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Preface

Artificial Intelligence researchers continue to face huge challenges in their quest
to develop truly intelligent systems. The recent developments in the field of
neural-symbolic computation bring an opportunity to integrate well-founded
symbolic artificial intelligence with robust neural computing machinery to help
tackle some of these challenges.

Neural-symbolic systems combine the statistical nature of learning and the
logical nature of reasoning.

The Workshop on Neural-Symbolic Learning and Reasoning provides a forum for
the presentation and discussion of the key topics related to neural-symbolic
integration.

Topics of interest include:

e The representation of symbolic knowledge by connectionist systems;

e Learning in neural-symbolic systems;

o Extraction of symbolic knowledge from trained neural networks;

e Reasoning in neural-symbolic systems;

o Biological inspiration for neural-symbolic integration;

e Neural networks and probabilities;

e Neural networks and relational learning;

« Applications in robotics, semantic web, engineering, bioinformatics, etc.
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Invited Keynote Talk

Cognitive Synergy: A Principle to Guide the Tight Integration of
Heterogeneous Components in Integrative Al Systems

Ben Goertzel, Novamente LLC

The concept of "cognitive synergy” is introduced, as a formalization of the idea
that in a cognitive system containing multiple heterogeneous learning processes,
the different processes should be connected in such a way that each one can get
help from the others when it "gets stuck." The role of cognitive synergy in the
OpenCog integrative Al architecture is described, with examples given involving
the application of OpenCog to control animated agents in virtual worlds. The
potential implications of cognitive synergy for the design of neural-symbolic
systems is also discussed, in the context of an in-development system called
XIA-MAN that is intended to combine neural net evolution with OpenCog to
control a Nao humanoid robot.



A Neural Network Approach for First-Order Abductive Inference

Oliver Ray and Bruno Golénia
Department of Computer Science
University of Bristol
Bristol, BS8 1UB, UK

{oray,goleniab} @cs.bris.ac.uk

Abstract

This paper presents a neural network approach for
first-order abductive inference by generalising an
existing method from propositional logic to the
first-order case. We show how the original propo-
sitional method can be extended to enable the
grounding of a first-order abductive problem; and
we also show how it can be modified to allow the
prioritised computation of minimal solutions. We
illustrate the approach on a well-known abductive
problem and explain how it can be used to perform
first-order conditional query answering.

1 Introduction

Neurosymbolic research aims to combine neural inference
methods with symbolic knowledge formalisms in order to
better understand and exploit the cognitive functions of brain
and mind. The integration of neural networks and logic pro-
grams is a major focus in this field. But, most existing work
only deals with neural representations of propositional logic
programs — which are not very well suited to applications
with complex or incomplete information. Thus, our goal is
to develop a connectionist approach for typed abductive logic
programs — that are specifically intended for this purpose.

Abductive logic programs extend normal logic programs
by allowing the truth of particular literals, called abducibles,
to be assumed subject to certain conditions, called integrity
constraints, when deciding which instances of a query, or
goal, succeed from some program, or theory. Thus, any so-
lution to a first-order abductive problem has two parts: a set
of variable bindings, called an answer, denoting a successful
instance of the goal; together with a set of abducibles, called
an explanation, denoting a set of auxiliary assumptions. In
this way, abductive logic programming can be seen as a form
of conditional query answering.

This paper presents a neural network approach for first-
order abductive inference. The approach generalises an ex-
isting method of Ray & Garcez [9] from propositional logic
to the first-order case. Like its predecessor, the approach is
based on translating an abductive problem into a neural net-
work such that the fixpoints of the network are in one-to-one
correspondence with the solutions of the original problem.
Unlike other methods for neural abduction, such as [3; 10; 2;

13; 7; 12; 8; 11, our approach has the benefits of placing no
restrictions on the use of negation or recursion and being able
to systematically compute all required solutions.

Our main contributions are twofold: we show how the
propositional method can be extended to enable the practi-
cal grounding of a first-order abductive problem; and we also
show how it can be modified to allow the prioritised compu-
tation of minimal solutions. The former extension uses tech-
niques from the field of Answer Set Programming (ASP) [6]
to reduce the number of logically redundant clauses and lit-
erals in the ground program. The latter modification ensures
the hypothesis space is searched in a way that gives higher
priority to solutions with fewer abducibles. We illustrate the
approach and explain how it can be used to perform first-order
conditional query answering.

The rest of the paper is structured as follows: Section 2
recalls the relevant background material; Section 3 presents
our approach; and the paper concludes with a summary and
directions for future work.

2 Background

This section recalls some basic notions of neural networks
and logic programs. The definitions closely follow those of
Ray & Garcez [9], except that variables are now explicitly
typed and may appear in any input to an abductive problem.

(Threshold) Neural Networks: A neural network, or just
network, is a graph (N, E') whose nodes N are called neurons
and whose edges £ C N X N are called connections. Each
neuron n € N is labelled with a real number #(n) called its
threshold and each connection (n,m) € E is labelled with a
real number w(n, m) called its weight. The state of a network
is a function s that assigns to each neuron the value O or 1. A
neuron is said to be active if its value is 1 and it is said to be
inactive if its value is 0. For each state s of the network, there
is a unique successor state s’ such that a neuron n is active in
s’ iff its threshold is exceeded by the sum of the weights on
the connections coming into n from nodes which are active
in s. A network is said to be relaxed iff all of its neurons are
inactive. A fixpoint of the network is any state that is identical
to its own successor state. If a fixpoint ¢ is reachable from an
initial state s by repeatedly computing successor states, then
t is referred to as the fixpoint of s.
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Figure 1: Abductive context for the classic cars problem

(Typed) Logic Programs: A typed logic program, or just
program, is a set of rules of the form H «— B; A ... A B, A
-Cy A ... AN ~Cy, in which the H, B; and C; are atoms
and in which any variable is associated with a unary predi-
cate called its type or domain. The atom to the left of the
arrow is called head of the rule, while the literals to the right
comprise the body. The head atom H and the positive body
atoms B; are said to occur positively in the rule, while the
negated body atoms C; are said to occur negatively. A rule
with no negative body hterals is called a definite clause and
written H «— Bj A ... A B,. A rule with no body literals
is called a fact and simply written H. A rule with no head
literal is called a denial and written «<— By A ... AN B,. If P
is a program, then Bp (the Herbrand base of P) is the set
of all atoms built from the predicate and function symbols
in P; and Gp (the ground expansion of P) is the program
comprising all well-typed ground instances of the clauses in
P. In addition, .AIT and A, denote, respectively, the sets of
ground atoms that occur positively and negatively in Gp. A
stable model of P is a Herbrand interpretation I C Bp that
coincides with the least Herbrand model of the definite pro-
gram PT obtained by removing from Gp each rule containing
a negative literal not in I, and by deleting all of the negative
literals in the remaining rules.

Abductive Logic Programs: An abductive logic program
[4] is a triple (T, IC, A) where T is a program (the theory),
IC is a set of denials (integrity constraints), A is a set of
facts (abducibles). Given a conjunction G of literals (goals),
the task of ALP is to compute a set 6 of variable substitutions
(an answer) and a set A of ground abducibles (an explana-
tion) such that there is a stable model of 7" U A (which, in
the terminology of [5], is called a generalised stable model
of T) that satisfies all of the denials in /C' and all of the lit-
erals in G6. To specify an abductive problem, one must state
the theory 7', goal G, constraints /C, and abducibles A. If
needed, the types of any variables can be explicitly given as a
set of facts D (domain declarations) with one atom p(X) for
every variable X of type p. For convenience, we will refer

to the collection of five inputs (T, G, IC, A, D) as a (typed)
abductive context. A context is propositional if it contains no
variables. When a context has many different solutions it is
usual to prefer explanations with the fewest number of ab-
ducibles. Intuitively, this corresponds to the principle of Oc-
cam’s Razor, which favours the simplest hypotheses that fit
the data. In practice, this means that subset-minimal and/or
cardinality-minimal explanations are usually required.

Example 2.1. Consider the abductive context in Figure 1.
The theory T describes a collection of three classic cars. It
states that a car C wont start if its battery is flat, if its fuel tank
is empty, or if its spark plugs are dirty. It also states that the
headlights of the first car cl1 are working, that the fuel gauge
of the second car c2 is showing empty, and that the spark
plugs of the final car c3 are dirty. The constraints 1C' state,
firstly, that the battery of a car cannot be flat if the headlights
of that car are working and, secondly, that it is impossible
for a car to have no fuel if its fuel gauge is not empty and
not broken. The abducibles A allow us to assume that any
car has a flat battery, has no fuel, and/or has a broken fuel
gauge. The goal G asks for which cars C' it is possible to
show that (1) the car does not start and that (2) the car does
not have dirty spark plugs. The domain declarations D assert
that all occurrences of the variable C represent cars.

This problem has many solutions. There are two
cardinality-minimal solutions which bind C' to c2 after ab-
ducing no_fuel(c2) or flat_battery(c2), respectively. There
is one more subset-minimal solution which binds C to cl
after abducing no_fuel(cl) and broken_gauge(cl). Note
that, by the second constraint, no_fuel(cl) can only be ab-
duced if broken_gauge(cl) is also abduced (at its gauge
is not showing empty). Note also, by the first constraint,
flat_battery(cl) cannot be abduced (as its headlights work).
More than a hundred non-minimal solutions can be obtained
by adding redundant abducibles to the explanations above.

As non-minimal solutions are often of little practical use,
this paper will develop a neural approach for preferentially
finding minimal solutions of first-order abductive problems.



3 First order Neural network abduction

The approach in this section builds on well-known methods
for translating propositional logic programs into neural net-
works whose fixpoints correspond to stable models. In actual
fact, we build upon an extension of these methods proposed
by Ray and Garcez [9] for translating propositional abductive
contexts into neural networks whose fixpoints correspond to
generalised stable models. This is done by rewriting negative
literals as abducibles and adding clauses that, when translated
into a neural network, perform a systematic search through
the space of abductive solutions.

In principle, one could try and solve a first-order problem
by applying the method of [9] to the propositional context
obtained by taking all possible well-typed ground instances of
the abductive inputs. But, in practice, this naive approach is
not feasible as it generates neural networks that are too large
and take too long to find the minimal solutions.

To address these limitations, we developed an improved
method for more effectively computing the minimal solutions
of first-order problems. The new approach exploits an ASP
system called LPARSE [11] to allow the efficient grounding
of a first-order program; and it also ensures the prioritised
computation of minimal solutions by modifying the search
strategy of the original method.

Given a typed first-order abductive context, the new
method has six main steps: First it introduces new predicates
into the language to represent abducibles and negations. Then
it translates the typed abductive context into a normal propo-
sitional abductive context using LPARSE together with some
appropriate pre- and post-processing. Next it rewrites any
negative literals in the theory as abducibles subject to some
simple integrity constraints that preserve their logical mean-
ing. After that, it adds some clauses that allow the result-
ing network to compute abductive solutions. At this point, it
translates the resulting context into a neural network. Finally
it allows the network to compute the abductive solutions in
order of minimality. These steps are now described in turn.

STEP 0: Extending the Language

The logical transformations used in our method require the
introduction of predicates to represent abducibles and nega-
tions. For every predicate p in a given abductive context, we
assume two new predicates, denoted p' and p*, which repre-
sent the assumption of p and the negation of p, respectively.

STEP 1: Obtaining a Propositional Context

Our approach for translating a typed first-order abductive
context into a normal propositional abductive context uses a
system called LPARSE which, as described in [11], is practi-
cal tool for grounding typed logic programs. Compared to a
naive propositionalisation approach, LPARSE further simpli-
fies the ground program by removing literals that are known
to be true from the body of a clause and by removing clauses
whose bodies are known to be false from the program. Since
LPARSE is not specifically designed to work with abductive
logic programs, some pre- and post-processing is needed to
make the approach work. Thus we have three sub-steps:

e Pre-processing: We first turn an abductive context into
a logically equivalent program by temporarily employing
negative cycles to represent abducibles. This is needed to
prevent LPARSE from treating abducibles as undefined do-
main predicates, which would otherwise be removed from
the ground program. Then domain declarations of the form
#domain p(V') are added for each variable V of type p in D
(which causes LPARSE to add the atom p(V) into the body of
every clause containing V). Finally, the goal G is turned into
a clause by using a new propositional atom goal as the head.
This is carried out by the function { below.

Definition 3.1 ({). Let X = (T,G,IC, A, D) be a typed
abductive context and let G', A’ and D' be as follows
G ={goal — Ly N...ANL,|Ly A...\NL, =G},

=)o ‘ acA
] af —a
D’ = {#domainp(V)|p(V) € D}
ThenY = ((X) is the logic program TUG'"UICUA'UD’.

¢ Grounding: The resulting program is now grounded and
simplified by LPARSE, as indicated by the function x below.

Definition 3.2 (). Let Y be a logic program (possibly con-
taining domain declarations). Then Z = x(Y') is the ground
logic program obtained by running LPARSE on Y.

e Post-processing: After running LPARSE, any surviving
ground instances of the negative cycles introduced by the pre-
processing phase are converted back into explicit abducibles.
This is done by replacing each cycle of the form a «— —a*
and a* < —a with a bridging clause a « a' and making
the ground atom a' abducible. It is interesting to note that
this re-conversion is not strictly necessary as any negations
will be replaced by abducibles and integrity constraints in the
next step. But, it is more efficient to exploit the fact that each
cycle represents a single abducible in order to avoid the un-
necessary introduction of one additional abducible and two
additional integrity constraints. The bridging clauses allow
to distinguish instances of an atom whose truth is abduced
from those whose truth is implied. In addition, any resulting
ground instances of the goal clause are added to the theory
T, and their head atom goal becomes the new propositional
goal. This process is performed by the function p below.

Definition 3.3 (1). Let Z be any ground logic program and
Zic = {HLl/\.../\LnEZ}

= {goal — L1 AN...NL, € Z}
Zy = {a—-a*e€Z}U{a* —-acZ}
Zr = Z\(chLJZGUZA)

Then W = pu(Z) is the propositional abductive context
(Tl, Gl, ICl, Al, Dl) such that

define

Ty ZrUZgU{a —a'|{a — —a*} € Za}
Gy = {goal}

IC, = Zic

A1 = {d'|{a+— —-a*} € Z4}

Dy =0
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Figure 2: Propositional abductive context for the classic cars example (where boxes identify clauses and literals removed by
the grounding process)



Example 3.1. The result of applying the above transforma-
tion to the abductive context of Example 2.1 is shown in Fig-
ure 2 — which, for convenience, also shows, within boxes, the
clauses and literals removed by LPARSE. Note that the omit-
ted rules can never be true and the omitted constraints can
never be violated.

STEP 2: Obtaining a Definite Theory

To avoid potential problems resulting from the unrestricted
use of negation in the theory (which could result in networks
where some states have no fixpoints) we use a well-known
equivalence between negation and abduction which allows us
to treat each negative literal —p(¢4,...,¢,) as an abducible
p*(t1,...,t,) subject to integrity constraints stating that an
atom and its negation cannot both be true or both be false in
the same model. Intuitively, we are free to assume the fal-
sity of any atom if it is consistent to do so. As formalised by
the function 7), below, we add such constraints for all ground
atoms appearing negatively in the context. For convenience,
this function uses some notation for representing the positive
form of an expression obtained by replacing all negative lit-
erals by their abducible proxies.

