
Static Index Pruning for Information Retrieval Systems: A 
Posting-Based Approach 

Linh Thai Nguyen 
Department of Computer Science  

Illinois Institute of Technology 
Chicago, IL 60616 USA 

+1-312-567-5330 

nguylin@iit.edu 
 

 
ABSTRACT 
Static index pruning methods have been proposed to reduce size 
of the inverted index of information retrieval systems. The goal is 
to increase efficiency (in terms of query response time) while 
preserving effectiveness (in terms of ranking quality). Current 
state-of-the-art approaches include the term-centric pruning 
approach and the document-centric pruning approach. While the 
term-centric pruning considers each inverted list independently 
and removes less important postings from each inverted list, the 
document-centric approach considers each document 
independently and removes less important terms from each 
document. In other words, the term-centric approach does not 
consider the relative importance of a posting in comparison with 
others in the same document, and the document-centric approach 
does not consider the relative importance of a posting in 
comparison with others in the same inverted list. The consequence 
is less important postings are not pruned in some situations, and 
important postings are pruned in some other situations. We 
propose a posting-based pruning approach, which is a 
generalization of both the term-centric and document-centric 
approaches. This approach ranks all postings and keeps only a 
subset of top ranked ones. The rank of a posting depends on 
several factors, such as its rank in its inverted list, its rank in its 
document, its weighting score, the term weight and the document 
weight. The effectiveness of our approach is verified by 
experiments using TREC queries and TREC datasets.   

Categories and Subject Descriptors 
H.3.3 [Information Storage and Retrieval]: Information Search 
and Retrieval – Index pruning, Search process. 

General Terms 
Algorithms, Performance, Experimentation. 

Keywords 
Static Index Pruning, Document-centric Index Pruning, Term-
centric Index Pruning, Posting-centric Index Pruning. 

1. INTRODUCTION 
Text information retrieval systems are based on an inverted index 
to efficiently process queries. The most important part of an 
inverted index is its inverted file, a file that contains posting list 
for each term in the text collection [1]. In general, a posting list of 
a term contains its posting entries (or index pointers), each in the 
form of <docID, freq>, where docID is the ID of a document that 
contains the term, and freq is its frequency in the document. For a 
multi-keyword query, all posting lists of query terms are retrieved 
from the inverted file, and document scores are accumulated for 
each document in the union of the posting lists, based on a 
specified weighting scheme. A list of documents in descending 
order of rank scores is presented to the user. 

For a large text corpus, the inverted file is too large to fit into 
memory of the search server. Thus, query processing involves a 
lot of disk access, which increases query response time. For a text 
information retrieval system that has to process thousands of 
queries per second, it is critical to improve query processing 
performance.  

Beside the parallel query processing approach that uses a cluster 
of servers to process queries, the index compression approach is 
widely used. The lossless compression approach uses data 
compression techniques to compress index data, thereby reducing 
the volume of data transferred from disk. The compressed index 
data is then decompressed in memory, and queries are processed 
based on the original index information. Common data 
compression technique used in information retrieval systems is 
variable length data coding [2]. In contrast, lossy compression 
approach opts for keeping only important information in the 
index, discarding other less important information [4][5][6][8] 
[11]. Thus ranking quality of queries processed based on a lossy 
compressed index (i.e. a pruned index) might be affected.  

In practice, a lossless compression technique can be applied on a 
lossy pruned index to further reduce index size. In addition, both 
types of compressed/pruned index can be used by an information 
retrieval system: a lossy pruned index is used to answer a large 
portion of user queries, and a lossless compressed index is used 
only if result quality is significantly hurt [4]. 

In this work, we concentrate on lossy index compression. Current 
state-of-the-art approaches include term-centric pruning [5] and 
document-centric pruning [6]. While term-centric pruning method 
considers each inverted list independently and removes less 
important postings from each inverted list, document-centric 
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pruning considers each document independently and removes less 
important terms from each document. In other words, the term-
centric method does not consider the relative importance of a 
posting in comparison with others in the same document, and 
document-centric method does not consider the relative 
importance of a posting in comparison with others in the same 
inverted list. The consequence is less important postings are not 
pruned in some situations, and important postings are pruned in 
some other situations.  

