
Static Index Pruning for Information Retrieval Systems: A
Posting-Based Approach

Linh Thai Nguyen
Department of Computer Science

Illinois Institute of Technology
Chicago, IL 60616 USA

+1-312-567-5330

nguylin@iit.edu

ABSTRACT
Static index pruning methods have been proposed to reduce size
of the inverted index of information retrieval systems. The goal is
to increase efficiency (in terms of query response time) while
preserving effectiveness (in terms of ranking quality). Current
state-of-the-art approaches include the term-centric pruning
approach and the document-centric pruning approach. While the
term-centric pruning considers each inverted list independently
and removes less important postings from each inverted list, the
document-centric approach considers each document
independently and removes less important terms from each
document. In other words, the term-centric approach does not
consider the relative importance of a posting in comparison with
others in the same document, and the document-centric approach
does not consider the relative importance of a posting in
comparison with others in the same inverted list. The consequence
is less important postings are not pruned in some situations, and
important postings are pruned in some other situations. We
propose a posting-based pruning approach, which is a
generalization of both the term-centric and document-centric
approaches. This approach ranks all postings and keeps only a
subset of top ranked ones. The rank of a posting depends on
several factors, such as its rank in its inverted list, its rank in its
document, its weighting score, the term weight and the document
weight. The effectiveness of our approach is verified by
experiments using TREC queries and TREC datasets.

Categories and Subject Descriptors
H.3.3 [Information Storage and Retrieval]: Information Search
and Retrieval – Index pruning, Search process.

General Terms
Algorithms, Performance, Experimentation.

Keywords
Static Index Pruning, Document-centric Index Pruning, Term-
centric Index Pruning, Posting-centric Index Pruning.

1. INTRODUCTION
Text information retrieval systems are based on an inverted index
to efficiently process queries. The most important part of an
inverted index is its inverted file, a file that contains posting list
for each term in the text collection [1]. In general, a posting list of
a term contains its posting entries (or index pointers), each in the
form of <docID, freq>, where docID is the ID of a document that
contains the term, and freq is its frequency in the document. For a
multi-keyword query, all posting lists of query terms are retrieved
from the inverted file, and document scores are accumulated for
each document in the union of the posting lists, based on a
specified weighting scheme. A list of documents in descending
order of rank scores is presented to the user.

For a large text corpus, the inverted file is too large to fit into
memory of the search server. Thus, query processing involves a
lot of disk access, which increases query response time. For a text
information retrieval system that has to process thousands of
queries per second, it is critical to improve query processing
performance.

Beside the parallel query processing approach that uses a cluster
of servers to process queries, the index compression approach is
widely used. The lossless compression approach uses data
compression techniques to compress index data, thereby reducing
the volume of data transferred from disk. The compressed index
data is then decompressed in memory, and queries are processed
based on the original index information. Common data
compression technique used in information retrieval systems is
variable length data coding [2]. In contrast, lossy compression
approach opts for keeping only important information in the
index, discarding other less important information [4][5][6][8]
[11]. Thus ranking quality of queries processed based on a lossy
compressed index (i.e. a pruned index) might be affected.

In practice, a lossless compression technique can be applied on a
lossy pruned index to further reduce index size. In addition, both
types of compressed/pruned index can be used by an information
retrieval system: a lossy pruned index is used to answer a large
portion of user queries, and a lossless compressed index is used
only if result quality is significantly hurt [4].

In this work, we concentrate on lossy index compression. Current
state-of-the-art approaches include term-centric pruning [5] and
document-centric pruning [6]. While term-centric pruning method
considers each inverted list independently and removes less
important postings from each inverted list, document-centric

Copyright © 2009 for the individual papers by the papers’ authors.
Copying permitted for private and academic purposes. Re-publication of
material from this volume requires permission by the copyright owners.
This volume is published by its editors.
LSDS-IR Workshop. July 2009. Boston, USA.

pruning considers each document independently and removes less
important terms from each document. In other words, the term-
centric method does not consider the relative importance of a
posting in comparison with others in the same document, and
document-centric method does not consider the relative
importance of a posting in comparison with others in the same
inverted list. The consequence is less important postings are not
pruned in some situations, and important postings are pruned in
some other situations.

We propose a posting-based pruning approach, which is a
generalization of both the term-centric and document-centric
approaches. Our approach ranks all postings and keeps only a
subset of the top ranked ones, removing the others. We consider a
couple of factors when ranking a posting, such as its rank in its
posting list, its rank in its document, its weighting score, the
normalized weight of the term, and the normalized weight of the
document. Our experiments based on TREC queries and TREC
datasets [22] show that posting-based pruning method
outperforms both the term-centric and document-centric methods.