Definition 3.4 (*). Let C = H «— B A...ANB, A—=Cq{ A
...\N=Cy, be a clause. Then C* is the (definite) clause C* =
H—BiAN...ANB, NC}N...NCE,.

Definition 3.5 (7’]). Let W = (Tl,Gl,Icl,Al,Dl) be a
propositional abductive context. Then n(W) is the abductive
context, (Ty, Ga,1Co, Aa, Ds) such that

T, = {C*|CeT}
ICQ - {C*‘Celcl}
—aAla* -
U «— =a N\ —\(1* ac ATIUIC]UGI}
Ay = Au{a’la€ AL 000, )

Dy = D

STEP 3: Adding Clauses for Abduction

We now add some extra clauses that, when translated into a
neural network, will perform a systematic search through the
space of abductive solutions.

As in the method of Ray & Garcez [9], we use a binary
counter whose output determines which abducibles are as-
sumed and which are not. In earlier work, the output of this
counter followed a simple binary sequence: 000, 001, 010,
011, 100, etc. But, in this paper, we wish to keep the num-
ber of abducibles as small as possible for as long as possible.
Thus we use a modified search sequence (called a Banker’s
sequence) where the number of true bits increases monotoni-
cally: 000, 100, 010, 001, 110, etc.

In fact, we use two cascaded Banker’s sequences, one for
pure abducibles a’ € A, and one for (the negations of)
the negative literals a* € As. The clauses which define
these counters are formalised in the theory C' below. Firstly,

Ch™ denotes a counter with ny bits a;, ,...,aj bits cor-

responding to the abducibles a], P aJ{. Secondly, C%"2
denotes a counter with ng bits aZ_, ..., af bits corresponding
to the abducibles a, ,a}. Each counter i has HOLD?

Nttt

and MOV E* conditions that determine its behaviour when a
global next signal is applied to the network. If HOLD? is
true, it will keep its current value. If M OV E' is true, it will
advance to the next value in the Banker’s sequence. If neither
is true, the counter will reset to zero.

The definition of each counter C*™ is split into five macros
Cy™ to C3" that together provide a logical specification of
the counter state transition table. In brief, b;- is true iff the

4t bit of counter i is true; cé. is true iff b; is true and b§71 is
false; d; is true iff 03» is true and c}‘C is false for all k£ < 7; eé» is

true iff b; is false and b;-_l is true; and all® is true iff all the

bits of counter 7 are true.

cC = Cv™muyuC?"  where
cin = | Jop™  such that
k=1 n
b, — [\ ~di AV, N MOVE'
n i=1
it o= UQ oy — A\~dinei_, AMOVE
k=0 j=1
b}:q — b}:c N —mnext
bl — b A HOLD'

bi, — /\ -bi A MOVE'
oL = =
all' — \vi
j=0

n k—1
ey = |J U { oy — b AdiAMOVE'}
k=2 j=0

% 7 7
€ _fbk A\ bl_c—l
) i 7
cp, < by, A b4

k—1
d; — /\ =c; A ¢,
Jj=1

n

nno
a" = U
k=1

b, « di A MOVE'

ai «— ABD}
it = |J U {v<vindAnMOVE"}
k=1 j=k+1
MOVE' = nextAall?
MOVE? = nextA—all?
HOLD' = =all?
HOLD? = false
ABD; = by forall k
ABD; = -biforallk

The 2"¢ counter increments until its maximum is reached,
whence it resets. The 1% counter holds until the 2" re-
sets, whence it increments. To preferentially minimise the
number of assumed abducibles the outputs a’ L a} of the
15t counter are obtained by copying the corresponding bits
bl . ...bl. To preferentially maximise the number of atoms
assumed false, the outputs a,z12 ...a? of the 2"? counter are
obtained by negating the corresponding bits b2 ... b7.



As in [9], we advance the counter if a fixpoint fp is reached
that violates the goal goal or integrity constraints ic. Previ-
ously, this was done by a clock with a constant period de-
termined by worst case propagation delay through the net-
work generated by the program. For efficiency, we now add
clauses to detect as soon as a fixpoint is reached. These are
given by the theory S below, which uses four new proposi-
tions 2/, 21, 27, 2% to compare the current state of each atom
z (in a set Z of atoms) with their previous states.

In brief, 2’ denotes the previous state of z; zT is true iff
the current and previous states are both true; 2~ is true iff
they are both false; and 2® is true iff they are the same. The
wl-w4 are wait signals that just give the counters enough
time to compute their next value before the network decides
whether the current abducibles are a solution (in which
case the signal soln is activated) or whether another set
of abducibles are needed (in which case the signal next is
activated). fp indicates when a fixpoint has been reached.
The signal done indicates when all solutions are exhausted.

S = SfuSfus?
2 —z
2T e— 2N
S7 = U 27—z A2
cez | 25— 2t
3

where

2% — z
w1y «— next
Wy <— W1
W3z < W2

Wy < W3

4
fp— /\ 25 A /\—vwi N —mext
z€2 i=1
next «— —mext A\ fp Aic
next < —mext A ~goal N\ fp
soln «— —mext A goal A\ fp N\ —ic
done — all* A all®> A fp

s7 =

To properly specify these additional clauses, it is necessary
to state the parameters n1, no and Z in C' and S. This is done
by the function § below, which defines n; as the number of
abducibles af, ny as the number of negations a*, and Z as
the set of all atoms appearing (positively or negatively) in
the context. In addition, this function adds a special atom
ic into the head of every integrity constraint, and adds the
literal —next into the body of every rule to ensure the net-
work is fully relaxed whenever a new solution is attempted.
The resulting network architecture is summarised in Figure 3.

Definition 3.6 (§). Let (1o, G2, [Cs, As, D) be a proposi-
tional abductive context with Gy = {goal} and Ds = .

Now let ny = |[{a' € Ay}, let ny = |{a* € Ay}, let
Z = AﬂuGQUICQ U A7, a,urc,y and let R be the program
R — H <+ B; N...A\B, A —next
- |H<—Bl/\.../\Bn€T2

U ic+— By AN...N\N By, A —next
| « BiA...AB, €1C

Then, P = §(Ts, G, ICy, As) is the program RU C' U S.

STEP 4: Obtaining a neural network

Now we translate the clauses obtained so far into a network
using the method of Ray & Garcez [9], recalled below, which
is based on well-known neurosymbolic techniques.

Definition 3.7 (8). Let P be a logic program, then 0(P) is
the network (N, E) such that

. rH By,...,B,,C1,...,Cp,
N = Lg { 'r = H<—BiA...ABy A=Ci A ... A—Cyy
regp
E = U (T,H),(Bl,r),...,(Bn,T‘),(Cl,T),...7(Cm,7“)
o S |r=H«— BiAN...AB, A=Cy A...\N=Cy,
regp
andforallr = H «— BiA\...AB,A=C{A.. . N=C,, € Gp
t(H)=1/2 w(r,H)=1
ﬁ(T):’I’L—l/Q t(Bl):1/2 ’LU(B“T‘):l
t(OJ)Zl/Q w(Oj,T)Z—l

STEP 5: Computing Abductive Solutions

In the last step, we compute the answers with the neural
network. Starting from a relaxed network, we activate the
node next. Then, on every other subsequent state, we check
whether the network has reached a fixpoint where soln acti-
vated. If it has, then the current abducibles are recorded and
we see which of the goal rules is activated in order to extract
the successful ground instances of the query. If more solu-
tions are required then we activate next in order to seek the
next answer. We stop this process when a suitable answer is
computed or done is true, meaning the entire search space
has been explored.

4 Conclusion and future work

We believe that the integration of abductive and inductive in-
ference is necessary to develop improved learning and reason-
ing approaches. In this paper we presented a neurosymbolic
approach for first-order abductive inference. Unlike most
other such approaches, we do not impose any restrictions on
the use of negation or recursion. However, the ASP ground-
ing procedure assumes that all variables have finite domains,
which limits the use of function symbols. We have imple-
mented our method using the C++ programming language
and applied it to the abductive context shown in Figure 1.
In this way, we correctly obtained the minimal solutions fol-
lowed by all of the other non-minimal solutions. Even in this
simple example we note that the search time increases sig-
nificantly if a naive grounding is used in place of our more
efficient ASP approach. We also note that the time needed
to compute all minimal solutions is significantly less than
the time needed to compute all (non-minimal) solutions. In
this sense we have improved existing methods of neurosym-
bolic abduction. However, the complexity of the approach
is still exponential in the number of abducibles, which limits
its practical use. In future work, we will compare our neural
approach with related symbolic approaches and investigate
ways of parallelising our method.

|
|
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Abstract

The word “symbol”, as it is used in logic and
computational theory, is considerably differ-
ent from its usage in cognitive linguistics and
in everyday life. Formal approaches that de-
fine symbols in terms of other symbols ulti-
mately need to be grounded in perceptual-
motor terms. Based on cognitive evidence that
the earliest action structures may be learned
from perception alone, we propose to use at-
tentive focus to identify the agents participat-
ing in an action, map the characteristics of
their interaction, and ultimately discover ac-
tions as clusters in perceptuo-temporal space.
We demonstrate its applicability by learning
actions from simple 2D image sequences, and
then demonstrate the learned predicate by rec-
ognizing 3D actions. This mapping, which also
identifies the objects involved in the interac-
tion, informs us on the argument structure of
the verb, and may help guide syntax. Ontolo-
gies in such systems are learned as different
granularities in the clustering space; action hi-
erarchies emerge as membership relations be-
tween actions.

1 Introduction

Learning the concepts for concrete objects require the
perceptual system to abstract across visual presentations
of these objects. In contrast, modeling actions present
a more complex challenge [Fleischman and Roy, 2005],
[Sugiura and Iwahashi, 2007]. Yet actions are the cen-
tral structure for organizing concepts; the corresponding
language units (verbs) also acts as “heads” (predicates)
in sentences, controlling how an utterance is to be in-
terpreted. Typically the structure for an action/verb
includes a set of possible constituents that participate
in the action, and also some constraints on the type of
action (e.g. the type of motion that may constitute “A
chases B”).

In this work, we consider the learning of the struc-
ture of actions, based on image sequences. Cognitively,
there is evidence that some action schemas are acquired

through perception in a pre-linguistic stage [Mandler,
2004]; later these are reinforced via participation, and
may eventually seed linguistic aspects such as argument
structure.

We postulate that a key aspect of this process is the
role of perceptual attention [Regier, 2003],[Ballard and
Yu, 2003]. Thus, an action involving two agents may
involve attention shifts between them, which helps limit
the set of agents participating in the action. The set of
agents participating in an action eventually generalizes
to the argument structure. In [Ballard and Yu, 2003],
human gaze was directly tracked and matched with lan-
guage fragments, and verbs such as “picking up” and
“stapling” were associated with certain actions. How-
ever, the verbal concepts learned were specific to the
context, and no attempt was made to generalize these
into action schemas, applicable to new scenes or situa-
tions. Top down attention guided by linguistic inputs is
used to identify objects in [Roy and Mukherjee, 2005].
More recently, in [Guha and Mukerjee, 2007] attentive
focus is used to learn labels for simple motion trajec-
tories, but this is also restricted to a particular visual
domain.

1.1 From Percept to Concept to Symbol

The word “symbol”, as it is used in logic and compu-
tational theory is considerably different from its usage
in cognitive linguistics and in everyday life. The OED
defines it as “Something that stands for, represents, or
denotes something else”. This meaning carries over to
the cognitive usage, where it is viewed as a tight coupling
of a set of mental associations (the semantic pole) with
the psychological impression of the sound (the phonolog-
ical pole) [?]. Formally, however, a symbol is detached
from any meaning, it is just a token constructed from
some finite alphabet, and is related only to other such
tokens. A computer system dealing with such symbols
can define many relations with other symbols, but finds
it difficult to relate it to the world, and this makes it dif-
ficult also to keep the relations between symbols up to
date. The objective of this work is to try to align a sym-
bol to a perceptual stimulus, so as to provide grounding
for the symbols used in language or in reasoning.

In other work, we have addressed the question of
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Figure 1: Scenes from 2D wvideo: “Chase”: Three

agents, “big square”, ‘small square” and “circle” play
and chase each other. Velocities are shown as gray ar-
rows.

learning the language label (or the phonological pole)
of a symbol [Satish and Mukerjee, 2008]. Here we fo-
cus on modeling the semantic pole, especially with re-
spect to action ontologies. Such models, called Image
Schema in Cognitive Linguistics [Langacker, 1999] or
Perceptual Schema in Experimental Psychology [Man-
dler, 2004], involve abstractions on low-level features ex-
tracted from sensorimotor modalities (positions and ve-
locities), as well as the argument structure.

We ask here if, given a system that is observing a
simple 2D scene (see fig. 1) with shapes like squares and
circles chasing each other, is it possible for it to cluster
all 2-agent interactions in some meaningful way into a
set of action schemas? If so, do these action schemas
relate reliably to any useful conceptual structures? Fur-
ther, is there any possibility of learning any relation-
ships between these action schemata, thus constructing
a primitive ontology? Note that all this has to take place
without any language, witout any human inputs in any
form.

Constructing such action templates has a long history
in Computer vision, but most gather statistics in view-
specific ways with an emphasis on recognition [Xiang
and Gong, 2006; ?]. We restrict ourselves to two-object
interactions, using no priors, and our feature vectors are
combinations of relative position and velocity vectors of
the objects (we use a simple inner product). We perform
unsupervised clustering on the spatio-temporal feature
space using the Merge Neural Gas algorithm [Strickert
and Hammer, 2005]; the resulting clusters constitute our
action schemas. By considering different levels of cluster
granularity in the unsupervised learning process, we also
learn subsets of coarse concepts as finer action concepts,
resulting in an action hierarchy which may be thought
of as a rudimentary ontology.

Having learned the action schema based on a given
input, we apply it to recognize novel 2-body interactions
in a 3D fixed camera video, in which the depth of a
foreground object is indicated by it’s image y-coordinate.
We show that the motion features of humans can be
labelled using the action schemas learned.
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2 Analysis: Role of Attentive Focus

One of the key issues we explore in this work is the rele-
vance of perceptual attention. It turns out that restrict-
ing computation to attended events somehow results in
a better correlation with motions that are named in lan-
guage. This may reflect a bias in conceptualization to-
wards actions that attract attention. Like other models
that use attention to associate agents or actions to lan-
guage [Ballard and Yu, 2003; Guha and Mukerjee, 2007/,
we use attentive focus to constrain the region of visual
salience, and thereby the constituents participating in an
action. We use a computational model of dynamic visual
attention [Singh et al., 2006] to identify agents possibly
in focus.

In order to analyze the different types of motion pos-
sible in the scene, we first perform a qualitative analysis
of the motions. We assume that all objects have an in-
trinsic frame with a privileged “front” direction defined
either by its present direction of motion, or by the last
such observed direction. Let the reference object be A,
then the pose of located object B w.r.t. the frame of A
can be described as a 2-dimensional qualitative vector
[Forbus et al., 1987], where each axis is represented as
{—,0,+} instead of quantitative values. This results in
eight possible non-colliding states for the pose of B. In
each pose, the velocity of B is similarly encoded, result-
ing in 9 possible velocities (including non-moving).