We propose a posting-based pruning approach, which is a 
generalization of both the term-centric and document-centric 
approaches. Our approach ranks all postings and keeps only a 
subset of the top ranked ones, removing the others. We consider a 
couple of factors when ranking a posting, such as its rank in its 
posting list, its rank in its document, its weighting score, the 
normalized weight of the term, and the normalized weight of the 
document. Our experiments based on TREC queries and TREC 
datasets [22] show that posting-based pruning method 
outperforms both the term-centric and document-centric methods.  

2. RELATED WORK 
Lossless index compression techniques are well studied, for 
example, see Witten et al. [2][3]. Those techniques are mainly 
based on the fact that the frequencies of terms in documents, 
which are stored in the inverted index, follow a skewed 
distribution. In that case, variable length coding technique can be 
used to encode index information, consuming only a few bits for 
most of term frequency values. In general, this helps to reduce 
index size by about one-tenth. However, for large scale 
information retrieval systems, the compressed index is still too big 
to fit into memory. In addition, using a compressed index reduces 
time to access index data from disk, but does not reduce time to 
process the posting lists. Thus, using lossless index compression 
alone cannot significantly improve efficiency. 

Lossy index compression techniques opt for discarding postings 
that are not informative. By removing a large number of postings 
from the inverted index, lossy index compression techniques not 
only significantly reduce index size, but also significantly reduce 
length of posting lists. Therefore, lossy index compression 
techniques can reduce both time to access index data from disk 
and time to process posting lists. However, as some index 
information is lost, lossy index compression techniques may lead 
to a drop in query ranking quality. 

In [5], Carmel et al. introduced a term-centric approach to static 
index pruning. Entries in each posting list are sorted in 
descending order of a weighting scores. Only entries whose 
weighting scores are greater than a threshold value are kept in the 
pruned index. The threshold value can be the same for all terms 
(uniform pruning), or it can be different for each term (term-based 
pruning).  

Buttcher and Clarke introduce a document-centric pruning 
technique [6]. Instead of posting list pruning, they propose 
document pruning. For each document, they keep only a small 
number of representative, highly-ranked terms in the pruned 
index. Terms in each document are ranked based on their 
contribution to the Kullback-Leibler divergence [16] between the 
document and the text collection. The intuition behind this is that 
those document-representative terms are powerful enough to 
distinguish the document from others. They also show 

experimentally that if the document is ranked high for a given 
query, it is very likely that query terms are among its 
representative terms. Thus indexing sets of representative terms is 
a good method to preserve ranking quality while reducing index 
size.  

Other index pruning techniques (some are for distributed, peer-to-
peer information retrieval systems) belong to either the term-
centric approach or document-centric approach. Blanco et al. [8], 
and Shokouhi et al. [10], try to find terms whose posting lists can 
be completely removed. De Moura et al. [11] propose to index a 
set of representative sentences for each document. Lu and Callan 
[7] propose a number of methods to identify a representative term 
set for each document. Podna et al. [12] and Skobeltsyn et al. [13] 
propose to index term combinations to reduce the negative effect 
of posting list pruning to ranking quality. Blanco and Barreiro [9] 
improve the precision of term-centric pruning by considering a 
number of designs overlooked by the original work.  

Looking at other aspect of static index pruning, Skobeltsyn et al. 
[14] point out that the use of results caching fundamentally affects 
the performance of a pruned index, due to the change in query 
pattern introduced by results caching. They then propose to 
combine results caching and index pruning to reduce the query 
workload of back-end servers.  

3. TERM-CENTRIC PRUNING VERSUS 
DOCUMENT-CENTRIC PRUNING 
3.1 Term-Centric Index Pruning 
Term-centric pruning fits very well with the inverted index 
structure of information retrieval systems. As queries are 
processed based on inverted lists, it is natural to truncate inverted 
lists in order to reduce index size. Based on the inverted index 
structure, the “idealized, term-based” pruning technique proposed 
by Carmel et al. is well-formed and mathematically provable. This 
clearly shows that a pruned index, even though not containing all 
information, still can guarantee the ranking quality to some extent 
[5].  