2. RELATED WORK
Lossless index compression techniques are well studied, for
example, see Witten et al. [2][3]. Those techniques are mainly
based on the fact that the frequencies of terms in documents,
which are stored in the inverted index, follow a skewed
distribution. In that case, variable length coding technique can be
used to encode index information, consuming only a few bits for
most of term frequency values. In general, this helps to reduce
index size by about one-tenth. However, for large scale
information retrieval systems, the compressed index is still too big
to fit into memory. In addition, using a compressed index reduces
time to access index data from disk, but does not reduce time to
process the posting lists. Thus, using lossless index compression
alone cannot significantly improve efficiency.

Lossy index compression techniques opt for discarding postings
that are not informative. By removing a large number of postings
from the inverted index, lossy index compression techniques not
only significantly reduce index size, but also significantly reduce
length of posting lists. Therefore, lossy index compression
techniques can reduce both time to access index data from disk
and time to process posting lists. However, as some index
information is lost, lossy index compression techniques may lead
to a drop in query ranking quality.

In [5], Carmel et al. introduced a term-centric approach to static
index pruning. Entries in each posting list are sorted in
descending order of a weighting scores. Only entries whose
weighting scores are greater than a threshold value are kept in the
pruned index. The threshold value can be the same for all terms
(uniform pruning), or it can be different for each term (term-based
pruning).

Buttcher and Clarke introduce a document-centric pruning
technique [6]. Instead of posting list pruning, they propose
document pruning. For each document, they keep only a small
number of representative, highly-ranked terms in the pruned
index. Terms in each document are ranked based on their
contribution to the Kullback-Leibler divergence [16] between the
document and the text collection. The intuition behind this is that
those document-representative terms are powerful enough to
distinguish the document from others. They also show

experimentally that if the document is ranked high for a given
query, it is very likely that query terms are among its
representative terms. Thus indexing sets of representative terms is
a good method to preserve ranking quality while reducing index
size.

Other index pruning techniques (some are for distributed, peer-to-
peer information retrieval systems) belong to either the term-
centric approach or document-centric approach. Blanco et al. [8],
and Shokouhi et al. [10], try to find terms whose posting lists can
be completely removed. De Moura et al. [11] propose to index a
set of representative sentences for each document. Lu and Callan
[7] propose a number of methods to identify a representative term
set for each document. Podna et al. [12] and Skobeltsyn et al. [13]
propose to index term combinations to reduce the negative effect
of posting list pruning to ranking quality. Blanco and Barreiro [9]
improve the precision of term-centric pruning by considering a
number of designs overlooked by the original work.

Looking at other aspect of static index pruning, Skobeltsyn et al.
[14] point out that the use of results caching fundamentally affects
the performance of a pruned index, due to the change in query
pattern introduced by results caching. They then propose to
combine results caching and index pruning to reduce the query
workload of back-end servers.

3. TERM-CENTRIC PRUNING VERSUS
DOCUMENT-CENTRIC PRUNING
3.1 Term-Centric Index Pruning
Term-centric pruning fits very well with the inverted index
structure of information retrieval systems. As queries are
processed based on inverted lists, it is natural to truncate inverted
lists in order to reduce index size. Based on the inverted index
structure, the “idealized, term-based” pruning technique proposed
by Carmel et al. is well-formed and mathematically provable. This
clearly shows that a pruned index, even though not containing all
information, still can guarantee the ranking quality to some extent
[5].

There are several properties that are specific to term-centric
pruning. It preserves the collection vocabulary. For every term,
there are always some entries in its inverted list in the pruned
index. (The works of Blanco et al. [8] and Shokouhi et al. [10] are
exceptions, as their work reduces the vocabulary size.) In contrast,
term-centric pruning does not necessarily preserve the set of
documents. As posting entries are removed, it is possible that
some documents will be totally removed from the pruned index.

The fact that term-centric index pruning preserves the set of terms
demonstrates its support for the possibility of all terms appearing
in user queries. Due to this support, in order to guarantee the
quality of top-K results for any queries, term-centric pruning must
not prune any of the top-K entries in any posting list. Obviously,
pruning any of these makes the pruned index unable to guarantee
the top-K results of the query containing only that single term. In
addition, term-centric pruning assumes (implicitly) that every term
in the vocabulary is equally important. In contrast, for documents,
term-centric pruning assumes that some are more important than
others. This is inferred from the fact that term-centric pruning
might totally removed some documents from the pruned index.