This results in 72 possible relations, and distinguish-
ing the situation when the reference object A is mov-
ing, from that when it is stationary, results in a total of
144 possible states. Linguistic labels(Come-Close(CC),
Move-Away(MA), Chase(CH), Go-Around(GoA), Move-
Together(MT), Move-Opposite(MO)) are manually as-
signed to each of these qualitative relative motion states.
The motion in nearly half the states do not appear to
have clear linguistic terms associated with them, and
these undenominated interactions are left empty. The
remaining classes assigned are shown in Figure 2. Qual-
itative classification for the frames in Fig.1 is shown in
Fig. 3.

Next, we analyze the frequency of these cases observed
on the Chase video. Fig. 2 compares the frequency of the
qualitative states with non-stationary first object, in the
situation where all possible object pairs are considered
(no attentive focus), versus that where using attentive
cues pairs of agents attended to within a temporal win-
dow of 20 frames become candidates for mutual interac-
tion; all other agent pairings are ignored. The frequency
of indeterminate qualitative cases are 58% in the first
situation and 24% in the second. Thus, attentive focus
biases the learning towards relations that we have names
for in language.

3 Visual Attention

We consider a bottom-up model of visual attention (not
dependent on task at hand) [Itti, 2000]. Here we con-
sider a model designed to capture bottom-up attention
in dynamic scenes based on motion saliency [Singh et al.,
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Figure 2: Qualitative analysis of two object interaction:
Single frame qualitative classification for (a) stationary
first object and (b) when the first object is moving hori-
zontally to the right. X-axis gives the different positions
of the second object and Y-axis gives the different veloc-
ity directions(including zero velocity) of second object
w.r.t. the first object at origin. Cases when motion
does not have a simple English label are blank. Others
labels are: Come Closer (CC), Move {Away,Opposite,
Together} (MA,MO,MT), Chase (CH) and Go Around
(GoA)
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Figure 3: Single frame qualitative classification for the
frames in Fig.1. The big square is taken as the first
object. The labels assigned are MA(left) and CC(right).
P and V refer to the position and velocity in the reference
frame with origin at the first object and x-axis along its
velocity.
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Figure 4: Without and with Attention: Frequency map
for Single frame qualitative classification for the case of
non-stationary first object. % of the feature vectors that
can not be labelled (given in Red) is 58% without atten-
tion, and 24% with attentive focus.

2006]. Objects are taken as the attentive foci instead of
pixels. Motion saliency map is computed from optical
flow, a confidence map is introduced to assign higher
salience to objects not visited for a long time. A small
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Formula
(Zp —4) - (Up — Va)
(¥ —7a) - (U + Ua)

Name
pos-vel Diff
pos-velSum

Table 1: Dyadic Features Formulae. A and B refer to
the two objects; A is said to be the Reference Object
(The more salient, usually the larger of the two objects,
is taken as Reference Object) and B the Located Object
in the feature computation; v, refers to velocity vector
of A; x4 refers to position vector of A; and ‘-’ refers to
the inner product of the vectors.

foveal bias is introduced to mediate in favour of proximal
fixations against large saccadic motions. Winner-Take-
All network on the combined saliency map gives the most
salient object for fixation.

4 Unsupervised Perceptual Clustering

Perceptual systems return certain abstractions of the
raw sensory data - “features” - which are used for recog-
nition, motor control, categorization, etc. In this work
we use two features that capture the interaction of two
agents. All learning takes place in the space of these two
features, (Table 1); the first feature captures the combi-
nation of relative position and velocity, the second the
relative position and magnitude.

These feature vectors are then clustered into cate-
gories in an unsupervised manner based on a notion of
distance between individuals. We use the Merge Neu-
ral Gas(MNG) algorithm[Strickert and Hammer, 2005
for unsupervised learning which has been shown to be
well-suited for processing complex dynamic sequences as
compared to the other existing models for temporal data
processing like Temporal Kohonen map, Recursive SOM
etc. This class of temporal learning algorithms are more
flexible with respect to the state specifications and time
history compared to HMMs or VLMMs. MNG algorithm
performs better than other unsupervised clustering algo-
rithms like K-Windows [Vrahatis et al., 2002], DBSCAN
[Ester et al., 1996] because of the utilization of the tem-
poral information present in the frame sequences unlike
the other algorithms.

4.1 Merge Neural Gas algorithm

The Neural Gas algorithm [Martinetz and Schulten,
1994] learns important topological relations in a given
set of input vectors (signals) in an unsupervised manner
by means of a simple Hebb-like learning rule. It takes a
distribution of high-dimensional data, P(§) and returns
a densely connected network resembling the topology of
the input.

For input feature vectors arriving from temporally
connected data, the basic neural gas algorithm can be
generalized by including explicit context representation
which utilizes the temporal ordering present in the fea-
ture vectors of the frames, resulting in the Merge Neural
Gas algorithm [Strickert and Hammer, 2005]. Here, a
Context vector is adjusted based on the present winning
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jth column

Table 2: Clustering Accuracy: The i*" row,

gives the number of #*" action labels in the j** NG Clus-
ter. % is the fraction of vectors of an action correctly
classified to the total vectors of that type. Total Classifi-
cation Accuracy(TCA) is the % of total vectors correctly
classified .

C3 C4 | Tot | % | TCA
10 29 | 444 | 90
) 48 | 380 | 82 84
149 | 1564 | 383 | 79

neuron data. Cluster labels for the frames are obtained
in the final iteration of the algorithm based on the win-
ner neuroin.

5 Concept Acquisition: Chase video

Unsupervised clustering using the Merge Neural Gas al-
gorithm is used on the feature vectors from the video,
corresponding to object pairs that were in attentive fo-
cus around the same time. Salient objects in a scene
are ordered by a computational model of bottom-up dy-
namic attention[Singh et al., 2006]. The most salient
object is determined for each frame, and other objects
that were salient within & frames before and after (we
use k = 10) are considered as attended simultaneously.
Dyadic feature vectors are computed for all object pairs
in these 2k frames.

Owing to the randomized nature of the algorithm, the
number of clusters varies from run to run. Clusters with
less than ten frames are dropped. With the aging pa-
rameter set to 30, the number of clusters came out to
be four in 90% of the runs; the set of four clusters with
highest total classification accuracy (refer Table 2) are
considered below.

In order to validate these clusters with human con-
cepts, we asked three subjects (Male, Hindi-English/
Telugu-English bilinguals, Age-22, 20 and 30) to label
the scenes in the video. They were shown the video twice
and in the third viewing they were asked to speak out
one of three action labels (CC, MA, Chase) which was
recorded. Given the label and the frame when this was
uttered, the actual event boundaries and participating
objects for the groundtruth data were assigned by in-
spection. In case of disagreement, we took the majority
view.

The percentage accuracies shown in table 2 do not
reflect the degree of match, since although an event may
last over 15 frames, even if 10 frames have been detected,
it is usually quite helpful. This can be seen in 6 which
present results along a time line for Chase; each row
reflects a different combination of agents (small square,
big square, circle). At first glance, figures like 6 would
seem to reflect a higher accuracy than 84% in table 2.

A surprising result was found when by experimenting
with the edge aging parameter in the Merge Neural Gas
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Figure 5: Feature Vectors of the Four Clusters from the
MNG Algorithm: CC - C1, MA - C5, Chase(Reference
Object is the Chaser) - C3, Chase(Reference Object is
the Leader) - Cy; The clusters reflect the spatio-temporal
proximity of the vectors.
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Figure 6: Comparison of Human and Algorithm La-
belling of “chase” over first 1500 frames. Because of
our choice of reference object, frames in first row are in
C4 and second row are in Cj.
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Table 3: Hierarchical clustering: Using a larger num-
ber of clusters reveals a sub-classification; e.g. frames
classified as CC in Table 2, are now in C4, Cs, orCg, re-
flecting two cases of CCope—object—static, Or one case of
CCboth—moving-

Table 4: Relevance of Argument Order: Value at i*" row,
4" column gives number of vectors that were originally
in Cluster ¢ and now assigned to Cluster j when ob-
ject order was switched in dyadic feature vectors. Note
that C3 and C4, the clusters corresponding to Chase, are
flipped.

C1 C2 C3 C4 | C5 | C6| C7 | C8 C2 C4 C3
CC 3 9 20 21 1 0 Cluster 1 20 11 15
MA 8 126 4 45 9 1 6 Cluster 2 32:
Chase 1 9 142 | 151 | 13 9 32 | 26 Cluster 3
Cluster 4

algorithm. The number of clusters increase as aging pa-
rameter is decreased, and at one stage eight clusters were
formed (edge aging parameter=16). The Total Classifi-
cation Accuracy (TCA) was about 51 and we would have
discarded the result, but inspecting the frames revealed
that the clusters may be reflecting what appeared to be
hierarchy of action types. Thus cluster C'; from the ear-
lier classification (majority correlation=CC) was broken
up into C4, Cs, Cg. Cy was found to contain frames where
both objects are moving towards each other whereas Cs
contains frames where the smaller object is stationary
and the other moves closer. Thus Come-Closer and
Move-Away appear to be sub-classified into 3 classes
(two one object static cases, and one both moving case).
This ‘finer’ classification is given in Table 3.

5.1 Argument order in Action Schemas

In another experiment, we investigated the importance
of argument ordering by re-classifying the same frames,
but reversing the order of the objects used in the dyadic
vector computation. FEarlier, if the larger object was
argl or reference object, now it became arg2 or non-
reference object. If the corresponding concept changed,
especially if it flipped, this would reflect a semantic ne-
cessity to preserve the argument order; otherwise the ar-
guments were commutative. Using the coarser clusters,
we observe that the argument order is immaterial since
the majority relation is unchanged (black) for C1 and
C2 (CC,MA respectively). On the other hand, both C3
and C4 (correlations with Chase) are flipped (Table 4).
Thus, the fact that argument order is important for
Chase is learned implicitly within the action schema it-
self. The non-commutativity of CCone—object—static and
MApe—object—static could not be established because of
the skewed distribution of frames in the input video
amongst the two sub-classes for the action verbs.

5.2 Comparison with K-Windows
Clustering

We compare the clustering accuracy obtained by the un-
supervised Merge Neural Gas algorithm with K-windows
algorithm [Vrahatis et al., 2002]. K-Windows is an im-
provement of K-Means clustering algorithm with a bet-
ter time complexity and clustering accuracy. We set the
value of k in this algorithm to 4 and run it on the input
feature vectors obtained after attentive pruning. The
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Table 5: Clustering Accuracy by K- Windows: The value
of ‘k’ is set to 4. The i*" row, j*" column gives the num-
ber of i*" action labels in j** Cluster. % is the fraction of
vectors of an action correctly classified to the total vec-
tors of that type. Total Classification Accuracy(TCA)
is the % of total vectors correctly classified .

Action [ C1 C2 [|C37] C4 [Total | % | TCA
CC 19 51 97 444 62
MA 29 61 56 380 61 59
Chase 95 83 91 114 383 54

initial cluster points for the algorithm are set randomly.
Table 5 gives the clustering results obtained.

The lower accuracy (as compared to results in Table 2)
is expected because K-windows treats each feature vector
as a separate entity without utilizing the information
present in the temporal ordering of the frames.

6 Recognizing actions in 3D

In order to test the effectiveness of the clusters learned,
we test the recognition of motions from a 3D video of
three persons running around in a field (Fig.7). In hu-
man classification of the action categories (into one of
CC, MA, Chase), the dominant predicate in the video,
(777 out of 991 frames), is Chase.

In the image processing stage, the system learns the
background over the initial frames based on which it seg-
ments out the foreground blobs. It is then able to track
all the three agents using the Meanshift algorithm. As-
suming camera height near eye level, the bottom-most
point in each blob corresponds to that agent’s contact
with the ground, from which its depth can be determined
within some scaling error (157 frames with extensive oc-
clusion between agents were omitted). Given this depth,
one can solve for the lateral position - thus, we are able to
obtain, from a single view video, the (z,y) coordinates
for each agent in each frame, within a constant scale.
Based on this, the relative pose and motion parameters
are computed for each agent pair, and therefrom the fea-
tures as outlined earlier. Now these feature vectors are
classified using the action schemas (coarse clusters) al-
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Scenes from the 3D video

Figure 7: Test Video :

Table 6: Distribution of Chase frames(ground truth)
from the 3D video across the Neural gas clusters

Cl | C2 C3 C4 | Chase total

13| 15 253 7
ready obtained from the Chase video (2D) (Table 6).

%
96

Chase

7 Discussion and Conclusion

We have outlined how our unsupervised approach learns
action schemas of two-agent interactions resulting in an
action ontology. The image schematic nature of the clus-
ters are validated by producing a description for a 3D
video. The approach provided here underlines the role
of concept argument structures in aligning with linguistic
expressions, and that of bottom-up dynamic attention in
pruning the visual input and in aligning linguistic focus.

Once a few basic concepts are learned, other con-
cepts can be learned without direct grounding, by using
conceptual blending mechanisms on the concept itself.
These operations are often triggered by linguistic cues,
resulting in new concepts, as well as their labels being
learned together, in a later stage. Indeed, the vast major-
ity of our vocabularies are learned later purely from the
linguistic input [Bloom, 2000]. But this is only possible
because of the grounded nature of the first few concepts,
without which these later concepts cannot be grounded.
Thus the perceptually grounded nature of the very first
concepts are crucial to subsequent compositions.

Figure 8: Image Schemas identified for actions:
“Red Chase Green”, “Move Away(Red,Yellow)”, “Move
Away(Green,Yellow)”
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Abstract

In this paper, a sentence-based reasoning model is
introduced for the prediction of new individual ac-
tivities by means of memory reconsolidation that
enables the integration of incoming evidence with
related past experience. Both the evidence and pre-
vious experience are stored in extended semantic
networks (ESN) as memory. They are then pro-
cessed in Bayesian networks for inferring new and
unified memory. Symbolic approaches, which fo-
cus on the structural aspect of language, ensure the
correct extraction of the key information of words
according to the context. Effective mechanisms for
information propagation, Bayesian networks (BN)
construction and combination are adopted to enable
inference reasonable and adaptive to different sce-
narios based on the topic domain. Our model is
compared to other reasoning systems through ex-
periments. The results show that our model can
both deduce more implicit information from texts,
and avoid some incorrect reasoning caused by con-
fusing data in the knowledgebase.

1 Introduction

Successful reasoning on activities from text should be more
adaptive to different scenarios than other data-driven infer-
ence models that focus on structure and parameter lean-
ing. For that, a preprocessing must include both the integra-
tion with commonsense knowledge and the representation of
events after parsing the sentences [Klein and Manning, 2003].
Previous approaches have applied some language process-
ing operations and built effective reasoning models. One
method establishes “coreference mappings” of data in a mem-
ory system to reduce the number of ambiguous sentence in-
terpretations [Livingston and Riesbeck, 2009]; another builds
a large commonsense knowledgebase to make inference from
key words [Liu and Singh, 2004]. These methods, although
efficient in many cases, lack a systematic approach for dis-
ambiguation of word senses and scenario topics [Dahlgren,
19881, and hence may lead to partially incorrect inference.
Additionally, some data from commonsense knowledge are
not always true given a specific scenario. For example, the as-
sertion “if someone is a lawyer, he practices law” could sound
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correct, however, there are non-practice lawyers and lawyers
are not likely to practice law during “their holidays” [Kath-
leen and Joyce, 1989].