There are several properties that are specific to term-centric 
pruning. It preserves the collection vocabulary. For every term, 
there are always some entries in its inverted list in the pruned 
index. (The works of Blanco et al. [8] and Shokouhi et al. [10] are 
exceptions, as their work reduces the vocabulary size.) In contrast, 
term-centric pruning does not necessarily preserve the set of 
documents. As posting entries are removed, it is possible that 
some documents will be totally removed from the pruned index.  

The fact that term-centric index pruning preserves the set of terms 
demonstrates its support for the possibility of all terms appearing 
in user queries.  Due to this support, in order to guarantee the 
quality of top-K results for any queries, term-centric pruning must 
not prune any of the top-K entries in any posting list. Obviously, 
pruning any of these makes the pruned index unable to guarantee 
the top-K results of the query containing only that single term. In 
addition, term-centric pruning assumes (implicitly) that every term 
in the vocabulary is equally important. In contrast, for documents, 
term-centric pruning assumes that some are more important than 
others. This is inferred from the fact that term-centric pruning 
might totally removed some documents from the pruned index.   



3.2 Document-Centric Data Pruning 
Document-centric pruning does not make any assumption about 
the index structure and how queries are processed. Precisely, 
document-centric pruning should be considered as a “data” 
pruning technique instead of an index pruning technique, as what 
it actually does is to prune the documents, not an index structure.  

In contrast to term-centric pruning, document-centric pruning 
preserves the set of documents, not the set of terms. While any 
document in the collection is represented by a subset of its terms 
(i.e., its set of representative terms), there is no guarantee that 
every term will be indexed. It is likely that there are terms that are 
always ranked low in any document and are removed by 
document-centric pruning.  

The first assumption implied by document-centric pruning is that 
every document can be ranked first by some queries (one such 
query might be the query that contains all its representative 
terms). Due to this assumption, document-centric pruning opts for 
including every document in the pruned index. The second 
implied assumption is that terms are not equally important, and 
some terms can be totally removed from the pruned index.  

4. POSTING-BASED INDEX PRUNING 
As pointed out above, term-centric pruning prunes index 
elements, which are posting lists; while document-centric pruning 
prunes data elements, which are documents. Both approaches 
assume that all elements are equally important, and thus the 
pruned index should keep some information about every element, 
either they are posting lists or documents. 

We first find that the decision to keep some amount of 
information for each posting list or document to be reasonable. 
Without any information about the user queries, we must assume 
any term can be used by users. Thus no term can be totally 
removed. Similarly, without any information about what users 
will search for, we also have to assume any document can be an 
answer (to some queries). Therefore, no document can be totally 
removed.  

However, given the requirement of significantly reducing index 
size, it is not affordable to keep information for all posting lists 
and all documents. We believe that the pruned index should 
contain neither all terms, nor all documents, but only the most 
important postings, given the desired pruning level. 

We suspect that non-informative terms are common in any large 
text collection. Non-informative terms are those terms that do not 
help to discriminate documents. One example of non-informative 
terms is a term that appears in every document, such as the term 
“abstract” in a collection of scientific papers. Those terms are 
expected to have similar weighting scores to every document. 
Therefore, eliminating those terms will not hurt ranking quality. 
Unfortunately, term-centric pruning tends not to prune any entries 
from the posting lists of those terms. The reason is, as entry scores 
are almost similar, all scores are likely to be greater than the 
threshold value computed by the term-based method proposed in 
[5].  

We also suspect that there are many “rarely asked for” documents 
in any large text collection. A document is called “rarely asked 
for” if it does not appear in the top-ranked results of any real 
world query. In practice, users normally look at only the top 20 
results, so any document that does not appear in the top-20 results 

of a large number of queries can be removed. Puppin et al. [17] 
observed that, for a collection of 5,939,061 documents and a set 
of 190,000 unique queries, around 52% of the documents were 
not returned among the first 100 top-ranked results of any query.   