3.2 Document-Centric Data Pruning
Document-centric pruning does not make any assumption about
the index structure and how queries are processed. Precisely,
document-centric pruning should be considered as a “data”
pruning technique instead of an index pruning technique, as what
it actually does is to prune the documents, not an index structure.

In contrast to term-centric pruning, document-centric pruning
preserves the set of documents, not the set of terms. While any
document in the collection is represented by a subset of its terms
(i.e., its set of representative terms), there is no guarantee that
every term will be indexed. It is likely that there are terms that are
always ranked low in any document and are removed by
document-centric pruning.

The first assumption implied by document-centric pruning is that
every document can be ranked first by some queries (one such
query might be the query that contains all its representative
terms). Due to this assumption, document-centric pruning opts for
including every document in the pruned index. The second
implied assumption is that terms are not equally important, and
some terms can be totally removed from the pruned index.

4. POSTING-BASED INDEX PRUNING
As pointed out above, term-centric pruning prunes index
elements, which are posting lists; while document-centric pruning
prunes data elements, which are documents. Both approaches
assume that all elements are equally important, and thus the
pruned index should keep some information about every element,
either they are posting lists or documents.

We first find that the decision to keep some amount of
information for each posting list or document to be reasonable.
Without any information about the user queries, we must assume
any term can be used by users. Thus no term can be totally
removed. Similarly, without any information about what users
will search for, we also have to assume any document can be an
answer (to some queries). Therefore, no document can be totally
removed.

However, given the requirement of significantly reducing index
size, it is not affordable to keep information for all posting lists
and all documents. We believe that the pruned index should
contain neither all terms, nor all documents, but only the most
important postings, given the desired pruning level.

We suspect that non-informative terms are common in any large
text collection. Non-informative terms are those terms that do not
help to discriminate documents. One example of non-informative
terms is a term that appears in every document, such as the term
“abstract” in a collection of scientific papers. Those terms are
expected to have similar weighting scores to every document.
Therefore, eliminating those terms will not hurt ranking quality.
Unfortunately, term-centric pruning tends not to prune any entries
from the posting lists of those terms. The reason is, as entry scores
are almost similar, all scores are likely to be greater than the
threshold value computed by the term-based method proposed in
[5].

We also suspect that there are many “rarely asked for” documents
in any large text collection. A document is called “rarely asked
for” if it does not appear in the top-ranked results of any real
world query. In practice, users normally look at only the top 20
results, so any document that does not appear in the top-20 results

of a large number of queries can be removed. Puppin et al. [17]
observed that, for a collection of 5,939,061 documents and a set
of 190,000 unique queries, around 52% of the documents were
not returned among the first 100 top-ranked results of any query.

We propose a posting-based index pruning method. We choose
neither posting lists, nor documents as our working elements.
Instead, we choose postings, i.e. tuples of the form <term ID,
document ID, term frequency>. Postings are contained in both
index elements (as posting entries in posting lists) and data
elements (as terms in documents). Also, choosing posting entries
as working elements, we open the possibility of removing any
document and any term’s posting list from the pruned index. With
this flexibility, our method is able to remove non-informative
terms as well as “rarely asked for” documents.

4.1 Term Weighting
When building a pruned index, terms should not be treated
equally. Non-informative terms appear in a large number of
documents, results in long posting lists. However, non-
informative terms do not help much in ranking documents. Thus,
the pruned index should significantly prune the posting lists of
non-informative terms and reserve places for other informative
terms. Our posting-based pruning method assigns a weight to each
term as its informativeness value. Blanco and Barreiro [8] have
studied a number of term-weighting schemes for the purpose of
posting list pruning. Their finding is that residual inverse
document frequency (RIDF) is a good quantity to measure the
informativeness of terms, among other schemes such as the classic
inverse document frequency and the term discriminative value.
We adopt RIDF to calculate term informativeness values. As
specified in [8], the RIDF value of a term is











−+







−=
−

N

tf

e
N

df
RIDF 1loglog

(1)

where df is the term’s document frequency and N is the number of
documents in the collection. As pointed out by Blanco, RIDF
values can be computed efficiently.