To improve on the inference of individual activities from
simple sentences, we propose a reasoning model with the
characteristic of memory reconsolidation. Memory reconsol-
idation can be thought as an information-processing proce-
dure where a recall of memory can be updated or strength-
ened as a result of integration of incoming information into
the pre-existing “memory network”[Tulving and Thomson,
1973]. During this procedure, information similar in mean-
ings, topics or scenarios within a domain is activated and
selectively moved to working memory for cognitive pro-
cess. Inspired by this phenomenon, we build a robust and
scenario-adaptive memory system with extended semantic
networks (ESN) as the symbolic representation of the lan-
guage. Stanford Parser [Klein and Manning, 2003] is em-
bedded to parse sentences. Key information such as subjects,
verb and objects is extracted into working memory and re-
ferred to WordNet [Fellbaum, 1998] and VerbNet [Kipper
et al., 2006] for disambiguation of word senses and top-
ics. Ontology categories of noun phrases, built from Word-
Net and stored in directed acyclic graphs, describe the fea-
tures of entities of individual subjects. The relations of en-
tities(representing activities, events or features of entities),
are stored as sub-symbolic memory in multiple Bayesian net-
works (BN). The BNs are built from a)statistical analysis of
information in ESN, b)sentences containing causal relation
and c)other knowledge bases. Related BNs are adaptively se-
lected by matching the keywords of topics in a scenario, and
are combined together if they have nodes in common.

The selection and combination of BNs enable inference
processes to avoid inaccurate conclusion and obtain more im-
plicit information than previous models.

2 Related Work

We use the following programs to enable our memory model:

1) Stanford parser, a Java program, is used to analyze the
grammatical structure of sentences and obtain subjects, ob-
jects and predicates [Klein and Manning, 2003]. 2) WordNet
is an English lexical database that provides multiple mean-
ings and topic domains of a word. It also groups words into
sets of cognitive synonyms and indicate the relations of the

words. (e.g. “dog” belongs to “canine”, “canine” belongs to
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“carnivore”, “placental” and “mammal”.) We use it to con-
struct an acyclic graph for word disambiguation.

3) VerbNet classifies verbs into classes. Each class is as-
signed with thematic roles, selectional restrictions on the ar-
guments and syntactic frames. For example, the Class “Hit-
18.1” has a constraint on the syntax of the class members,
showing the subject of “hit” should be a human or animal.
Such constraints are used to disambiguate the meanings from
WordNet and ConceptNet.

4) ConceptNet provides a commonsense knowledgebase
that can describe concepts of nouns and provides causal re-
lations between predicates. The knowledge in ConceptNet is
expressed as five-tuple assertions (“relation type”, “A”, “B”,
“t7, “I”), where “relation type” indicates the relation of “A”
and “B”, f is the number of times a fact is uttered in their train-
ing corpus, i counts how many times an assertion was inferred
during the ’relaxation’ phase. For example, (CapableOf “an-
imal” “grow” “f=2; i=2;") has a relation type “CapabaleOf”,
which indicates the category of “animal” is capable to per-
form the activity “grow”. Since some relation types provide
causal relations of the verb phrases (VP), we build two-node
Bayesian networks from each of the assertions and use them
for inference on focused topics.

3 Information Representation

Predicates in sentences describe the features or activities of
the subjects. Some predicates can break into a form of “joiner
+ object”, where the joiner contains a verb, indicating the re-
lations between the subjects and the objects (see Figure 1(a))
. From a graphical point of view, a vertex can symbolically
represent a subject or an object while an edge can represent
their relation. For this reason, our extended semantic net-
works(ESNs) are used as a memory that represents the infor-
mation derived from sentences .

The ESNs focus on the relations between the subject and
the object. Since the meaning of a word can be captured by
the distribution of commonly co-occurring words or phrases
[Landauer and Dumais, 1997]. The semantic roles of verbs
have been characterized with nouns, and were shown to pre-
dict the brain activity associated with the meanings of nouns
[Mitchell et al., 2008]. The relation in an ESN contains a verb
that helps to understand the subjects in a certain scenario.

3.1 Definition of Extend Semantic Network

Suppose S = (s1, S2,...,S,) is a set of sentences, an ex-
tended semantic network to store S is a graph G’ = (V', E’)
, where V/ = {vi|k = 1,2,...,m} is a set of vertices repre-
senting the concepts of subjects or objects in the sentences in
Sy B = {eq(Vi,Vj)ld = 1,2,...5 4,5 = 1,2,...,m} isa
set of edges representing the relations between vertex V; and
V;, which are indicated in the sentences in S.

Notice that eq(V;,V;) is the d-th edge from vertex V; to
V;, which means that there can be more than one relations
between two concepts. Vertex V; can be the same as V; (that
is, ¢ = j), in which case it is a unary relation of V; (e.g. edge
e1(V3,V3) in Figure 1(b)) representing a intransitive verb or
a property of a vertex.
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In our model, the memory system has two kinds of mem-
ory: a long-term memory and a working memory. The long-
term memory is an ESN that stores all the refined information
from working memory. The working memory is a temporar-
ily created ESN and receives information from the Stanford
Parser, long-term memory and inferences from BNs. The
working memory provides a disambiguation mechanism to
ensure the accuracy of information by topic matching. Then,
the disambiguated information would be either stored into the
long-term memory as an update or propagated to BNs as evi-
dence for inferences.

3.2 Parsing a Sentence

The subject and predicate of an input sentence are first ex-
tracted with the Stanford Parser.

Figure 1 shows the storing of sentences in an ESN. In Fig-
ure 1(a), the subject “Mike” and the objects “apple” and
“room” are stored as vertices. The joiners “ear” and “is in”
in the Verb Phases (VP) are stored as directed edges between
vertices (Figure 1(c)).

Sentencel: Mike eats the apple.
Sentence2: Mike isin the room.
subject joiner object
predicate

(a) predicates containing an object

Sentence3: the apple is red.

subject predicate

(b) a predicate with no ob-
jects

el(V3,v3)isred

el(V1V3)ea V3

e1(V3,V1) eaten_by

Vi V2

el(V1V2)isin

(c) symbolic representation in ESN

Figure 1: Parsing sentences into an ESN.

3.3 The Vertices

Vertices in an ESN denote noun phrases (NP) from subjects
and objects in sentences. They represent the entities of people
or things in the world. Features and constraints are added to
these vertices to ensure the robustness of the memory system.

Ontology Categories

Ontology categories classify the vertices according to the
word senses. WordNet provides such hierarchical category
data with regard to the word meanings.

Our model uses WordNet to build directed acyclic graphs
to represent these categories. Each category has descriptions
of its features and activities. Figure 2 shows a sub-graph of
the category graph generated from data in WordNet. Sup-
pose “research professor” belongs to the categories of “pro-
fessor” and “researcher”. In WordNet, “professor” is a kind



of “academician” who “works at a college or university”. Af-
ter extracting the subject and predicate in the annotation of
“professor” with the Stanford Parser, “professor” can be as-
signed to the category of “academician” and the feature activ-
ities are “work at a college” or “work at a university”. Simi-
larly, “research professor” is also in the descendant categories
of “educator” (“someone who educates young people”) and
“researcher” ( “scientist who devotes himself to research”).

professional

researcher

Research
professor

Figure 2: part of a directed acyclic graph for categories

In our category graph, a category can obtain the features
or activities either from its parent categories or by importing
data from the knowledgebase in ConceptNet.

The ontology categories are important to the entities in
working memory because they can help to disambiguate the
word sense and provide predicates to connect BNS(see next
section).

Possible States of a ESN Vertex

During information processing in the human brain, some neu-
rons are highly active, whereas others remain silent. This
leads to the formation of neural circuits for specific memory.
In analogy with biological neural memory, a vertex in an ESN
has different states: 1)active, 2)semi-active and 3)inactive .

Table 1 shows the differences among the three states of a
vertex. An active vertex represents an entity ready for infer-
ence. It comes from a subject or an object in a sentence or
from the long-term memory. Its meaning is disambiguated
and its renewed relations in the working memory with other
entities will be directly updated to the long term memory. A
semi-active vertex will become an active vertex if it is linked
to another active vertex once there exists a new relation be-
tween them. An inactivated vertex is not for inference and
remains in the long term memory. This can reduce the size of
ESNs, which makes computation less complex.

state Long-term | Working For information assigned
memory Memory inference update a category
active Yes Yes Yes Yes Yes
semi-active || No Yes Yes No No
inactive Yes No No No No

Table 1: Three states of a vertex in an ESN.
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3.4 The Directed Edges

In a sentence, a predicate with an object is regarded as the
form of “joiner + object”. Edges in the ESNs represent the
joiners. They denote the relations between vertices in ESNs
and have features that are important to the inference in BNs:

1) The indicator of the evidence. Edges are indicated as
evidence if they are generated from input sentences. These
edges will be directly stored in both the long-term and work-
ing memory regardless of their probabilities.

2) The probability of an edge. The non-evidence edges
are generated from inferences by BNs. Their probabilities
can change after each inference. In a working memory, a non-
evidence edge is added or removed depending on whether its
probability is beyond or below a given threshold. After infer-
ences in the working memory are finished, the non-evidence
edges are transported to the long-term memory.

3) Edges representing a passive voice. As each BN in our
model predicts the activities of only one subject, the interac-
tion of two entities cannot be inferred in one BN. A reversed
edge representing the passive voice of a verb is used in the
ESN to ensure information can be propagated among the BNs
for different entities. For example (Figure 1), “Mike eats the
apple”. An edge es3(V3, V1) representing “be eaten by” will
be created, and a node representing “be eaten by Mike” in a
BN if the activities of the apple need to be inferred.

4) Unary and binary relation. Edges connecting two dif-
ferent vertices indicate binary relations. Unlike standard SN,
loop edges are allowed as unary relations in our ESN when
the predicate has no object(e.g. “stops” ), or when the pred-
icate only describes a property of its subject (e.g. “is red”
e1(V3, V3) in Figure 1(b)).

5) Multiple edges between two vertices. Multiple re-
lations between two vertices are represented as multiple
edges in the ESN. In referring to Figure 1(c), suppose also
“Mike likes the room”, then another edge “like”, denoted as
e2(V1, Vo), would connect “Mike” to the “room”.

3.5 Disambiguation for Meanings

Words with multiple senses are classified into multiple cate-
gories in WordNet and cause ambiguities. We suggest opera-
tions that can disambiguate the word senses:

1) choosing categories with constraints in VerbNet :

For example, “a bat catches insets”. The “bat” can be a
kind of “mammal” or a kind of “club” for ball game. Verb-
Net constrain that “Catch” should have a human or animal as
agent, so the meaning of “bat” should be a “mammal”( be-
longing to the “animal” category) not a “club” for sport.

2)selecting the word sense by matching the topics in the
working memory and those in BNs:

E.g.  “bank” has more than four meanings in its
noun form in WordNet and thus can be related to top-
ics such as “deposit”, ‘“depository financial institution”,
“flight maneuver”, “slope” and so on. The sentence ‘“he
goes to the bank” can be confusing because the “bank”
may relate to any of the topics. Two BNs contain-
ing conditional probability P(depositmoney|gotobank) and
P(jumpintothewater|gotothebank) can limit the meaning
to “bank building” and “sloping land beside water”” within the
topic domains “deposit” or “slope, water”. Other information




in the working memory (e.g. a vertex representing “river”,
has the same topic “water” as “sloping land beside water”)
can then decide that the “bank” should be related to a “slope”.

4 An Adaptive BN Mechanism for Reasoning

Our model focuses on update new activities of entities based
on new information in memory. Each BN at a time infers ac-
tivities of only one subject and takes in predicates from work-
ing memory to infer new ones.

During inference, activities in the working memory are re-
garded as in the same scenario, and BNs are selected to the
topic domain only.

4.1 The Bayesian Network Structure

BNs are used in our model to update information in ESNs.
Each BN is constructed with the causal relations between
predicates. Thus, the agent of the predicate should be the
same as the inferred ESN. Each BN has a vector containing
words and representing a topic domain. Multiple BNs will be
used for different entities in the working memory. Figure 3
shows two BN for the hunter and antelope.

e1(V1,v2) hunt

\%l hunter antelope ¥}

e1(V2,V1) be hunted by

(a) hunting scenario in an ESN

Be hunted
by hunter

Get
injured

Be
catched

(b) a BN for the antelope

Be
happy

Hunt

success
antelope

(c) a BN for the hunter

Figure 3: Propagating information from an ESN to BNs.

The Nodes

We choose the predicates as the nodes of BNs. Figure 3 illus-
trates how the predicate “be hunted by hunter” is passed from
the working memory to a BN as a node .

Evidence in BNs

In BNs, each node has a property called “evidence”. At the
beginning of inference, nodes are set to “evidence” if they
match the edges of evidence in the working memory. “be
hunted by hunter”(Figure 3(b)) and “hunt antelope” (Figure
3(c)) are viewed as evidence.

4.2 BN Construction

We propose a mechanism for automaitc self-generation of BN
nodes. There are two ways to construct a BN in our model.
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The first way is to learn from experience. After an update
in the long-term memory, if two predicates of a subject co-
appear for a large number of times, they are considered to
have causal relation and are extracted as a predicate pattern
pair. The predicate pattern here consists of a verb phrase and
the specific object category.

For example, an “alarm sounds” and 8 out of 12 “person’’s
hear it. The vertex “alarm” and the 12 vertices of different
“person” are activated and moved to the working memory.
The 12 “person’s are in the same category of human accord-
ing to WordNet. So the predicate pattern is “be heard by +
human”. “Sound” and “heard by human” are converted to
BN nodes. Both predicates share “alarm” as their subject.

VerbNet has the syntax restriction to ensure the verb phrase
“be heard by” to have a correct “agent” alarm and object “hu-
man”. The edge “be heard by human” only goes from the ver-
tex “alarm” to the other 12 “human” vertices. When counting
the frequency of “be heard by”, the maximum number should
be 12. Thus p(heardby = true|sound = true) = 8/12 =2/3.
Another conditional distribution we can get from the data is
p(sound|heardby). The conditional distribution is initialized
according to the frequency.

The second method is to extract information from other
knowledge bases. For example, BN can be constructed from
data in the eight of the twenty semantic relations in Concept-
Net as described in Table 2.

relation probability probability
type function value
(PrerequisiteEventOf || P(A = true|B = true) 0.9
“A”“B”) P(A = true|B = false) 0.2
(FirstSubeventOf P(A = true|B = true) 0.7
“A”“B”) P(A = true|B = false) 0.3
(EffectOf P(A = true|B = true) 0.7
“A”“B”) P(A = true|B = false) 0.2
(CapableOf P(A = true|B = true) 0.7
“A”“B”) P(A = true|B = false) 0.1
(SubeventOf P(A = true|B = true) 0.9
“A”“B”) P(A = true|B = false) 0.1
(MotivationOf P(A = true|B = true) 0.6
“A”“B”) P(A = true|B = false) 0.1
(DesirousEffectOf P(A = true|B = true) 0.6
“A”“B”) P(A = true|B = false) 0.4
(IsA P(B = true|A = true) 1
“A”“B”) P(B = true|A = false) 0.6

Table 2: Integrate information to a BN from ConceptNet.

Since some commonsense knowledge bases do not provide
the probabilities of causal relations, we initialize the probabil-
ity distributions to default values(Table 2). The probabilities
of nodes without a parent are set to 0.5.

BN Selection and Connection
BNs need to be selected and joined together as a new large
Bayesian net for the activity prediction.