We propose a posting-based index pruning method. We choose 
neither posting lists, nor documents as our working elements. 
Instead, we choose postings, i.e. tuples of the form <term ID, 
document ID, term frequency>. Postings are contained in both 
index elements (as posting entries in posting lists) and data 
elements (as terms in documents). Also, choosing posting entries 
as working elements, we open the possibility of removing any 
document and any term’s posting list from the pruned index. With 
this flexibility, our method is able to remove non-informative 
terms as well as “rarely asked for” documents. 

4.1 Term Weighting  
When building a pruned index, terms should not be treated 
equally. Non-informative terms appear in a large number of 
documents, results in long posting lists. However, non-
informative terms do not help much in ranking documents. Thus, 
the pruned index should significantly prune the posting lists of 
non-informative terms and reserve places for other informative 
terms. Our posting-based pruning method assigns a weight to each 
term as its informativeness value. Blanco and Barreiro [8] have 
studied a number of term-weighting schemes for the purpose of 
posting list pruning. Their finding is that residual inverse 
document frequency (RIDF) is a good quantity to measure the 
informativeness of terms, among other schemes such as the classic 
inverse document frequency and the term discriminative value. 
We adopt RIDF to calculate term informativeness values. As 
specified in [8], the RIDF value of a term is 
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where df is the term’s document frequency and N is the number of 
documents in the collection. As pointed out by Blanco, RIDF 
values can be computed efficiently.  

4.2 Document Weighting 
Documents in a large text collection are not equally important and 
therefore, in the pruned index, more terms should be kept for 
important documents. As for term weighting, we also assign a 
weight to each document in the collection to reflect how 
important it is. For a Web collection, the PageRank [18] or HITS 
[19] algorithm can be used to compute document important 
values. However, PageRank and HITS are not applicable for non-
Web documents, as there is no link structure among documents. 
We adopt the approach of Buttcher and Clarke [6] for this 
purpose. For each document, we assign its Kullback-Leibler 
distance to the collection as its important value. Thus, “out 
standing” documents (i.e., documents which are very different 
from the collection) will be assigned high important values, while 
documents which are similar to others will be assigned low 
important values. Our important value for a document d is defined 
as 
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where tf(t) is the term frequency of term t, TF(t) is the collection 
term frequency of term t, |d| is the length of document d (i.e., the 



number of terms in d), and |C| is the length of the collection (i.e., 
the sum of document lengths).  

4.3 Posting Ranking Function  
Our static pruning method evaluates postings and assigns each a 
usefulness value. We then build the pruned index based on these 
values. Given a desired level of pruning, posting entries are 
selected based on their usefulness values and added into the 
pruned index until the pruned index size reaches its limit.  

According to term-centric pruning, we should assign a high 
usefulness value to a posting entry which appears at the top of its 
posting list. According to document-centric pruning, we should 
not assign a high usefulness value to a posting whose term does 
not belong to the set of top-ranked terms of the document. In 
addition, as discussed above, we should assign low values to non-
informative terms and “rarely asked for” documents, and vice 
versa. Also, we obviously want to assign high usefulness value to 
posting entries with high scores. 

To rank postings, for each posting <t, d>, we compute the 
following quantities: 

• S(t, d) = the score term t contributes to the rank score of 
document d. 

• RIDF(t) = the informativeness value of term t. 

• KLD(d || C) = the important value of document d. 

• Rank(t) = the rank of term t relatively with other terms in 
document d. 

• Rank(d) = the rank of document d relatively with other 
documents in the posting list of term t. 

Among the quantities above, S(t, d) is computed using a 
weighting scheme, such as the classic TFIDF weighting scheme, 
or the state-of-the-art BM25 weighting scheme; RIDF(t) is 
calculated as specified in (1); KLD(d || C) is calculated according 
to (2); Rank(d) is the position of document d in the posting list of 
term t, where posting entries are sorted in descending order of its 
scores S(t,di); and Rank(t) is the position of term t in document d, 
where terms are sorted in descending order of its “feedback” score 
[6], defined below: 
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In this work, we use the BM25 weighting scheme [20] (given 
below) to calculate S(t, d)  due to its widely use in other research 
works. 
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where avgdl is the average length of documents, k1 is set to its 
“standard” value of 1.2 and b is set to its “standard” value of  
0.75. 