4.2 Document Weighting
Documents in a large text collection are not equally important and
therefore, in the pruned index, more terms should be kept for
important documents. As for term weighting, we also assign a
weight to each document in the collection to reflect how
important it is. For a Web collection, the PageRank [18] or HITS
[19] algorithm can be used to compute document important
values. However, PageRank and HITS are not applicable for non-
Web documents, as there is no link structure among documents.
We adopt the approach of Buttcher and Clarke [6] for this
purpose. For each document, we assign its Kullback-Leibler
distance to the collection as its important value. Thus, “out
standing” documents (i.e., documents which are very different
from the collection) will be assigned high important values, while
documents which are similar to others will be assigned low
important values. Our important value for a document d is defined
as

() ∑
∈









×=

dt tTF

C

d

ttf

d

ttf
CdKLD

)(

||

||

)(
log

||

)(
||

(2)

where tf(t) is the term frequency of term t, TF(t) is the collection
term frequency of term t, |d| is the length of document d (i.e., the

number of terms in d), and |C| is the length of the collection (i.e.,
the sum of document lengths).

4.3 Posting Ranking Function
Our static pruning method evaluates postings and assigns each a
usefulness value. We then build the pruned index based on these
values. Given a desired level of pruning, posting entries are
selected based on their usefulness values and added into the
pruned index until the pruned index size reaches its limit.

According to term-centric pruning, we should assign a high
usefulness value to a posting entry which appears at the top of its
posting list. According to document-centric pruning, we should
not assign a high usefulness value to a posting whose term does
not belong to the set of top-ranked terms of the document. In
addition, as discussed above, we should assign low values to non-
informative terms and “rarely asked for” documents, and vice
versa. Also, we obviously want to assign high usefulness value to
posting entries with high scores.

To rank postings, for each posting <t, d>, we compute the
following quantities:

• S(t, d) = the score term t contributes to the rank score of
document d.

• RIDF(t) = the informativeness value of term t.

• KLD(d || C) = the important value of document d.

• Rank(t) = the rank of term t relatively with other terms in
document d.

• Rank(d) = the rank of document d relatively with other
documents in the posting list of term t.

Among the quantities above, S(t, d) is computed using a
weighting scheme, such as the classic TFIDF weighting scheme,
or the state-of-the-art BM25 weighting scheme; RIDF(t) is
calculated as specified in (1); KLD(d || C) is calculated according
to (2); Rank(d) is the position of document d in the posting list of
term t, where posting entries are sorted in descending order of its
scores S(t,di); and Rank(t) is the position of term t in document d,
where terms are sorted in descending order of its “feedback” score
[6], defined below:








 ×






=
TF

C

d

tf

d

tf
tScoreDCP

||

||
log

||
)(

(3)

In this work, we use the BM25 weighting scheme [20] (given
below) to calculate S(t, d) due to its widely use in other research
works.

() ()
() 








+−+

+×








+
+−=

avgdl

d
bbktf

ktf

df

dfN
dtSBM

||
1

1

5.0

5.0
log,

1

1
25

(4)

where avgdl is the average length of documents, k1 is set to its
“standard” value of 1.2 and b is set to its “standard” value of
0.75.

In combination, our posting entry ranking function takes as
parameters all the above quantities and returns a usefulness value.
Note that we apply normalization and transformation to parameter
values. First, RIDF(t) values are normalized so that they sum up
to one. Similar normalization is applied to KLD(d || C) values.
Normalization step is necessary, as the range of RIDF(t) and
KLD(d || C) are different. Second, we use a sigmoid function to

transform the term rank values and document rank values. This
transformation is necessary, too. Using the term rank values
makes it appears that the 10th term is ten time less important than
the top ranked term, which does not seem right. Therefore, we use
a non-linear function specified below (5) as a transform function.
The parameter x0 is used to shift the “transition” point, where the
sigmoid function switches from high value state to low value
state, and the parameter a is used to control the slope of the
transition period of the function.

() () axxe
xsigmoid

01

1
1 +−+

−= (5)

The sigmoid function above returns a value between zero and one.
Rank value close to zero (i.e., top ranked element) will be
transformed to a value close to one, while other rank values will
be transformed depend on two parameters x0 and a. In Figure 1,
we show the shape of the sigmoid function for several
combinations of parameters.

0

0.2

0.4

0.6

0.8

1

1 16 31 46 61 76 91

Rank
W

ei
g

h
t

a=1,x0=50

a=15,x0=50

a=5,x0=60

a=50,x0=60

Figure 1. Sigmoid functions.

Our posting entry ranking function is given below:

() =dtf ,

() () ()()
() () ()()}||1

{,25

tRanksigmoidCdKLD

dRanksigmoidtRIDFdtSBM

⋅⋅−
+⋅⋅⋅

α
α

(6)

where α is a parameter taking value between zero and one.