The BN selection is based on the predicates in the sen-
tences and the topics in the working memory. The first step
is to search BNs whose nodes represent the same predicate as



in the sentences. E.g. for the sentence “He goes to the bank”,
BNs containing probability P(depositmoney|gotobank) or
P(jumpintothewater|gotothebank) are all selected.

The second step is to remove BNs with a different topic
from the working memory. E.g. if the working memory has
entities in the categories related to “money” or edges related
to financial operation, BNs without these topics are removed.

An adjacency matrix M is built for combining BNs. If BN
i and BN j share a common predicate, then M;; = M;; = 1,
otherwise, the element in the matrix is 0. By multiply the ad-
jacency matrix, a path connecting the BNs can be found. This
approach saves us from learning and inferring about unrelated
data, and hence reduces much complexity.

The Joint Distribution Function

Suppose the shared node s has parents s € pa;(s) in BN ¢
and parents y; € pa;(s) in BN j, where y; ¢ pa;(s). the
conditional distribution p(s|pa;(s)) in BN ¢ and p(s|pa;(s))
in BN j are known and the new joint conditional distribution
p(s|pa;(s), pa;(s)) should be initialized for the new network.

5 Making Inference on Evidence

There are several main steps to infer new information from
new sentences:

1)A new entity from arriving sentences are automatically
created as an active vertex in the working memory. If there
are other entities have relation to the new entity, they are
brought to the working memory as well.

2)Classify the entities into categories.

3)Predicates in the coming sentences are evidences. New
predicates can be inferred from the evidence via BNs. BNs
containing the to-be-inferred predicates are target BNs. They
are selected for the next step.

4)Find a link path from the target BN to the BN containing
evidence with the adjacency matrix. (e.g. fig.5) (If the link
does not exist, then the evidence does not affect the activities
in that target BN.)

5)Combine the BN in the path to a large BN. Set the joint
conditional distribution values of the share nodes.

6)Search a d-connecting path from the evidence node to the
target node.

7)Calculate the probability of the variables in the BN

8)Update the working memory and the long-term memory

6 Case Study

In the following, we will compare our model and Direct
Memory Access(DMAP) on the data provided by [Liv-
ingston and Riesbeck, 2009]. A scenario is built to compare
the inference result of our system and ConceptNet.

6.1 Comparison with DMAP

DMAP uses a story of bombing attack at U.S. soldiers to test
how well the model can understand the text. One of the sto-
ries is as follow: “An attack occurred in Afghanistan. The
bombing was performed by Al Qaeda. The attack occurred
on July 18, 2008. The attack targeted United States soldiers.”

The aim of DMAP is to integrate the information of
“bombing” and “attack” by using a language pattern to map
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the two words to the same reference in its memory sys-
tem.E.g, the sentence “the bombing was performed by Al
Qaeda” is represented as (performedBy, Bombing-54 Al-
Qaeda). DMAP then searches if there are assertions such
as (performedBy ?attack Al-Qaeda) to map the two words.
DMAP successed in integrating the information only if
“bombing” and “attack” share the same assertion pattern (per-
formedBy xxx Al-Qaeda). However, if there is another key-
word that share the assertion pattern as “bombing”, DMAP
would be confused. For example, if the “Al-Qaeda performed
a celebration” after the attack, the three word “bombing”, “at-
tack” and “celebration” would share the same pattern “per-
formed by Al-Qaeda”. Thus, DMAP could falsely reason that
“bombing” is equal to “celebration”.

In our model, a disambiguation for the word sense is per-
formed in the working memory by using WordNet. The
meaning of “bombing” can be referred to “bomb”, which has
a meaning “throw bombs or attack with bombs”. The key-
word “attack” in the annotation is extracted by the Stanford
Parser and matches the “attack” in the sentences. In this way,
the word “celebration” can be omitted as an unrelated word.

6.2 Comparison with ConceptNet

Suppose there are three sentences in a scenario: ‘“Mike
swings a bat”, “John throws baseball” and “Jones catches the
ball”. ConceptNet and our model will use the same knowl-
edgebase to reason on the sentences. The following asser-
tions can be found in the database in ConceptNet(explanation
of the assertion can be seen in section 2):

1. (CapableOf “batter” “hit ball” “f=2;i=1;")
(SubeventOf “play tennis” “hit ball” “f=7;i=1;")
(CapableOf “baseball player” “hit ball” “f=7;i=1;")
(CapableOf “bat” “hit ball” “f=2;i=0;")
(MotivationOf “play tennis” “hit ball” “f=3;i=0;")
(Isa “batter” “baseball player” “f=2;i=0")

»

N SR WD

(CapableOfReceivingAction “baseball pitcher” “throw base-

ball” “f=2;i=0;")

(CapableOf “baseball player” “throw ball” “f=3;i=1;")
(SubeventOf “play baseball” “throw ball” “f=2;i=1;")
(CapableOf “ baseball pitcher” “throw ball” “f=4;i=1;")
(SubeventOf “play football” “throw ball” “f=2;i=0;")
(Capableof “cathcer” “catch ball”)

13. (CapableOf “batter” “swing bat” “f=2;i=0;")

14. (Isa “catcher” “baseball player” “f=2;i=0")

By matching the keywords, ConceptNet can get the fol-
lowing results about “Mike”: “Mike might be a batter.(from
assertion 13)” “Mike can hit ball.( from assertion 1)”, “Mike
might be a baseball player.( from assertion 3)” “Mike might
play tennis(from assertion 2)” “Mike might be a bat.( from
assertion 4)” Notice that “tennis” and “baseball” are differ-
ent sports and “Mike” cannot play them at the same time.
Additionally, ConceptNet cannot infer the exact activities of
“John” because there are four different assertions regarding
“throw ball”(from assertion 8 to 11).

In our model, the probability generated from data in
ConceptNet is initialized as in Table 2. Joint conditional

Go

9.
10.
11.
12.



distribution is initialized as follow:P(S|z, y:) 0.8,
P(S|zi, yi) = P(S|zk, i) = 0.55,P(S |2k, i) =
BNs were constructed and combined according to the

knowledge base(Figure 4).

Is
baseball
pitcher

Throw
baseball

Is
baseball
player

Figure 4: Constructed BN

Table 3 summaries the inferred result. We choose the
threshold of probability for adding an edge in memory as
0.65, hence the first three row in table 3 are selected ass new
inferred information and added to long-term memory. Notice
that “is a baseball pitcher” is not in the D-connecting path
given the evidence “swing bat”. This means it is independent
of “swing bat”. Table 4 shows the inference about John’s ac-
tivities. Our concluded inferences, as shown in Table 3 and
Table 4, are more reasonable than that in the ConceptNet.

Predicate for “Mike” || probability value

Is batter P(Isbatter) 0.77

Hit ball P(Hitball) 0.67

Is baseball player P(Isbaseballplayer) | 0.86

Throw ball P(Throwball) 0.62

Is baseball pitcher P(Isbaseballpitcher | N/A

Catch ball P(Catchball) 0.62
Table 3: probability of Mike’s activities.

Predicate for “Mike” || probability value

Is baseball player P(Isbaseballplayer) | 0.84

Pitch P(Pitch) 0.70

Is baseball pitcher P(Isbaseballpitcher | 0.65

Hit ball P(Hitball) 0.61

Catch ball P(Catchball) 0.61

Is batter P(Isbatter) 0.60

Swing bat P(Swingbat) 0.50

Table 4: probability of John’s activities.

7 Discussion and Future Work

In this paper, we built a reasoning model to represent and
infer new information from texts. Experiments compare
DMAP, ConceptNet and our model. Results show that our
model is both robust and scalable because the disambiguation
mechanism enables it to avoid inaccurate reasoning caused by
confusing data. Through calculation, our model can obtain
reasonable probabilities of the activities of entities.
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The parameters of BNs are set to default values when BNs
are first constructed. In the future, we will add a training
mechanism of BNs to adjust the parameters after the BN com-
bination. The threshold for adding edges should also be ad-
justed according to a specific scenario.
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Abstract

We discuss how to extract symbolic rules from
a given binary threshold feed-forward net-
work. The proposed decompositional approach
is based on an internal representation using bi-
nary decision diagrams. They allow for an effi-
cient composition of the intermediate results as
well as for an easy integration of integrity con-
straints into the extraction. We also discuss
some experimental results indicating a good
performance of the approach.

1

During the training process, neural networks acquire
knowledge by generalising from raw data. Unfortunately,
this learnt knowledge is hidden in the weights associated
to the connections and humans have no direct access
to it. One goal of rule extraction is the generation of
a human-readable description of the output units be-
haviour with respect to the input units. Usually, the
result is described in form of if-then rules, giving condi-
tions that activate (or inactivate) a given output unit.
Rule extraction from connectionist systems is still an
open research problem, even though a number of algo-
rithms exists. For an overview of different approaches we
refer to [Andrews et al., 1995] and [Jacobsson, 2005]. Ex-
traction techniques can be divided into pedagogical and
decompositional approaches. While the first conceives
the network as a black box, the latter decomposes the
network, constructs rules describing the behaviour of the
simpler parts, and then re-composes those results.

In [Bader et al., 2007], we proposed the CoOp-
algorithm, a decompositional approach for the extrac-
tion of propositional rules from feed-forward neural net-
works. Here, we discuss an extension of this approach. In
this new extension, binary decision diagrams (BDD) are
used to store intermediate results, i.e., rules extracted
from single units (perceptrons). This representation has
three advantages:

Introduction

1. results are stored in a very compact form,
2. intermediate results can easily be combined, and

3. integrity constraints can easily be incorporated.
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After a presentation of all necessary concepts in Sec-
tion 2, we discuss the proposed extension of the CoOp-
approach, i.e., the extraction of BDDs from simple per-
ceptrons. Afterwards, we discuss how to compose the
intermediate results and how to incorporate integrity
constraints. In Section 6 first experimental results are
presented and further work is discussed in Section 7.

2 Preliminaries

In this section, we introduce some necessary concepts.
After defining feed-forward neural network and the rule-
extraction problem, we discuss binary decision diagrams.
Feed-forward artificial neural networks (ANNs), also
called connectionist systems, consist of simple computa-
tional units (neurons) which are connected. The set of
units U together with the connections C C U x U form an
acyclic directed graph. In this paper we concentrate on
networks with units applying the +1-threshold function.
Such a neural network can be represented as a 6-tuple
<u72/{inpauoutac7w>9>- Zf[inmuout C U denote input and
output units of the network, i.e., are sources and sinks
of the underlying graph. The functions w : C — R as-
sign a weight to every connection and 6 : Y — R a
threshold to every unit. Every unit v has an activation
value act,, € {—1,+1} which is set from outside for in-
put units, or computed based on the activation value of
its predecessor units and the threshold 6(u) as follows:

act,, = {

Figure 1 shows a simple network serving as running ex-
ample throughout the paper.

Because every unit can be active (act, = +1) or inac-
tive (act, = —1) only, we can associate a propositional
variable u to it, which is assumed to be true if and only if
the unit w is active, and we use u to denote the negation
of u. Furthermore, we can characterise network inputs
as interpretations I C Ui, of the propositional variables
Uinp. We use act,(I) to denote the state of unit w if
all input units contained in I are active and all other
input units are inactive. Using this notation, we can
define the rule extraction problem as follows: The rule
extraction problem for a given node u of a feed-forward

+1 0f Yo uyec acty - w(c) = 0(u)
—1 otherwise
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Figure 1: A simple network serving as running exam-
ple. The threshold are shown within the nodes and the
connection weights are shown on the right.

threshold network (U, Uinp, Uout,C,w,0) is the construc-
tion of a propositional formulae F' over Ui, such that
for all interpretations I we find

act, (1) = {+1 if I =F

—1 otherwise

Le., we are looking for propositional formula stating nec-
essary and sufficient conditions (in terms of the activa-
tion of input units) such that the unit u is active.

Usually not all input combinations make sense in a
given application domain, because some of them would
correspond to invalid states of the world. We use the
term valid inputs to denote the set of allowed input com-
binations. Even more important for the extraction is the
fact that all training samples are taken from this subset.
Therefore, the network learns to solve a task under the
implicit conditions hidden in the selection of inputs. In-
tegrity constraints are a way to make those conditions
explicit during the extraction. An integrity constraint
is a formula IC over Uin, describing the set of valid in-
puts V. C P(Unp) as follows: For all I C Up,, we find
I EIC if and only if I € V. Using integrity constraints,
we can reformulate the extraction problem as follows:
The rule extraction problem for a given network N and
a given integrity constraint IC is the construction of a
propositional formulae F' over Uinp such that for all in-
terpretations I with I }=IC we find

act, {+1 ifI=F

—1 otherwise

Networks can be decomposed into their basic build-
ing blocks, namely single units together with their in-
coming connections. Those single units can be seen as
simple sub-networks (perceptrons) consisting of a num-
ber of inputs and a single output unit, together with the
corresponding weighted connections. To simplify the no-
tations we use P, = (0,Z,w) to denote the perceptron
corresponding to the unit p together with its threshold
0, the set of predecessor units Z and the weight function
w. Figure 2 shows the perceptron for the output unit g.

Binary decision diagrams (BDD) are a data structure
to represent propositional formulae in a very compact
way and to manipulate them easily. A nice introduction
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Py = (0,Z,w) with
0=4
I =A{cde, [}
1 ifz=c
2 ifx=d
w(z) = 3 ifx=e
5 ife=f

Figure 2: The perceptron corresponding to unit g.

BDD = (=<,0,1, R, N) with

s~

R
N (2,b,0,1),(3,b,1,0),
(4,a,2,3)}

pf(2) = (bA L)V (=bAT)=-b
pf(3) = (bAT)V(=bAL)=1b

pf(4) = (a A =b) V (ma A D)

Figure 3: A simple BDD, nodes are annotated with their
variables and their ID on the right. High branches are
depicted as solid and low branches as dashed lines. On
the right you find the underlying data structure and the
logic formulae corresponding to the internal nodes.

can be found for example in [Andersen, 1999]. Intu-
itively, a BDD is a directed acyclic graph with a variable
associated to every node and such that all nodes n # 0, 1
have exactly two successors, called high and low branch
of n. The nodes 0 and 1 are the sinks of the graph. We
use (<,0,1, R, N) to refer to a BDD with sinks 0 and
1, a set of nodes N and a root-node with identifier R.
And we use (i,v,h,l) to denote the node with identi-
fier 4, with variable v = var(7), and with high and low
branch pointing to the nodes with identifiers A and I,
respectively.

Usually a BDD is assumed to be ordered and reduced.
It is called ordered iff there exists a linear order < on
the variables and the successors of a node are marked
with variables that are bigger with respect to <. It is
called reduced if no two nodes for the same variable have
identical high and low branch, and for no node high and
low-branch coincide.

BDDs represent propositional formulae in if-then-else
normal form. The corresponding formula for a given
node is defined recursively as follows:

pf(0) := L pf(1):=T
pf (i) := (var(i) A pf(h)) V (- var(i) A pf(l))
Figure 3 shows a simple BDD using a graphical repre-

sentation as well as the underlying data structure and
the corresponding logic formulae for every node.