In combination, our posting entry ranking function takes as 
parameters all the above quantities and returns a usefulness value. 
Note that we apply normalization and transformation to parameter 
values. First, RIDF(t) values are normalized so that they sum up 
to one. Similar normalization is applied to KLD(d || C) values. 
Normalization step is necessary, as the range of RIDF(t) and 
KLD(d || C) are different. Second, we use a sigmoid function to 

transform the term rank values and document rank values. This 
transformation is necessary, too. Using the term rank values 
makes it appears that the 10th term is ten time less important than 
the top ranked term, which does not seem right. Therefore, we use 
a non-linear function specified below (5) as a transform function. 
The parameter x0 is used to shift the “transition” point, where the 
sigmoid function switches from high value state to low value 
state, and the parameter a is used to control the slope of the 
transition period of the function.  
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The sigmoid function above returns a value between zero and one. 
Rank value close to zero (i.e., top ranked element) will be 
transformed to a value close to one, while other rank values will 
be transformed depend on two parameters x0 and a. In Figure 1, 
we show the shape of the sigmoid function for several 
combinations of parameters.  
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Figure 1. Sigmoid functions. 

Our posting entry ranking function is given below: 
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where α is a parameter taking value between zero and one. 

4.4 Posting-Based Pruning versus Document-
Centric Pruning and Term-Centric Pruning 
We show that our posting entry ranking function generalizes 
document-centric index pruning method and term-centric pruning 
method.  

If we set the value of α to zero, replace the document weighting 
function KLD(d||C) with the unity function u(d) = 1, and set the 
parameter a of the sigmoid function to 1 so that the sigmoid 
function in (5) becomes a threshold function at x0, then for each 
document d, our ranking function f() assigns a non-zero value to 
the posting entry <t, d> if t is ranked in the top-x0 among all 
unique terms in d, otherwise f() returns a zero value. In this case, 
our posting-based pruning technique is equivalent to the 
“constant” document-centric pruning technique proposed by 
Buttcher and Clarke in [6], which select a fixed number of top 
ranked terms from each document. Obviously, the “relative” 
document-centric pruning technique proposed in [6] can be easily 
obtained from our posting entry ranking function by adjusting x0 
for each document according to its length. 

Similarly, if we set the value of α to one, replace the term 
weighting function RIDF(t) with the unity function u(t) = 1, set 
the parameter a of the sigmoid function to 1, and set the parameter 
x0 to the rank of the i-th posting entry in the posting list of term t 



such that S(t, di) > τ (t) and S(t, di+1) ≤ τ (t), where τ (t) is the cut-
off threshold proposed by Carmel et al. in [5], then our posting 
entry ranking function assigns a non-zero value to any posting 
entry selected by term-centric pruning technique, and a zero value 
to any non-selected posting entry.  

Our posting-based pruning technique is different from term-
centric and document-centric pruning techniques in several 
aspects. By using term weighting function and document 
weighting function other than the unity function, we allow the 
pruned index to include more information for informative terms 
and outstanding documents. By using a sigmoid function instead 
of a threshold function to transform the term and document ranks, 
we open the possibility that a posting entry which is ranked low in 
a posting list could be selected, if it is ranked high in the 
document, and vice versa. 

5. EXPERIMENTAL SETTINGS 
We use the WT10G collection as our data set. This collection 
contains 1,692,096 Web documents crawled from the Web. We 
use the Terrier platform [21] to index and rank queries, and we 
develop our posting-based index pruning technique based on 
Terrier.  

We use the BM25 weighting scheme for both calculating term-
document scores and query ranking. Potter stemming algorithm 
[23] and a standard list of stop-words are used for preprocessing 
documents. After stemming and stop-word removal, the 
vocabulary contains 3,161,488 unique terms. The un-pruned 
index contains 280,632,807 posting entries. 