4.4 Posting-Based Pruning versus Document-
Centric Pruning and Term-Centric Pruning
We show that our posting entry ranking function generalizes
document-centric index pruning method and term-centric pruning
method.

If we set the value of α to zero, replace the document weighting
function KLD(d||C) with the unity function u(d) = 1, and set the
parameter a of the sigmoid function to 1 so that the sigmoid
function in (5) becomes a threshold function at x0, then for each
document d, our ranking function f() assigns a non-zero value to
the posting entry <t, d> if t is ranked in the top-x0 among all
unique terms in d, otherwise f() returns a zero value. In this case,
our posting-based pruning technique is equivalent to the
“constant” document-centric pruning technique proposed by
Buttcher and Clarke in [6], which select a fixed number of top
ranked terms from each document. Obviously, the “relative”
document-centric pruning technique proposed in [6] can be easily
obtained from our posting entry ranking function by adjusting x0
for each document according to its length.

Similarly, if we set the value of α to one, replace the term
weighting function RIDF(t) with the unity function u(t) = 1, set
the parameter a of the sigmoid function to 1, and set the parameter
x0 to the rank of the i-th posting entry in the posting list of term t

such that S(t, di) > τ (t) and S(t, di+1) ≤ τ (t), where τ (t) is the cut-
off threshold proposed by Carmel et al. in [5], then our posting
entry ranking function assigns a non-zero value to any posting
entry selected by term-centric pruning technique, and a zero value
to any non-selected posting entry.

Our posting-based pruning technique is different from term-
centric and document-centric pruning techniques in several
aspects. By using term weighting function and document
weighting function other than the unity function, we allow the
pruned index to include more information for informative terms
and outstanding documents. By using a sigmoid function instead
of a threshold function to transform the term and document ranks,
we open the possibility that a posting entry which is ranked low in
a posting list could be selected, if it is ranked high in the
document, and vice versa.

5. EXPERIMENTAL SETTINGS
We use the WT10G collection as our data set. This collection
contains 1,692,096 Web documents crawled from the Web. We
use the Terrier platform [21] to index and rank queries, and we
develop our posting-based index pruning technique based on
Terrier.

We use the BM25 weighting scheme for both calculating term-
document scores and query ranking. Potter stemming algorithm
[23] and a standard list of stop-words are used for preprocessing
documents. After stemming and stop-word removal, the
vocabulary contains 3,161,488 unique terms. The un-pruned
index contains 280,632,807 posting entries.

We use TREC [22] topics 451–500 as our query set. Precision is
measured for each pruned index using the set of relevance
judgment provided by TREC for topics 451–500. From TREC
topics 451–500, we build two sets of queries: one set of long
queries, wherein each query includes the title and the description

fields from the TREC topic, and one set of short queries, wherein
each query includes only the title field from the TREC topic.

We also implement term-centric index pruning and document-
centric index pruning exactly as specified in their original works
[5][6]. The only difference is that in [5], Carmel et al. used the
SMART term weighting scheme for both index pruning and query
ranking. We instead use BM25 term weighting scheme for query
ranking, but still use SMART term weighting scheme for index
pruning.

We conduct experiments to compare the effectiveness of our
proposed posting-based pruning technique with the term-based,
“score shifting” pruning technique proposed in [5], and the
“relative” document-centric pruning technique proposed in [6]. In
the next section, we report precision at 10, precision at 20, and
average precision at each pruning level for each technique.

6. EXPERIMENTAL RESULTS
In Figure 2, we show the effectiveness of pruned indices for the
set of short TREC queries; and in Figure 3, we show the
effectiveness of pruned indices for the set of long TREC queries.
Posting-centric pruned index is marked as “pXX_YY_ZZ”, where
XX is the value of parameter α (percentage), YY is the value of
parameter a, and ZZ is the value of parameter x0. Figure 2 and
Figure 3 show experiment results for a posting-centric pruned
index with α = 50%, a = 15, and x0 = 50. With the pruning level
less than 70%, posting-centric pruning has similar performance as
compare with document-centric pruning and term-centric pruning.
However, for pruning level of 70% or more, posting-centric
pruning is outperformed by document-centric pruning.

We turn our parameters for posting-centric index pruning
technique. Table 1, Table 2, and Table 3 show experiment results
for short queries of document-centric pruning technique and
posting-centric pruning techniques with various combinations of

Figure 2: Querying effectiveness for short TREC queries.