3 From Perceptrons to Search Trees

In this section, we discuss an algorithm to extract a BDD
from a single unit such that the BDD represents neces-
sary and sufficient condition on the inputs to turn the
unit active. Following [Bader et al., 2007], we define
input patterns I as subsets of the inputs Z of a given
perceptron P, = (§,7,w) which are assumed to be ac-
tive. The inputs not contained in I can be either active
or inactive. And we define the corresponding minimal
input 4min (1) as follows:

imin(1) =Y w(@) = Y |w(a)|

acl a€I\I

The minimal input is computed by adding the contri-
bution of the fixed inputs ), .; w(a) and the minimal
input caused by all other inputs. A perceptron is called
positive, if all weights are positive. For the following
constructions, we assume the perceptrons to be positive.
In Section 5, we discuss how to apply the extraction to
arbitrary perceptrons.

The construction of BDDs below is based on the search
trees described in [Bader et al., 2007]. These search trees
contain a node for every possible input pattern. Children
of a given node correspond to input patterns which con-
tain exactly one symbol more and all nodes are sorted
with respect to their minimal inputs. If the minimal
input of some node exceeds the threshold, that node is
marked (Le., the corresponding input pattern represents
a sufficient condition to turn the perceptron active). The
complete tree is pruned by removing all those nodes for
which no descendant is marked and all those nodes which
are descendants of marked nodes. The construction of a
pruned tree is shown in Algorithm 1. Figure 4 shows the
full and the resulting pruned search tree on top of it.

Input: A positive perceptron P, .
Output: A pruned search tree.

Fix an order < such that b < ¢ if w(b) > w(c).
Create a root node for the empty input pattern.
Add a child labelled x for each input symbol =
(sorted wrt. <).
foreach newly added node labelled y do
Add a new child ¢ for every symbol z with
y < z (sorted wrt. <).
Label ¢ with the corresponding pattern 1.
Mark c if ipin(I) > 6(p).
Remove all descendants of marked nodes.
Remove all nodes for which no descendant is
marked.
Algorithm 1: Constructing a pruned search tree.
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Exploiting the structure of these search trees, we can
easily construct BDDs representing conditions to turn
the perceptron active. L.e., we find the perceptron to be
active for all those input patterns which, understood as
interpretation, turn the logic formula corresponding to
the BDD true.
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Figure 4: The pruned search tree for the perceptron P,
from above. The underlying full tree is depicted in grey
using dashed lines. The nodes contain the newly added
symbol and are annotated with the corresponding input
pattern and the resulting minimal input. All nodes for
which the minimal input exceed the threshold of 6(g) = 4
are shown with grey background.

.

Figure 5: The BDD corresponding to the pruned search
tree from Figure 4.

4 From Search Trees to BDDs

Before presenting an algorithm to construct BDDs from
a given pruned search tree, we introduce some further
notations. Every node in the search tree is represented
as a pair (I,C) with I being the corresponding input
pattern and C being the set of children. id(n) denotes
a unique identifier for the node n (e.g., the correspond-
ing input pattern, or some index), this identifier is also
used as internal index for the BDD nodes. We assume
id(n) := 0 if there is no node n. var(n) denotes the
symbol which is added to the input pattern at node n.

The construction of a BDD for a given search tree
is shown as Algorithm 2. This algorithm transforms a
search tree into a BDD, by traversing the tree in a left-
depth-first manner. A node’s high branch points to 1, if
its minimal input exceeds the threshold. Otherwise, it
points to its left-most child, or to 0 if there is no child.
The low-branch points to the right sibling, or to 0 if
there is none. The result for the perceptron P, is shown
in Figure 5.



Input: A search tree T for P, = (6,Z,w) wrt. <.
Output: A corresponding OBDD (<,0,1, R, N).

if T is empty then
| R=0and N ={}
else if T contains only the root node then
| R=1and N ={}
else
R =id(r;) for the leftmost child of the root.
N ={}.
foreach leaf node n in T do
Add (id(n),var(n),1,1) to N with { = id(r)
| for the right sibling r.
foreach node (I,C) in T with left sibling | do
Let (id(1), var(l), h;,1;) be the node for [
Let (id(l;), var(n), hy,, 11, ) be the node for
the leftmost child {; of {
if mci(l) — 2w(l) + 2w(n) > 0 then
Add (id(n),var(n),l;,,1,) to N with
l, = id(ry,) for the right sibling r,, of n

© 0N O Ok W N
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foreach other non-root node (I,C) do
Add a node (id(n), var(n),id(c),l) to N for
the leftmost child ¢ and [ = id(r,,) for the
right sibling r, of n and [ = 0 if there is

L none

15
16

Algorithm 2: Constructing a BDD.

Please note, that the BDD can be constructed without
constructing the search tree first. The tree is used only
to describe the underlying ideas. All conditions tested
in Algorithm 2 can be tested by expanding the tree step-
by-step. Looking a little closer at the constructed search
tree we find that some sub-trees have an identical in-
ternal structure, which is exemplified in Figure 6. If the
condition tested in Line 13 of Algorithm 2 is fulfilled, two
neighbouring sub-trees are structured identically. mci(n)
denotes the minimum of all minimal inputs associated
to nodes below n. Please note, that mci(n) can be com-
puted without expanding the sub-tree by looking at the
associated input pattern.

The mentioned structural equivalence can be exploited
by using a shortcut into the already constructed BDD
and thus preventing the expansion of an identical sub-
tree. Figure 6 contains a number of those shortcuts,
e.g., one from node {b} to the node {c,a}, because the
children of {b} are annotated the same way as the node
below and right of {c,a}. Please note that this identity
can be recognised without expanding the second sub-
tree, i.e., the construction of whole tree below {b} can
be avoided.

The condition on Line 13 is fulfilled whenever the per-
ceptron shows a so called n-of-m behaviour, i.e., if there
are m inputs from which n suffice to turn the percep-
tron active. In this case, there will be n equivalent sub-
trees, which can be shortcut. As discussed in [Towell and
Shavlik, 1993], this occurs quite frequently while training
neural networks.
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Figure 7: The global BDD for the network from Figure 1.

5 Composition of Intermediate Results

In the previous section, we have been concerned with
positive perceptrons only. But we can easily turn every
perceptron into a positive one, by multiplying negative
weights by —1 and inverting the corresponding input
symbols. By doing so, we can apply the algorithm to
all output units of a given network, and obtain a BDD
describing necessary conditions with respect to the pre-
decessor units that turn the output unit active. But
some of the input symbols may have been inverted. IL.e.,
we need another algorithm to construct BDDs stating
conditions which turn a perceptron inactive. Due to the
symmetry of the threshold function, we find this algo-
rithm to be dual to Algorithm 1 and 2. L.e., by inverting
the order and the inequalities we obtain an algorithm
that constructs such a BDD.

Once we have extracted the BDD for a given output
unit, we can continue by substituting the nodes test-
ing non-input nodes (i.e., nodes not corresponding to in-
put units of the network) by their corresponding BDDs.
A non-negated node is replaced by the BDD as con-
structed above, and negated nodes are replaced by the
dual BDDs. As mentioned above, BDDs have been de-
signed to allow for an efficient manipulation of logic for-
mulae. And in fact it is straightforward to compose the
intermediate results into an overall diagram by simply
replacing the nodes. But this is not the best approach,
because the resulting ‘global’ BDD would not be ordered
any more. But while expanding the BDD, we can keep it
ordered (and reduced) as described in [Andersen, 1999)].
After expanding all non-input nodes, we obtain a final
BDD representing necessary and sufficient conditions on
the network’s input to turn a given output unit active.

Using BDDs as internal data structure has some fur-
ther advantages. We can actually extract all output
units into the same global BDD. Doing so leads auto-
matically to a sharing of intermediate results, because
common substructures are contained only once within
this BDD. Figure 7 shows the final ‘global’ BDD for the
network from Figure 1. Please note that the right node
labelled b is used for both output units g and h.

Furthermore, we can integrate integrity constraints in
a straightforward fashion. Instead of starting with an
empty BDD, we extract the output nodes into a BDD
representing the integrity constraints. To exemplify this,
a network has been trained to the Encode-Decoder task.
It contains 8 input, 8 output units and 3 hidden units
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Figure 6: A larger BDD and its underlying search tree. The tree has been constructed for a perceptron with 5 inputs
whose weights are all 1 and with threshold 0. Le., this perceptron is active if 3 of the five inputs are +1. Please note
that there are certain symmetries in the tree: All label and minimal inputs of the sub-trees of node {b} coincide with
those of the right sub-trees of {a} if a is substituted by b. This has been exploited by linking from {b} to {c, a}.

and is trained to learn the identity mapping for all inputs
in which exactly one unit is active. Le., the network has
to learn a compressed representation within the hidden
layer. But applying the algorithm presented above yields
an unwanted result shown in Figure 8 on the left. Using
the integrity constraint that at most one input is active
at a time yields the BDD shown on the right. 900 nodes
have to be constructed (including all intermediate re-
sults while constructing the BDD) for the ‘normal’ BDD,
but only 124 while using the integrity constraint. This
shows the advantage of using integrity constraints right
from the beginning of the extraction process. Usually
they are used to refine the extraction result afterwards.
This would be possible here as well by simple computing
the conjunction of the ‘normal’ BDD with one repre-
senting the integrity constraint. But starting with the
constraint avoids the construction of many intermediate
nodes which would be removed afterwards.

6 Experimental Evaluation

To evaluate the approach a Prolog implementation has
been used to gather some statistics. The results are
shown in Table 1. The table shows average numbers
for different numbers of inputs, the size of the full search
tree, the number of minimal input patterns, the size of
the corresponding BDD and the number of BDD nodes
per input pattern. All numbers have been collected from
100 random perceptrons per size. The extraction using
the full search tree is not feasible due to the exponential
growth. The number of input patterns is a conservative
lower bound for the size of the pruned search tree, be-
cause those trees have at least one node per minimal in-
put pattern. The result shows that the use of BDD pro-
posed here yields a very compact representation. Even
though the number of nodes in the BDD grows, the ratio
(node/IP) of size of the BDD and the number of minimal
coalitions decreases.
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Figure 8: The result of extracting output unit 1 from
an 8-3-8 encoder-decoder network. The BDD on the left
is the result of the ‘normal’ extraction. On the right
the constraint that at most one unit is active has been
incorporated.

[[Z]] [T] | #IPs | [BDDJ] [ node/IP |
1 2 0.58 2.58 4.448
5 32 4.31 8.49 1.969
10 1024 63.51 49.97 0.786
15 32768 1270.45 | 313.25 0.246
20 | 1048576 | 25681.70 | 1863.90 0.072

Table 1: The size of the full search tree (|T|), the number
of minimal input patterns as a lower bound for the size
of the pruned search tree (#IPs) and the corresponding
BDDs (|IBDD]) for different number of inputs (|Z]).

A second experiment has been performed to show the
effect of the usage of integrity constraints while extract-
ing the BDDs. A network with 6 inputs, 4 hidden and 2
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Figure 9: Resulting BDD sizes of the extraction for
different max,-integrity constraints. The bars indicate
minimal, maximal and average sizes of the BDDs. The

size of the sub-BDD for the constraint is shown in grey.

output units has been used for the experiment. The pos-
sible inputs have been constrained by a max,, integrity
constraint for 0 < n < 6. The results are presented
in Figure 9. For every n the experiment has been con-
ducted for the same 100 randomised networks and the
following numbers have been collected: the size of the
sub-BDD encoding the constraint, the minimal, maxi-
mal and average size of the final BDD. Please note that
the numbers show the total number of internal nodes
constructed for the BDD, i.e., including all necessary in-
termediate nodes. For n = 1, i.e., the biggest restriction,
we obtain very small BDDs. The size of the BDD grows
up to n = 4 and decreases again for n > 4. From those
observations we can conclude that the incorporation of
integrity constraints into the extraction process can lead
to big savings in terms of nodes constructed for the final
BDD. Without their use during the extraction, we would
have to construct the BDD corresponding to n = 6. This
big BDD of ~ 400 nodes would have to be refined with
respect to the constraints afterwards. There seem to be
cases (e.g., for n = 4) where the use of integrity constrain
yields larger BDDs, but nonetheless, the final BDD does
not have to be revised afterwards, and the difference is
not too big.

7 Conclusions and Future Work

A novel approach for the extraction of propositional rules
from feed-forward networks of threshold units has been
presented. After decomposing the network into percep-
trons, binary decision diagrams representing precondi-
tions that activate or inactivate the perceptron have
been extracted. Those intermediate representations can
be composed using the usual algorithms for BDDs, or
they can be combined during their construction by ex-
tracting one into the other. The latter approach does
also allow for an incorporation of integrity constraints
— already during the extraction of the intermediate re-
sults. As already mentioned in [Bader et al., 2007, the
pruned search trees constructed above are related to the
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approach presented in [Krishnan et al., 1999]. But due
to a different order, we do not need to expand them
completely, which would otherwise be necessary.

The extraction as presented here is applicable to
all feed-forward networks composed of binary threshold
units computing +1-threshold function. This limitation
can be softened by allowing arbitrary symmetric thresh-
old functions. The symmetry is necessary to construct
negative and positive forms of the perceptron without
changing the global network function.

Finally, we discussed first experimental results indi-
cating a good performance of the approach. On the
one hand, we obtain a very compact representation and
on the other hand, we circumvent the construction of
non-necessary intermediate results while incorporating
integrity constraints right from the start.

Nonetheless, much remains to be done. In particular,
the extraction for non-threshold units has to be studied.
For the encoder-decoder experiments mentioned above
the algorithm has simply been applied to networks com-
puting the symmetric hyperbolic tangent as activation
function. Interestingly, the result coincide with our ex-
pectations. This is due to the fact, that networks when
trained to compute crisp decisions tend to behave like
threshold networks. But the details of this need to be
investigated in the future. Furthermore, a detailed anal-
ysis of the performance is necessary, in particular using
networks trained for real-world problems. The approach
as presented here detects equivalent sub-BDDs for n-
of-m patterns. But there are more cases for equivalent
sub-BDDs [Mayer-Eichberger, 2008]. Those have to be
integrated into the extraction procedure. It would also
be interesting to study the evolution of a network during
the training process by repeatedly applying the extrac-
tion method and compare the results.
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Abstract

A key step in mapping the more conceptual stages
of design onto computational systems involves
identifying a vocabulary and ontology. While a
number of high-level ontologies have been pro-
posed, these are difficult to ground in terms of ac-
tual design instances, and manual definitions of the
symbols are often incomplete and difficult to main-
tain. As an alternative, we propose an “infant de-
signer” paradigm which abstracts patterns for the
“functionally feasible regions” (FFR) while evalu-
ating many individual configurations in the design
space. These learned FFR patterns (which may
arise due to minimal levels of functional accept-
ability, or from optimization) often embody depen-
dency relationships among the design parameters,
i.e. the good designs lie along lower-dimensional
manifolds in the design parameter space. We show
how such manifolds exist in several design situa-
tions; each combination of the original design pa-
rameters may be thought of as a ’chunk”; the space
of these chunks models only the ”good designs”.
Next, we show how the patterns defined based on
these chunks constitute image schemas, which may
be implicit (e.g. the pattern for an FFR), or ex-
plicit (where the relationship is observable). These
patterns or image schemas are incipient semantic
model leading to symbols. We present examples
of how such image schemas are arrived at with the
help of universal motor design.

