.1719 0.1802 0.174p 0.1802 0.1760 0.1750
80 0.2094 0.1583 0.1729 0.1573 0.155p 0.1635 0.17p9 0.1635 1646.
90 0.1927 0.1177 0.1229 0.1208 0.1354 0.1469 0.1448 0.1%31 1500.

Table 3. MAP for short TREC queries of documenttgempruning technique and posting-centric prurtechniques of various
parameter combinations.

Pt #posting Document- p50_15 50 p20_15 50 p50_35_200 p50_200_50 p80_200_1000 p50_300_1000 p80_300_1000 p80_400_1000
entry-pruned centric
0 0.1892 0.1892 0.1897 0.189p 0.1892 0.1892 0.1892 0.1892 0.1892
10 0.1864 0.1868, 0.187 0.1869 0.1879 0.1475 0.1B78 0.1873 0.1880
20 0.1838 0.1891 0.1892 0.1889 0.1835 0.1818 0.1824 0.1885 0.1826
30 0.1846 0.1914 0.1913 0.1901 0.1814 0.180p 0.1897 0.18p1 0.1825
40 0.1847 0.1855 0.1854 0.1880 0.1805 0.182p 0.1820 0.18p7 0.1845
50 0.1837 0.1958 0.1958 0.1815 0.1834 0.180p 0.1839 0.1840 0.1809
60 0.1835 0.1911 0.1915 0.1804 0.1755 0.1748 0.17215 0.1747 0.1747
70 0.1693 0.172 0.1739 0.1698 0.1702 0.161p 0.1657 0.1692 0.1627
80 0.1679 0.1557 0.1571 0.1474 0.1378 0.1494 0.1575 0.1486 1440.
90 0.1533 0.0919 0.1136 0.1238 0.1338 0.1404 0.1314 0.1378 1420.

parameter values. Experiments with long queriese hsimilar
trend and therefore are omitted.

In Table 1, Table 2, and Table 3, the values iml laoé the highest
performance for a specific pruning level. The fiogiservation is
that posting-centric pruning is better at low anaderate pruning
level, while document-centric pruning is bettethaher pruning
level. The second observation is that, even thqagting-centric
pruning is better than document-centric pruninglawv and

moderate pruning level, the differences are snhalcontrast, at

higher pruning level, the differences between tadgsmance of
posting-centric pruning and document-centric prgréme larger.
In addition, none of the posting-centric pruningchteiques
outperforms document-centric pruning techniqueigi ipruning
level.

In all previous experiments of posting-centric pngntechnique,
parameters of the posting entry ranking functionai@ fixed for
all posting entries. We consider the possibility adaptively
setting parameters for each posting entry, by angphe slope of



Table 4. Performance at 90% pruning level of défgrposting-centric pruning techniques.

Pruning method Short TREC queries Long TREC queries
P@10 P@20 MAP P@1q P@2p MAP
Document-centric 0.2458 0.1927 0.1533 0.312D 0.2470 0.1731
AP1: no term weighting, no document weightings 0.5, using two different sigmoid
functions with parameters vary for each postingyent 0.2375 0.1688 0.1454 0.302p 0.2100 0.1561
AP2: similar to AP1, except that term-document ssare not used 0.127y 0.1106 0.0831 0.1660 0.1250 0.0903
AP3: similar to AP1, except that term weightingised 0.2604 0.1969 0.1592 0.3300 0.2500 0.1714
AP4: similar to AP1, except that both term weightamd document weighting are used| 0.22]71 0.1%73 35a.1 0.2740 0.1900 0.147
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Figure 4: Querying effectiveness for short TRECripse
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Figure 5: Querying effectiveness for long TREC ipeer
the sigmoid function as follows. For a posting grdt, d>, we value is in bold. From the results reported in €ab| we can see
use two sigmoid functions, one for the rank of terrim the that:
documentd, the other for the rank of documethin the posting () Term-document scores should be used in the posting

list of termt. We call the former document-oriented sigmoid
function, and the later term-oriented sigmoid fimt For the

entry ranking function (6), which is revealed byeth
significant differences between the performanc&Bi

term-oriented sigmoid function, itg parameter is set according and AP2
to the pruning level (i.e., if the pruning leveld8%,x, is equal to . S o )
10% of the length of the term posting list). Simlifa for the (i)  Term-weighting is useful, which is confirmed by the

document-oriented sigmoid function, if the pruniegel is 90%,

differences between the performance of AP1 and AP3.

its X, parameter is set to 10% of the number of uniquaden the (i) Document weighting seems to be harmful, which that

document. For both sigmoid functions, the paramatewhich

performance of AP4, compare to the performanceRS3 A

control the slope of the functioig set so that the function returns and AP1.

a value close to 1 for input value which is lesantl®.9x x, and
returns a value close to 0 for input value whichgrsater than 1.1
x Xo. We also explore the performance of several ateres,
which may or may not use term-weighting and/or doent-

weighting (refer to the ranking function (6) in 8en 4.3).

Among all alternatives, AP3 is the best, which rdyoslightly
outperformed by document-centric pruning for longeies
according to MAP. We therefore consider it as tastlamong our
alternatives. Below, we report its performanceamparison with
document-centric pruning and term-centric prunirigvarious

In Table 4, we report the performance of differahérnatives at level of pruning in Figure 4 and Figure 5.

the approximately 90% pruning level. Document-dernpruning
performance is included for reference. For eadtnon, the best

By adapting the sigmoid functions to posting estrighe
performance of our posting-centric pruning techeiga much
better, as good as the performance of documenticeruning



technique (posting-centric pruning is better thaounent-centric
pruning at some pruning level, while the inversérige at other
pruning levels).

7. CONCLUSIONSAND FUTURE WORK

We evaluate document-centric and term-centric cstéidex
pruning based on the WT10G corpus and TREC quésy Based
on our experimental results, term-centric indexnprg is better
than document-centric index pruning at low and nnatepruning
level (i.e., less than 70% pruning, according to msults), while
document-centric index pruning is better at higtreining level.

We propose posting-centric index pruning technigui@ch ranks
each posting entry (i.e., a term-document pairptam a set of
features such as the rank of the term in the dontiared the rank
of the document in the inverted list of the terme \8how that
posting-centric index pruning generalizes both deent-centric
and term-centric pruning, and therefore, the solutspace of
term-centric pruning covers the solution spaceasotfi document-
centric and term-centric index pruning. This imglithat, by
exploring this larger solution space, better soluttan be found.

We explore the solution space of posting-centrianprg by
studying a family of posting entry ranking functeorwe discover
that term weighting based on RIDF is useful, whdlgcument
weighting based on KL-divergence is harmful. Wealstice that
parameters of the sigmoid function, which we ustansform the
rank of a term/document to its score, should beptdato each
posting entry. Fixing these parameters makes ppsemtric
pruning less effective than document-centric prgnin

Other term weighting and document weighting meth@as
possible. We are evaluating a method of weightiegns and
documents based on user queries and the PageRgovithah
applying on the graph of terms and documents. @al ¢ to
discover important terms and documents by analyzihg
relationship among terms and documents given theegbof user
queries. Once the important terms and the impordactuments
are discovered, their information is kept in theirmd index,
while information about others, less important termand
documents, can be partially removed or totally alided.
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