We use TREC [22] topics 451–500 as our query set. Precision is 
measured for each pruned index using the set of relevance 
judgment provided by TREC for topics 451–500. From TREC 
topics 451–500, we build two sets of queries: one set of long 
queries, wherein each query includes the title and the description 

fields from the TREC topic, and one set of short queries, wherein 
each query includes only the title field from the TREC topic. 

We also implement term-centric index pruning and document-
centric index pruning exactly as specified in their original works 
[5][6]. The only difference is that in [5], Carmel et al. used the 
SMART term weighting scheme for both index pruning and query 
ranking. We instead use BM25 term weighting scheme for query 
ranking, but still use SMART term weighting scheme for index 
pruning. 

We conduct experiments to compare the effectiveness of our 
proposed posting-based pruning technique with the term-based, 
“score shifting” pruning technique proposed in [5], and the 
“relative” document-centric pruning technique proposed in [6]. In 
the next section, we report precision at 10, precision at 20, and 
average precision at each pruning level for each technique.  

6. EXPERIMENTAL RESULTS 
In Figure 2, we show the effectiveness of pruned indices for the 
set of short TREC queries; and in Figure 3, we show the 
effectiveness of pruned indices for the set of long TREC queries. 
Posting-centric pruned index is marked as “pXX_YY_ZZ”, where 
XX is the value of parameter α (percentage), YY is the value of 
parameter a, and ZZ is the value of parameter x0. Figure 2 and 
Figure 3 show experiment results for a posting-centric pruned 
index with α = 50%, a = 15, and x0 = 50. With the pruning level 
less than 70%, posting-centric pruning has similar performance as 
compare with document-centric pruning and term-centric pruning. 
However, for pruning level of 70% or more, posting-centric 
pruning is outperformed by document-centric pruning.    

We turn our parameters for posting-centric index pruning 
technique. Table 1, Table 2, and Table 3 show experiment results 
for short queries of document-centric pruning technique and 
posting-centric pruning techniques with various combinations of 

   

Figure 2: Querying effectiveness for short TREC queries. 
 

   
Figure 3: Querying effectiveness for long TREC queries. 

 



parameter values. Experiments with long queries have similar 
trend and therefore are omitted. 

In Table 1, Table 2, and Table 3, the values in bold are the highest 
performance for a specific pruning level. The first observation is 
that posting-centric pruning is better at low and moderate pruning 
level, while document-centric pruning is better at higher pruning 
level. The second observation is that, even though posting-centric 
pruning is better than document-centric pruning at low and 
moderate pruning level, the differences are small. In contrast, at 

higher pruning level, the differences between the performance of 
posting-centric pruning and document-centric pruning are larger. 
In addition, none of the posting-centric pruning techniques 
outperforms document-centric pruning technique at high pruning 
level. 

In all previous experiments of posting-centric pruning technique, 
parameters of the posting entry ranking function (6) are fixed for 
all posting entries. We consider the possibility of adaptively 
setting parameters for each posting entry, by adapting the slope of 

Table 1. Precision at 10 for short TREC queries of document-centric pruning technique and posting-centric pruning techniques of 
various parameter combinations.  

 

Pct #posting 
entry-pruned 

Document-
centric 

p50_15_50 p20_15_50 p50_35_200 p50_200_50 p80_200_1000 p50_300_1000 p80_300_1000 p80_400_1000 

0 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 

10 0.2458 0.2542 0.2542 0.2542 0.2542 0.2542 0.2542 0.2563 0.2521 

20 0.2396 0.2521 0.2521 0.2542 0.2375 0.2333 0.2333 0.2354 0.2354 

30 0.2396 0.2458 0.2458 0.2458 0.2292 0.2271 0.2292 0.2313 0.2292 

40 0.2458 0.2479 0.2479 0.2271 0.2250 0.2271 0.2271 0.2250 0.2333 

50 0.2500 0.2563 0.2542 0.2375 0.2292 0.2250 0.2312 0.2312 0.2208 

60 0.2458 0.2521 0.2500 0.2250 0.2208 0.2104 0.2208 0.2167 0.2146 

70 0.2396 0.2354 0.2354 0.2271 0.2396 0.2229 0.2354 0.2187 0.2187 

80 0.2500 0.1979 0.2167 0.2021 0.2104 0.2063 0.2333 0.1979 0.2021 

90 0.2458 0.15 0.1625 0.1625 0.1854 0.1958 0.1875 0.2021 0.2000 

 

Table 2. Precision at 20 for short TREC queries of document-centric pruning technique and posting-centric pruning techniques of 
various parameter combinations.  