Efforts towards standardizing the design
vocabulary

Evolving a standardized vocabulary for design has emerged
as an important focus in engineering design. Possible appli-
cations include developing design repositories [Bohm et al.,
2005], computer assisted conceptual design [Gero and Fu-
jii, 2000], etc. It is clear that vocabularies are structured,
that is there are considerable relations between terms. Of-
ten, this is viewed as an ontology or as a structured rela-
tionship that captures a part of the semantics of these terms.
One popular view of the engineering system considers the
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flow of energy, information, etc, and proceeds downward into
detailed design. With its roots in value engineering ideas
from the 1940s, these notions were seeded by the analysis
in Pahl and Beitz [Pahl and Beitz, 19881996] and a partic-
ularly influential study by Welch and Dixon [Richard and
Dixon, 1994], leading to modern ontological models like
the widely used functional basis model [Hirtz et al., 2002]
or implementations on ontology tools [Nanda et al., 2007;
Szykman e al., 2001].

The above represents the human-engineered approach to
defining symbols. This type of approach is initially tempt-
ing because it tends to meet immediate applications, but a
long history in knowledge-based systems has shown it to be
brittle, i.e. subject to failure under even minor deviations in
the domain. In general, it may be that symbols are more
meaningfully developed by abstracting from existing data.
The novel contribution of this paper is to show that at least
in certain types of design tasks, lower-dimensional surfaces
are revealed by multi-objective optimization. The intrinsic
dimensions in these pareto-surfaces might constitute one ap-
proach to obtaining “symbols” directly from experiential data
as opposed to engineering them by programming definitions /
rules. These approaches are detailed further in section 1.2 and
section 3, but first we look more closely at the term “symbol”,
and what is understood by its semantics.

1.1 The semantics of design symbols

Unfortunately the term “symbol”, as it is used in the logic
and computational theory is considerably different from its
usage in cognitive linguistics and in everyday life. In the
latter usage, symbols are imbued with meaning grounded on
experience, whereas in the formal usage, it is merely a to-
ken constructed from some finite alphabet, and is related only
to other such tokens. If we present an analogy, a blind man
knows “red” is a different color from “blue” and “green” but
his understanding of red is dramatically different from that of
a sighted person, because the semantic pole is not connected
to direct experience.On the other hand, “symbol” has come to
be understood in cognitive science (and also traditionally in
linguistics, e.g. de Saussure ( [De Saussure, 19161986]), as
the tight binding of the of the psychological impression of the
sound (the “phonological pole”) with the mental image of the
meaning (the semantic pole) [Langacker, 1986]. The mental
image or image schema includes all sorts of associations and
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Figure 1: Emergence of symbols based on experience: Often
the same abstract pattern (or chunk) appears in many experi-
ences (e.g. the notion of “containment” for peg in hole, bolt in
latch, plug in sink, etc.). If a chunk is valuable in compactly
representing many situations, it has a higher likelihood of be-
ing communicated, thus acquiring a phonological pole and
becoming a symbol. A symbol can then form other associa-
tions besides the initial chunk, all of which together constitute
its semantic pole or image schema.

is somewhat different for each user, though social convention
ensures a degree of overlap between mental images within the
language community.

However, the notion of symbol is more far-reaching than
communication. It turns out that to some extent, the sym-
bols help divide up the world into classes, and eventually, it
may reflect changes in how we think. For instance, Korean
language makes a distinction between spatial tight-fit situa-
tions, kkita, (as in “put the cap on the pen”, “hand in glove”)
from other usages of “in” or “on”. Infants growing up in En-
glish and Korean linguistic environments were sensitive to
both contrasts, but English children appear to lose this sen-
sitivity around the time they start acquiring language, sug-
gesting that the language construct may have weakened their
sensitivity to these changes [McDonough et al., 2003].

On the other hand, incompatibility of design vocabulary is
rarely a problem between humans (that’s why exceptions of-
ten become memorable). If designers A and B are talking,
and A does not have a particular symbol ), its image-schema
may emerge through a small amount of discussion; in many
cases, just a single example may be enough to stretch an ex-
isting concept A/ in A to the current one. Of course, the new
symbol )/ remains imprecise, and designer A is aware of it,
and subsequent uses of \/ will serve to ground it. All this is
possible because the semantic pole for the human is a com-
plex, elastic set of associations that cannot be defined in terms
of a single predicate or even a range, it is the set of all situ-
ations where the symbol may be encountered (figure 2). All
these associations need to be learned, and cannot be inferred
based on a single definition (not to mention issues such as
nonmonotonicity); hence the programmer-given single defi-
nition, usually created to demonstrate the example at hand, is
a hopelessly inadequate semantics for a design symbol; and
that is why we need bottom-up symbol discovery in order to
ground a design vocabulary.
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Figure 2: Abstraction starts with ground instances: Sym-
bols like “hatchback”, “sedan”, or “jeep”” may correspond an
abstract pattern or “image schema”, which is used to iden-
tify instances as belonging to a symbol category, but also in
composing symbols, and in interpreting higher abstractions.
Primitive design ontologies like is-a arise when instances al-
ready known as sedans or hatchbacks are also labelled as
“car” by a trusted user. Similarly, other relations e.g. “jeeps
can drive over rough terrain” would also be learned through
usage and become part of the image schema. The number
of such associations for each symbol is often very large, and
limiting these to a few user-determined definitions is a major
contributor to brittleness in knowledge systems.

1.2 Bottom-Up Semantics in design

An alternative that has been proposed for modeling design
concepts is to attempt to move more towards the human pro-
cess, to learn symbols based on design experience[Gero and
Fujii, 2000]. The human design process is a constant, moti-
vated exploration of the design space, e.g. through sketching.
All the while, the designer is focusing on the designs that are
“good” in some functional sense, and eventually, some kinds
of patterns emerge as the common characteristics of these de-
signs. This is one sense in which sketches “talk back™ to the
designer [Goldschmidt, 2003]. These patterns result in con-
straints whereby many of the initial design variables can be
combined, a process cognitively known as chunking [Gobet
et al.,2001].

For example, in designing a padlock, we may learn that the
shackle diameter increases roughly in proportion with body
size. Thus these two parameters can then be brought down to
a single chunk. These chunks, which limit the choices used
in “good designs”, may be what are used by expert designers
[Gross, 1986].

An early attempt at discovering patterns in the design space
of shapes may be seen in relation to 2D shapes in the work of
[Park and Gero, 1999]. [Moss et al., 2004] have developed
a system in which a design observer agent considers trends
among good designs and try to extracts chunks. Similarly
a recent approach by [Sarkar et al., 2008], considers Singu-
lar Value Decomposition (SVD) on a co-occurance matrix of
matrix of variables and constraints to identify the relations
between different variable groups.



However, none of these proposals attempt to learn their
symbols in a grounded manner, and therefore lack the flexi-
bility of the human designer. By grounded, we refer to the
progressive manner in which a human designer learns her
concepts - the more abstract ones are based on earlier, con-
crete concepts, but are still presented through instances. In
the end, many concepts are grounded in terms of a number
of experiential instances. For a human designer, this learn-
ing cannot be limited to the years of training as a designer,
but must include all of her knowledge about the world, the so
called commonsense knowledge. Thus, the fact that a fat peg
will not go into a thin hole is part of her prior knowledge. In-
deed, it is likely that the process by which she acquires these
patterns, built upon many layers of pre-existing knowledge,
may be similar in some salient ways with her earliest learn-
ing.

In this work, we propose to take the first step towards build-
ing such a grounded semantics, which we call the birth of
symbols. In a human design scenario, say while “talking” to
a sketch, a designer may get a conscious awareness of a con-
straint without verbalizing it - this is referred to as reification,
becoming real - and is a key step in forming new symbols.
Sometimes, amorphous implicit schemas, which are formed
well before we are aware of them [Gladwell et al., 2005] are
incipient symbols, but they need to prove their mettle before
they become true symbols. This interpretation is in line with
a long tradition in psychology and linguistics, that symbols
are “aware” or conscious [Mandler, 2004].

2 Infant designer

A system learning symbols is like a baby who is first discov-
ering regularity of object behaviour in the world. She can
make various choices, and evaluate them based on some no-
tion of function. Considering the peg-in-hole task just alluded
to, we see how she might learn the concept that a peg must be
smaller than a hole.

The functional model considered is simple - the design is
functionally feasible if the peg can go in (actually our system
computes the configuration space - the penetration region dis-
appears when w > t). We consider a horizontal version of the
peg-in-hole - a latch is entering a slot on a bolt, say. Figure 3
shows how after evaluating a number of instances in the de-
sign space of latch-widths w and slot-widths ¢; in (w, t) space,
a clear 45 degree line emerges, separating the “good designs”
from the bad.

Does this constitute symbolic knowledge for the infant de-
signer? Most likely not. However, it is something that might
become a symbol as she acquires other concepts that she
can refer to. What is interesting in the results of figure 3
is how, after experiencing just a few instances, the pattern is
inchoate, so the baby keeps trying to insert the fat square into
the smaller circle, filling up the negative (black) area of the
figure. Eventually the defining boundary becomes sharper,
and at some point it can be said to knows the principle, at
least implicitly.

At the next step for our infant designer, we consider the
concept that a designer knows as “fit”. By now our infant
learner will attempt to insert pegs only if they are smaller than
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(c) 50 instances

(d) 200 instances

Figure 3: Learning through experience that latch-must-be-
smaller-than-slot (w > t). (a) A latch of thickness ¢ is fit-
ted to a slot of width w. The learned patterns are shown in
(w, t)-space in (b)-(d). The quality of the learned pattern
varies greatly with degree of experience: results shown for
a multi-layer perceptron after experiencing 10,50, and 200
design instances.

the slot. The function is defined in terms of the degree of fit
- how much does it wiggle? Defining the wiggle in terms of
the area of the free-space in the configuration space, we see
that if the wiggle desired is very small, we get the situation
on the left, and if it is very large, we get the situation on the
right. Eventually, the learner learns the concept of “fit” as
a chunk (composed as w — t) - thus, given a level of fit, it
imposes a constraint where w and ¢ are related in a manner
where they constitute a one-dimensional chunk instead of two
independent variable.

Of course, from a machine learning perspective, both these
examples are rather elementary. Our objective in presenting
it is merely to emphasize the role of even the earliest knowl-
edge in many advanced design situations. These two con-
cepts are also among our earliest knowledge achievements;
typically, infants learn containment (peg in hole) by about
3 months, and tight vs loose by 5 months [Casasola et al.,
2003]. Many cognitive scientists believe that our concepts of
abstraction, including the is-a crucial to constructing hierar-
chies, is a metaphorical extension of containment [Lakoff and
Johnson, 1999].

3 Symbol emergence

As the designer matures from infancy, we can consider the
more general process by which symbols form. These may
correspond to the stages shown in figure 5. At first, the de-
signer explores with instances in the design space, distin-
guishing the good designs from the bad. Eventually a sub-
set of the design space emerges as the Functionally Feasible
region (FFR), or the space of “good designs”. Often, FFRs
correspond to narrow bands of functional feasibility. This
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Figure 4: Birth of the image-schema for “fit”: An insertion
task with different kinds of fit are shown in the top row and
the corresponding design spaces (w, t) with feasible and in-
feasible regions are shown below. The function is given as
the amount of play available (amount of free-motion or wig-
gle). If the desirable wiggle is specified, the two-dimensional
design space is effectively reduced to one since a relation
emerges between the feasible w and ¢. This mapping or image
schema is a early prototype of the concept of “fit”.

may be because they are the result of (possibly unconscious)
multi-objective optimization - thus, if there are k£ design ob-
jectives, then they constitute a k — 1 surface in the objec-
tive space. In continuum design situations (i.e. the search
space is continuous and not combinatorial), if the function
measures that map from the design variable space to the ob-
jective space are continuous, their Jacobians would be well-
posed, and the near neighbours in the objective space may
correspond to near neighbours in the design space. While
this assumption is flawed for a large class of difficult opti-
mization problems (e.g. Quadratic assignment), it often holds
for a large if not preponderant fraction of real tasks. Thus, in
such situations, we may designs that lie along a k — 1 pareto-
surface (or “manifold”) in the objective space (shown as a
folded patch in the figure), and a similar lower-dimensional
manifold in the design space as well. Each dimension of this
lower dimensional space reflects an inter-relation between in-
dependent design parameters (e.g. the shackle diameter and
the lock size). Sometimes, some of these dimensional map-
pings or chunks may recur in many design situations - this
makes the chunk useful, which is an important criteria for
becoming a symbol. In the interim, the designer may use
these chunks with a dim awareness of it for a long period,
even several years. Later, a label may get attached to it, and
many other associations would eventually accrue to this term
/ image-schema pair; it would then constitute a truly reified
symbol.

Thus a key aspect of design symbol formation is dimen-
sionality reduction, - i.e. finding low-dimensional patterns
in high-dimensional space. There are two classes of dimen-
sionality reduction algorithms - linear methods like PCA or
ICA [Bishop, 2006, or nonlinear approaches, which may
be global (Isomaps [Tenenbaum et al., 2000] ) or local (Lo-
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Figure 5: The symbol emergence process: our main interest
is to discover and learn structural or behavioral chunks that
result in good designs, corresponding to functionally feasi-
ble regions (FFRs) in the designs space. FFRs typically re-
flect multiple functional criteria, and may be obtained from
some approximate optimization, or from user specified min-
imal functional criteria. A set of FFR instances can be used
to learn a pattern of functional feasibility, the quality of this
pattern improves with experience as earlier. Once the FFR
is sufficiently rich, one may also discover that they lie along
some low-dimensional manifold (R?) embedded in the high-
dimensional design space R” (d < D). The lower dimen-
sional space is then a chunked representation for the initial
design space. If this relation becomes conscious, it may then
become a design symbol.

cally Linear Embedding or LLE [Saul and Roweis, 2003] and
Laplacian Eigenmaps [Belkin and Niyogi, 2002]). Here we
present some results based on the LLE algorithm, which is an
eigenvector method that works based on the assumption that
the same weighted sum between neighbours would hold both
in the high and the low dimensional spaces (algorithm 1).

3.1 Universal Motor example

We illustrate the working of the process based on the Univer-
sal Motor,which has been well studied in the product family
design literature [Simpson, 1998]. The design space con-
sists of eight design variables: N, (number of wire turns
on armature) N (number of turns on each field pole), A4
(cross-section area of armature wire), A, s (cross-section
area of the field wire), r, (radius of motor), ¢ (thickness
of stator) , I: (current drawn by motor), L (stack length).
Function is measured through a set of performance behav-
iors: strength, mass, energy and efficiency. The correspond-
ing performance metrics in terms of these design variables
can be Tiorque(T) = NchbI, (v) = maSSwmdmgs +
MASSarmature +MASSwindingss Tpower (V) = Vil —I*(Rq+
Ry) — 21, and T ficiency (U) ﬂp““’” (following [Simp-
son, 1998]). We may now consider that the feasible designs
have (i) the magnetizing intensity 4 < 5000 and (ii) the outer




Algorithm 1 Local Linear Embedding

1. Compute the neighbors X; of each data
point, X;.

Compute the weights W;; that best
reconstruct each data point X; from its
neighbors, minimizing the reconstruction
error (e(W) Yo lXe — Zjo]’leg) by

constrained linear fits.

. Compute the vectors I'; best reconstructed
by the weights Wj;;, minimizing the
quadratic form (®(T) =3 |T:— Zj Wi;T1?) by

its bottom nonzero eigenvectors.

radius of the stator r, greater than the thickness of the stator
t.