Figure 3: Querying effectiveness for long TREC queries.

parameter values. Experiments with long queries have similar
trend and therefore are omitted.

In Table 1, Table 2, and Table 3, the values in bold are the highest
performance for a specific pruning level. The first observation is
that posting-centric pruning is better at low and moderate pruning
level, while document-centric pruning is better at higher pruning
level. The second observation is that, even though posting-centric
pruning is better than document-centric pruning at low and
moderate pruning level, the differences are small. In contrast, at

higher pruning level, the differences between the performance of
posting-centric pruning and document-centric pruning are larger.
In addition, none of the posting-centric pruning techniques
outperforms document-centric pruning technique at high pruning
level.

In all previous experiments of posting-centric pruning technique,
parameters of the posting entry ranking function (6) are fixed for
all posting entries. We consider the possibility of adaptively
setting parameters for each posting entry, by adapting the slope of

Table 1. Precision at 10 for short TREC queries of document-centric pruning technique and posting-centric pruning techniques of
various parameter combinations.

Pct #posting
entry-pruned

Document-
centric

p50_15_50 p20_15_50 p50_35_200 p50_200_50 p80_200_1000 p50_300_1000 p80_300_1000 p80_400_1000

0 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25

10 0.2458 0.2542 0.2542 0.2542 0.2542 0.2542 0.2542 0.2563 0.2521

20 0.2396 0.2521 0.2521 0.2542 0.2375 0.2333 0.2333 0.2354 0.2354

30 0.2396 0.2458 0.2458 0.2458 0.2292 0.2271 0.2292 0.2313 0.2292

40 0.2458 0.2479 0.2479 0.2271 0.2250 0.2271 0.2271 0.2250 0.2333

50 0.2500 0.2563 0.2542 0.2375 0.2292 0.2250 0.2312 0.2312 0.2208

60 0.2458 0.2521 0.2500 0.2250 0.2208 0.2104 0.2208 0.2167 0.2146

70 0.2396 0.2354 0.2354 0.2271 0.2396 0.2229 0.2354 0.2187 0.2187

80 0.2500 0.1979 0.2167 0.2021 0.2104 0.2063 0.2333 0.1979 0.2021

90 0.2458 0.15 0.1625 0.1625 0.1854 0.1958 0.1875 0.2021 0.2000

Table 2. Precision at 20 for short TREC queries of document-centric pruning technique and posting-centric pruning techniques of
various parameter combinations.

Pct #posting
entry-pruned

Document-
centric

p50_15_50 p20_15_50 p50_35_200 p50_200_50 p80_200_1000 p50_300_1000 p80_300_1000 p80_400_1000

0 0.2073 0.2073 0.2073 0.2073 0.2073 0.2073 0.2073 0.2073 0.2073

10 0.2052 0.2042 0.2042 0.2052 0.2052 0.2052 0.2052 0.2052 0.2052

20 0.201 0.2031 0.2031 0.2021 0.1990 0.1938 0.1948 0.1948 0.1958

30 0.1979 0.2052 0.2063 0.1990 0.1854 0.1844 0.1854 0.1854 0.1844

40 0.1979 0.2042 0.2042 0.1917 0.1750 0.1740 0.1740 0.1750 0.1781

50 0.1969 0.2083 0.2073 0.1875 0.1771 0.1740 0.1781 0.1792 0.1719

60 0.1958 0.2031 0.2010 0.1802 0.1813 0.1813 0.1844 0.1813 0.1833

70 0.2010 0.2031 0.1990 0.1719 0.1802 0.1740 0.1802 0.1750 0.1750

80 0.2094 0.1583 0.1729 0.1573 0.1552 0.1635 0.1729 0.1635 0.1646

90 0.1927 0.1177 0.1229 0.1208 0.1354 0.1469 0.1448 0.1531 0.1500

Table 3. MAP for short TREC queries of document-centric pruning technique and posting-centric pruning techniques of various
parameter combinations.