 

Pct #posting 
entry-pruned 

Document-
centric 

p50_15_50 p20_15_50 p50_35_200 p50_200_50 p80_200_1000 p50_300_1000 p80_300_1000 p80_400_1000 

0 0.2073 0.2073 0.2073 0.2073 0.2073 0.2073 0.2073 0.2073 0.2073 

10 0.2052 0.2042 0.2042 0.2052 0.2052 0.2052 0.2052 0.2052 0.2052 

20 0.201 0.2031 0.2031 0.2021 0.1990 0.1938 0.1948 0.1948 0.1958 

30 0.1979 0.2052 0.2063 0.1990 0.1854 0.1844 0.1854 0.1854 0.1844 

40 0.1979 0.2042 0.2042 0.1917 0.1750 0.1740 0.1740 0.1750 0.1781 

50 0.1969 0.2083 0.2073 0.1875 0.1771 0.1740 0.1781 0.1792 0.1719 

60 0.1958 0.2031 0.2010 0.1802 0.1813 0.1813 0.1844 0.1813 0.1833 

70 0.2010 0.2031 0.1990 0.1719 0.1802 0.1740 0.1802 0.1750 0.1750 

80 0.2094 0.1583 0.1729 0.1573 0.1552 0.1635 0.1729 0.1635 0.1646 

90 0.1927 0.1177 0.1229 0.1208 0.1354 0.1469 0.1448 0.1531 0.1500 

 

Table 3. MAP for short TREC queries of document-centric pruning technique and posting-centric pruning techniques of various 
parameter combinations.  

 

Pct #posting 
entry-pruned 

Document-
centric 

p50_15_50 p20_15_50 p50_35_200 p50_200_50 p80_200_1000 p50_300_1000 p80_300_1000 p80_400_1000 

0 0.1892 0.1892 0.1892 0.1892 0.1892 0.1892 0.1892 0.1892 0.1892 

10 0.1864 0.1868 0.1871 0.1869 0.1879 0.1875 0.1878 0.1873 0.1880 

20 0.1838 0.1891 0.1892 0.1889 0.1835 0.1818 0.1824 0.1835 0.1826 

30 0.1846 0.1914 0.1913 0.1901 0.1816 0.1806 0.1807 0.1821 0.1825 

40 0.1847 0.1855 0.1854 0.1880 0.1805 0.1822 0.1820 0.1827 0.1845 

50 0.1837 0.1958 0.1958 0.1815 0.1834 0.1809 0.1839 0.1840 0.1809 

60 0.1835 0.1911 0.1915 0.1804 0.1755 0.1743 0.1785 0.1747 0.1747 

70 0.1693 0.172 0.1739 0.1698 0.1702 0.1619 0.1657 0.1692 0.1627 

80 0.1679 0.1557 0.1571 0.1476 0.1373 0.1494 0.1575 0.1486 0.1440 

90 0.1533 0.0919 0.1136 0.1238 0.1338 0.1404 0.1314 0.1378 0.1421 

 



the sigmoid function as follows. For a posting entry <t, d>, we 
use two sigmoid functions, one for the rank of term t in the 
document d, the other for the rank of document d in the posting 
list of term t. We call the former document-oriented sigmoid 
function, and the later term-oriented sigmoid function. For the 
term-oriented sigmoid function, its x0 parameter is set according 
to the pruning level (i.e., if the pruning level is 90%, x0 is equal to 
10% of the length of the term posting list). Similarly, for the 
document-oriented sigmoid function, if the pruning level is 90%, 
its x0 parameter is set to 10% of the number of unique terms in the 
document. For both sigmoid functions, the parameter a, which 
control the slope of the function, is set so that the function returns 
a value close to 1 for input value which is less than 0.9 × x0 and 
returns a value close to 0 for input value which is greater than 1.1 
× x0. We also explore the performance of several alternatives, 
which may or may not use term-weighting and/or document-
weighting (refer to the ranking function (6) in Section 4.3).  