Pct #posting
entry-pruned

Document-
centric

p50_15_50 p20_15_50 p50_35_200 p50_200_50 p80_200_1000 p50_300_1000 p80_300_1000 p80_400_1000

0 0.1892 0.1892 0.1892 0.1892 0.1892 0.1892 0.1892 0.1892 0.1892

10 0.1864 0.1868 0.1871 0.1869 0.1879 0.1875 0.1878 0.1873 0.1880

20 0.1838 0.1891 0.1892 0.1889 0.1835 0.1818 0.1824 0.1835 0.1826

30 0.1846 0.1914 0.1913 0.1901 0.1816 0.1806 0.1807 0.1821 0.1825

40 0.1847 0.1855 0.1854 0.1880 0.1805 0.1822 0.1820 0.1827 0.1845

50 0.1837 0.1958 0.1958 0.1815 0.1834 0.1809 0.1839 0.1840 0.1809

60 0.1835 0.1911 0.1915 0.1804 0.1755 0.1743 0.1785 0.1747 0.1747

70 0.1693 0.172 0.1739 0.1698 0.1702 0.1619 0.1657 0.1692 0.1627

80 0.1679 0.1557 0.1571 0.1476 0.1373 0.1494 0.1575 0.1486 0.1440

90 0.1533 0.0919 0.1136 0.1238 0.1338 0.1404 0.1314 0.1378 0.1421

the sigmoid function as follows. For a posting entry <t, d>, we
use two sigmoid functions, one for the rank of term t in the
document d, the other for the rank of document d in the posting
list of term t. We call the former document-oriented sigmoid
function, and the later term-oriented sigmoid function. For the
term-oriented sigmoid function, its x0 parameter is set according
to the pruning level (i.e., if the pruning level is 90%, x0 is equal to
10% of the length of the term posting list). Similarly, for the
document-oriented sigmoid function, if the pruning level is 90%,
its x0 parameter is set to 10% of the number of unique terms in the
document. For both sigmoid functions, the parameter a, which
control the slope of the function, is set so that the function returns
a value close to 1 for input value which is less than 0.9 × x0 and
returns a value close to 0 for input value which is greater than 1.1
× x0. We also explore the performance of several alternatives,
which may or may not use term-weighting and/or document-
weighting (refer to the ranking function (6) in Section 4.3).

In Table 4, we report the performance of different alternatives at
the approximately 90% pruning level. Document-centric pruning
performance is included for reference. For each column, the best

value is in bold. From the results reported in Table 4, we can see
that:

(i) Term-document scores should be used in the posting
entry ranking function (6), which is revealed by the
significant differences between the performance of AP1
and AP2.

(ii) Term-weighting is useful, which is confirmed by the
differences between the performance of AP1 and AP3.

(iii) Document weighting seems to be harmful, which hurt the
performance of AP4, compare to the performance of AP3
and AP1.

Among all alternatives, AP3 is the best, which is only slightly
outperformed by document-centric pruning for long queries
according to MAP. We therefore consider it as the best among our
alternatives. Below, we report its performance in comparison with
document-centric pruning and term-centric pruning at various
level of pruning in Figure 4 and Figure 5.

By adapting the sigmoid functions to posting entries, the
performance of our posting-centric pruning technique is much
better, as good as the performance of document-centric pruning

Figure 4: Querying effectiveness for short TREC queries.

Figure 5: Querying effectiveness for long TREC queries.

Table 4. Performance at 90% pruning level of different posting-centric pruning techniques.

Pruning method Short TREC queries Long TREC queries

 P@10 P@20 MAP P@10 P@20 MAP

Document-centric 0.2458 0.1927 0.1533 0.3120 0.2470 0.1731

AP1: no term weighting, no document weighting, α = 0.5, using two different sigmoid
functions with parameters vary for each posting entry 0.2375 0.1688 0.1456 0.3020 0.2100 0.1561

AP2: similar to AP1, except that term-document scores are not used 0.1277 0.1106 0.0831 0.1660 0.1250 0.0903

AP3: similar to AP1, except that term weighting is used 0.2604 0.1969 0.1592 0.3300 0.2500 0.1714

AP4: similar to AP1, except that both term weighting and document weighting are used 0.2271 0.1573 0.1354 0.2740 0.1900 0.1479

technique (posting-centric pruning is better than document-centric
pruning at some pruning level, while the inverse is true at other
pruning levels).

7. CONCLUSIONS AND FUTURE WORK
We evaluate document-centric and term-centric static index
pruning based on the WT10G corpus and TREC query sets. Based
on our experimental results, term-centric index pruning is better
than document-centric index pruning at low and moderate pruning
level (i.e., less than 70% pruning, according to our results), while
document-centric index pruning is better at higher pruning level.

We propose posting-centric index pruning technique, which ranks
each posting entry (i.e., a term-document pair) based on a set of
features such as the rank of the term in the document and the rank
of the document in the inverted list of the term. We show that
posting-centric index pruning generalizes both document-centric
and term-centric pruning, and therefore, the solution space of
term-centric pruning covers the solution spaces of both document-
centric and term-centric index pruning. This implies that, by
exploring this larger solution space, better solution can be found.