In Table 4, we report the performance of different alternatives at 
the approximately 90% pruning level. Document-centric pruning 
performance is included for reference.  For each column, the best 

value is in bold. From the results reported in Table 4, we can see 
that:  

(i) Term-document scores should be used in the posting 
entry ranking function (6), which is revealed by the 
significant differences between the performance of AP1 
and AP2.  

(ii)  Term-weighting is useful, which is confirmed by the 
differences between the performance of AP1 and AP3. 

(iii)  Document weighting seems to be harmful, which hurt the 
performance of AP4, compare to the performance of AP3 
and AP1.  

Among all alternatives, AP3 is the best, which is only slightly 
outperformed by document-centric pruning for long queries 
according to MAP. We therefore consider it as the best among our 
alternatives. Below, we report its performance in comparison with 
document-centric pruning and term-centric pruning at various 
level of pruning in Figure 4 and Figure 5. 

By adapting the sigmoid functions to posting entries, the 
performance of our posting-centric pruning technique is much 
better, as good as the performance of document-centric pruning 

   

Figure 4: Querying effectiveness for short TREC queries. 

 

   
Figure 5: Querying effectiveness for long TREC queries. 

 

Table 4. Performance at 90% pruning level of different posting-centric pruning techniques. 
 

Pruning method Short TREC queries Long TREC queries 

 P@10 P@20 MAP P@10 P@20 MAP 

Document-centric 0.2458 0.1927 0.1533 0.3120 0.2470 0.1731 

AP1: no term weighting, no document weighting, α = 0.5, using two different sigmoid 
functions with parameters vary for each posting entry  0.2375 0.1688 0.1456 0.3020 0.2100 0.1561 

AP2: similar to AP1, except that term-document scores are not used 0.1277 0.1106 0.0831 0.1660 0.1250 0.0903 

AP3: similar to AP1, except that term weighting is used 0.2604 0.1969 0.1592 0.3300 0.2500 0.1714 

AP4: similar to AP1, except that both term weighting and document weighting are used 0.2271 0.1573 0.1354 0.2740 0.1900 0.1479 

 



technique (posting-centric pruning is better than document-centric 
pruning at some pruning level, while the inverse is true at other 
pruning levels). 

7. CONCLUSIONS AND FUTURE WORK 
We evaluate document-centric and term-centric static index 
pruning based on the WT10G corpus and TREC query sets. Based 
on our experimental results, term-centric index pruning is better 
than document-centric index pruning at low and moderate pruning 
level (i.e., less than 70% pruning, according to our results), while 
document-centric index pruning is better at higher pruning level. 

We propose posting-centric index pruning technique, which ranks 
each posting entry (i.e., a term-document pair) based on a set of 
features such as the rank of the term in the document and the rank 
of the document in the inverted list of the term. We show that 
posting-centric index pruning generalizes both document-centric 
and term-centric pruning, and therefore, the solution space of 
term-centric pruning covers the solution spaces of both document-
centric and term-centric index pruning. This implies that, by 
exploring this larger solution space, better solution can be found. 

We explore the solution space of posting-centric pruning by 
studying a family of posting entry ranking functions. We discover 
that term weighting based on RIDF is useful, while document 
weighting based on KL-divergence is harmful. We also notice that 
parameters of the sigmoid function, which we use to transform the 
rank of a term/document to its score, should be adapted to each 
posting entry. Fixing these parameters makes posting-centric 
pruning less effective than document-centric pruning. 

Other term weighting and document weighting methods are 
possible. We are evaluating a method of weighting terms and 
documents based on user queries and the PageRank algorithm 
applying on the graph of terms and documents. Our goal is to 
discover important terms and documents by analyzing the 
relationship among terms and documents given the context of user 
queries. Once the important terms and the important documents 
are discovered, their information is kept in the pruned index, 
while information about others, less important terms and 
documents, can be partially removed or totally discarded. 
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