We explore the solution space of posting-centric pruning by
studying a family of posting entry ranking functions. We discover
that term weighting based on RIDF is useful, while document
weighting based on KL-divergence is harmful. We also notice that
parameters of the sigmoid function, which we use to transform the
rank of a term/document to its score, should be adapted to each
posting entry. Fixing these parameters makes posting-centric
pruning less effective than document-centric pruning.

Other term weighting and document weighting methods are
possible. We are evaluating a method of weighting terms and
documents based on user queries and the PageRank algorithm
applying on the graph of terms and documents. Our goal is to
discover important terms and documents by analyzing the
relationship among terms and documents given the context of user
queries. Once the important terms and the important documents
are discovered, their information is kept in the pruned index,
while information about others, less important terms and
documents, can be partially removed or totally discarded.

8. REFERENCES

[1] D. Grossman and O. Frieder, “Information Retrieval:
Algorithms and Heuristics,” Springer, 2nd ed, 2004.

[2] I. H. Witten, A. Moffat, and T. C. Bell, “Managing
Gigabytes,” Morgan Kaufmann, 2nd ed, 1999.

[3] J. Zobel and A. Moffat, “Inverted Files for Text Search
Engines,” in ACM Computing Surveys, 38(2), 2006.

[4] A. Ntoulas and J. Cho, “Pruning Policies for Two-Tiered
Inverted Index with Correctness Guarantee,” in Proc. ACM
SIGIR, 2007.

[5] D. Carmel et al., “Static Index Pruning for Information
Retrieval Systems,” in Proc. ACM SIGIR, 2001.

[6] S. Buttcher and C. L. A. Clarke, “A Document-Centric
Approach to Static Index Pruning in Text Retrieval
Systems,” in Proc. ACM CIKM, 2006.

[7] J. Lu and J. Callan, “Pruning Long Documents for
Distributed Information Retrieval,” in Proc. ACM CIKM,
2002.

[8] R. Blanco and A. Barreiro, “Static Pruning of Terms in
Inverted Files,” in Proc. ECIR, 2007.

[9] R. Blanco and A. Barreiro, “Boosting Static Pruning of
Inverted Files,” in Proc. ACM SIGIR, 2007.

[10] M. Shokouhi et al., “Using Query Logs to Establish
Vocabularies in Distributed Information Retrieval,” In Int'l
Journal on Information Processing and Management, 2007.

[11] E. S. de Moura et al, “Improving Web Search Efficiency via
a Locality Based Static Pruning Method,” in Proc. ACM
WWW, 2005.

[12] I. Podna, M. Rajman, T. Luu, F. Klemn, and K. Aberer,
“Scalable Peer-to-peer Web Retrieval with Highly
Discriminative Keys,” in Proc. IEEE ICDE, 2007.

[13] G. Skobeltsyn, T. Luu, I. P. Zarko, M. Rajman, and K.
Aberer, “Web Text Retrieval with a P2P Query Driven
Index,” in Proc. ACM SIGIR, 2007.

[14] G. Skobeltsyn, F. Junqueira, V. Plachouras, and R. Baeza-
Yates, “ResIn: a Combination of Results Caching and Index
Pruning for High-performance Web Search Engines,” in
Proc. ACM SIGIR, 2008.

[15] C. Tang, and S. Dwarkadas, “Hybrid Global-local Indexing
for Efficient Peer-to-peer Information Retrieval,” in Proc.
NSDI, 2004.

[16] S. Kullback, “The Kullback-Leibler Distance,” The
American Statistician, 41:340-341, 1987.

[17] D. Puppin, F. Silvestri, and D. Laforenza, “Query-Driven
Document Partitioning and Collection Selection,” in Proc.
INFOSCALE, 2006.

[18] L. Page, S. Brin, R. Motwani, and T. Winograd, “The
PageRank Citation Ranking: Bringing Order to the Web,”
Technical Report, Stanford University.

[19] J. Kleinberg, “Authoritative Sources in a Hyperlinked
Environment,” in Journal of the ACM, 46(5), 1999.

[20] S. E. Robertson. S. Walker, and M. Hancock-Beaulieu,
“Okapi at TREC-7,” in Proc. of the Seventh Text Retrieval
Conference, 1998.

[21] TERabyte RetrIEveR, http://ir.dcs.gla.ac.uk/terrier/

[22] TREC (WT10G, TREC-9)

[23] M. F. Porter, “An Algorithm for Suffix Stripping,” in
Program, 14(3), 1980.