We next outline two experiments designed to reveal the
inter-relationships in the parameter space when it comes to
the optimized designs. The results suggest that the optimized
designs are not scattered uniformly across the design space,
but reveal certain inter-relations between the design parame-
ters. Thus, the initial parameter space of 8 parameters may
actually constitute only two independent parameters when it
comes to the optimized designs. While these results hold only
for these design classes, the implications might be more gen-
eral, and imply far-reaching consequences in obtaining sym-
bols as dimension-reducing patterns in continuous parameter
space of a wide ranging set of problems. However, whether
these results will scale up to other remains a subject of con-
siderably more research; the results below only indicate that
this may be so.

3.2 Two-dimensional design space

In an initial experiment, we consider a minimal parameter
set for the universal motor - modeling the design variabil-
ity in terms of only two design parameters L and I, while
keeping other parameters constant [Simpson, 1998]. For a
desired functional range of power 280 W< moper < 295,
the FFR (the valid designs resulting from this constraint) is
shown in Figure 6(a). These lie along a small band, which
can be thought of as a curved 1-D manifold (with a slight
thickness). 6(b).

The mapping between the nonlinear feasible region (Fig.
6 (b)) and the one-dimensional chunk for it below (Fig. 6
(c)) shows the continuity of mapping between these. If we
take three data points A,B, and C in L, I space. Let us say
X = [A B (], each data point is a real-valued vector, with
of dimensionality 2. With the help of Local Linear Em-
bedding (LLE) algorithm [Roweis and Saul, 20001, we con-
struct a neighborhood preserving mapping from L, I space
to I'. The three points A= (32.0,4.09), B= (22.5, 3.5455)
and C= (10.5,12.000) and their corresponding mappings in
the lower-dimensional manifold are 4 —0.2102, vp
—0.1430 and yo = 0.0007.

This reduction of the two design parameters to a single ~
represents the first stage of symbol formation. If, later, this
~ chunk is discovered in other situations, then a label, say
“gavagai”’, may attach to it. Then as the term “gavagai” may
spread in the design community, and might occur in many
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Figure 6: Chunking on the L, I subspace for Universal Mo-
tors: (a) The implicit constraint on the L, I subspace of the
Design Space is learned for 2000 design instances under the
functional specification 280 W< Tpouper < 295 W. (b) The
feasible designs in the L, I subspace. (c) The mapping onto
a low-dimensional (1-D) space; this reveals that for good de-
signs, the stack-length L and the motor current I are related.
A,B, C: individual design instances in (b) and (c).

other situations, and each such association would form part of
the semantics of the term gavagai. A computational system
that learns this term in this way would need to participate in
such discussions in the design community to keep its seman-
tics current. This is another reason why static programmed
machine semantics, even if they can capture all the usages
at a given point of time, fail in the long run as human usage
changes.

3.3 High-dimensional spaces: Multi-Objective
Optimization

If we are to consider the eight-dimensional design space for
the Universal motor, a more useful approach towards finding
FFRs may be to consider a multi-objective optimization prob-
lem based on a set of performance metrics. If design solution
A is better than solution B in all the functional criteria, we
say that A dominates— B. The set of all non-dominated solu-
tions is the non-dominated front or pareto-front, and usually
lies along a surface in the space of objective functions. For
the Universal motors example, the multi-objective optimiza-
tion problem may be formulated as follows:
Multi-Objective Optimization

Minimize s (V)

Maximize  Tef ficiency (V)

Maximize  Tiorque(V

Subjectto  gi1(v)=r—t>0
g2(v) = 5000 — H > 0, 1
g3(v) = 2.0 — Taress > 0, M
g4(y) = 0.5 < Trorque < 5.0,
gs (2) = 300 < Tpower < 600
gﬁ(y) = Tef ficiency — 0.15>0
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the design space as well. These two dimensions possibly re-
flect inter-relations between the original eight parameters that
pertain to the better designs in the design space. In terms of
symbol formation, these two dimensions (“XX” and “YY”,
say), if they are found repeatedly in other domains as well,
may eventually become symbols. With sufficient experience,
‘the relation between these two parameters and the design may
gventually be encoded into design rules: e.g. “higher YY is

Tefficiency

(a) (b)
Figure 7: The non-dominated front for the Universal mo-
tor. (a) The non-dominated solutions (pareto-front) in the
3-objective space of mass, efficiency and torque. (b) The
manifold space corresponding to the map from the high-
dimensional design space D = 8 to low-dimensional design
space d = 2 obtained by LLE. Note that the distribution of
colours are non-uniform in the two maps, but they remain
segregated (with some noise).
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Figure 8: Dimensionality of manifold for Universal Motors
based on . The FFR data is mapped onto manifolds of differ-
ent dimensions, and then mapped back to the original design
space and the error is estimated. The error drops sharply from
1-D to 2-D manifold, and then less sharply. The knee of the
curve at “2” is indicative of the intrinsic dimensionality of the
space.

We use the well known NSGA-II [Deb, 2001] evolution-
ary algorithm, with population size 2000, and probability of
crossover 0.8, mutation probability 0.33 and 0.1 (for real/ bi-
nary). The estimated pareto front for maximizing both the
torque (miorque) and efficiency (mef ficiency) While minimiz-
ing the mass (7,4s5) is shown in Fig. 7(a). The designs in
this non-dominated front in objective space are identified in
the original 8-parameter design space. We now attempt to
see if these 8-D points actually constitute a lower dimension-
ality manifold, by considering the reconstruction error when
mapped to differing dimensionalities from 2 to 8 (figure Fig.
8; the sharp knee at 2 indicates considerable information ab-
straction, and Fig. 7(b) shows the mapping to a 2-dimensional
space obtained by LLE. This mapping reveals that neighbours
in the high dimensional space remain nearby in the lower-
dimensional space at least for this universal motor problem.

The results here signify that for the universal motor, ob-
taining the FFR as a 2-dimensional non-dominated surface in
objective space can lead to a dimensionality reduction to 2 in
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usually associated with the more efficient designs”. Subse-
quent experience may also alter the way we understand these
chunks, and therefore rules like the above that are built on it;
through this demonstration we are primarily arguing that by
keeping these symbols grounded, it would be possible to keep
updating their semantics and their inter-relations (the rules),
thus providing a truly flexible symbol system, in contrast to
static symbol systems.

‘We must be careful to point however, that in general a k—1-
dimensional pareto-surface in objective space may not map
to an equivalent manifold in design space - there are a large
number of situations where the performance metrics mapping
from design space to objective space are not so well-behaved,
and such results may not hold. Nonetheless, even if a subset
of design parameters are well-behaved, at least some dimen-
sionality reduction may occur in these spaces. To obtain an
estimate of the dimension of the manifold for our data set,
we use the technique based on the idea that a dimensionality
reduction algorithm should preserve information on a global
scale, so that the inverse mapping error should be minimal.
For a given input dataset X = {Xi,... Xy} C RP, the
dimensional reduction algorithm such as LLE provide a re-
duced dimensional representation Y = {Y7,...Yx} C R?
of the original data set X. How to determine the reduced-
dimensionality d is not clear; one approach may be to con-
sider several d’s and select that which minimizes the residual
bijection error (rq) = >, ||f; *(fa(Xi — X;)||,[Martin and
Backer, 2005] wherefy : X — Y is the map produced by
LLE. By observing the behavior of r for different values of
d shown in Fig. 8 we can suggest the intrinsic dimension
for the universal motor is most likely 2; i.e. the initial space
of 8 parameters can, given these optimization conditions, be
reduced to two incipient “symbols”.

4 Conclusion

The main contributions of this work is the proposal that non-
linear manifold learning may constitute an important step in
discovering latent relationships among the many parameters
that define how the world works. A key constraint is our in-
complete characterization of the situations in which such a
lower-dimensional characterization would exist.

Among the work that would need to be done next is to the
conjoints of more than one symbol; i.e. given the design ele-
ments each as an individual symbol, we need to be able to say
what the conjunction of these elements (the syntax) will do,
and whether the resulting object - a design instance - will be
adequate to meet the design task or not. Again, depending on
the “good designs” that emerge in the process, a combination
of symbols may come to be designated as a symbol on its own
right, leading to the birth of abstract symbols.



The argument presented here implies that in the long run,
to create viable computer vocabularies for design or Al, we
must train the systems to learn these relationships, by expe-
riencing many design and real world situations. This may be
done in an accelerated manner, but the system must be ex-
posed to something like the vast array of experiences of a
human - or possibly many more, since the abstraction pro-
cesses as computationally available today may not be as effi-
cient. As different systems are deployed in solving different
problems, their somewhat differing input sets would result in
somewhat different abstractions for the same symbols. These
resulting design agents may therefore be somewhat less pre-
dictable than current computers, but such is the price of flex-
ibility.
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Abstract

Performance assessment in training simulators is a
complex task. It requires monitoring and interpret-
ing the student’s behaviour in the simulator using
knowledge of the training task, the environment
and a lot of experience. Assessment in simulators is
therefore generally done by human observers. To
capture this process in an automated system is
challenging and requires innovative solutions. This
paper proposes a new module for automated as-
sessment in simulators that is based on Neural-
Symbolic Learning and Reasoning and the Recur-
rent Temporal Restricted Boltzmann Machine
(RTRBM). The module is capable of using existing
and learning new rules for performance assess-
ment, by observing experts and students perform-
ing the training tasks. These rules are used to vali-
date and support the assessment process and to
automatically assess student performance in a train-
ing simulator. The module will be developed in a
three year research project on assessment in driving
simulators for testing and examination.

1

Performance assessment in training simulators has always
been a complex task that is generally performed by human
observers. Performance assessment by automated systems is
often limited to simple training tasks, because assessing
complex tasks requires the modelling of all interrelations
between the information present in the simulation, the train-
ing tasks, and the constructs being assessed (e.g. compe-
tences). Also, when it comes to more subjective assessments
(e.g., how ‘safe’ is the student driving), conventional model-
ling techniques fall short, as the applied assessment rules are
often implicit and difficult to elicitate from the simulation or
domain experts.

We propose a new module for automated assessment as
part of the Virtual Instruction platform SimSCORM [Pen-
ning et al., 2008]. This assessment module will be able to
learn new rules from the task description, (real-time) simu-
lation data, related assessment data of domain experts or
students and already existing rules (also called background
knowledge). These rules can be presented in a human-

Introduction

35

readable (‘symbolic’) form, facilitating the validation of the
assessment rules and supporting the assessment process.

2 Global Architecture

The automated assessment module requires real-time in-
teraction with the simulator(s), the student and human asses-
sors, and a description of the training task, a student profile
and the simulated environment. SimSCORM provides a
generic platform for definition and presentation of simula-
tion based training content and interaction between the con-
tent, its users and the simulation based on international
standards (e.g. SCORM, HLA, XML, etc.). Via this plat-
form the automated assessment module can easily access the
objects and attributes in the simulation and get information
on the student profile and progress.

Figure 1 depicts the automated assessment module
(named CogAgent) in the SimSCORM context. Sim-
SCORM provides a player that presents a SCORM based
training task to the students and possibly one or more asses-
sors (e.g. teachers, examiners or students) via a (web-based)
Learning Management System. This player uses SimAgent
to interact with the simulator(s) and CogAgent to do auto-
mated performance assessment and learn new assessment
rules from observation. Therefore, the player configures
CogAgent with information on the training task, measured
variables, student profile, assessed constructs and existing
symbolic rules. During execution of the training task, asses-
sors can provide feedback on the assessed constructs which
will be presented to CogAgent as short-term evaluations
(depicted as assessment data). SimAgent will act as a ge-
neric interface between the simulator(s) and CogAgent, and
pre-processes received data from the simulator(s) based on
measured variable descriptions. Based on the information
from the player and SimAgent, CogAgent determines an
overall (or long-term) evaluation for the assessed constructs
which will be presented to the students (and assessors) as
assessment result. Parallel to this it uses the measured data
and assessment data to adapt the internal knowledge on as-
sessment rules, resulting in new rules that can be validated
afterwards. All information, including the symbolic rules,
will be encoded in XML as part of the working memory of
the agents and will be distributed via SOAP (either locally
or via a web-service).
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Figure 1. Global architecture of the automated performance assessment module

3 Neural-Symbolic Learning and Reasoning

The CogAgent must be able to learn new rules from obser-
vation and existing rules, infer conclusions from these rules
and present them in a human readable form. Research on
Neural-Symbolic Learning and Reasoning focuses on the
integration of learning techniques and architectures from
Neural Networks with the symbolic presentation and reason-
ing techniques in (Fuzzy) Logic Programs (see [Bader and
Hitzler, 2005)).

The Neural-Symbolic model proposed for CogAgent is
based on the Recurrent Temporal Restricted Boltzmann
Machine (RTRBM) [Sutskever et al., 2009] and is depicted
in Figure 2. This partially connected symmetric neural net-
work implements an auto-associative memory of its input
layers (called visible layers). CogAgent contains three visi-
ble layers that represent its beliefs, desires and intentions
(introduced by [Bratman, 1999]). Beliefs are variables re-
lated to the training task (initial conditions, dynamic behav-
iour and measured variables) and the student profile. Inten-
tions are variables related to actions or instructions. And
desires are variables related to performance assessments
(e.g. evaluations or rewards). Beliefs and intentions are di-
rectly related to the current state of the context whereas de-
sires will be related to future states as well using Temporal
Difference learning [Sutton, 1988]. This technique learns
the model to predict a maximum obtainable value for its
desires (e.g. overall evaluation scores) based on the current
and previous states. Otherwise, the model would only learn
to map short-term evaluations, which is not desired in this
case.
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The hidden layer of the RTRBM is connected to the visi-
ble layers with symmetric connections. Each hidden unit
represents a rule or relation between one or more visible
units. It also contains recurrent hidden-to-hidden connec-
tions that enable the RTRBM to learn the temporal dynam-
ics in the visible layers using an algorithm based on contras-
tive divergence and backpropagation through time. Using
this layer we can infer the posterior probability of beliefs,
intentions and desires in relation to the state of current and
previous beliefs, intentions and desires.

3.1 Symbolic Rules and Fuzzy Atoms

As described in section 2, the rules CogAgent needs to en-
code, learn and reason about are relations (or causalities)
between XML encoded constructs, which will be called
atoms hereafter. An XML based atom describes a belief,
intention or desire as a function of measured data from the
simulator and/or assessment data from the assessors (or stu-
dents). In case of training simulators this data is often ex-
pressed in both continuous and binary values. Therefore we
need to use functions in the visible units that can express
both. In [Chen and Murray, 2003] sigmoid functions are
introduced that contain a ‘noise-control’ parameter to allow
a smooth translation from noise-free deterministic behaviour
to binary-stochastic behaviour. These continuous stochastic
functions can express both binary and continuous variables.
The ‘noise-control’ parameter controls the steepness of the
sigmoid function and can be trained, such that the behaviour
of a function dynamically changes according to the distribu-
tion of its input values. We will extend our model with such
functions to create a Recurrent Temporal Continuous Re-
stricted Boltzmann Machine (RTCRBM).
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To express relations between atoms in symbolic rules we
propose to use the temporal propositional logic described in
Lamb et al., [2007]. This logic contains several modal op-
erators that extend classical modal logic with a notion of
past and future. All these operators can be translated to a
form that relates only to the immediate previous timestep
(denoted by the temporal operator ®). This allows us to en-
code any rule from this language in the RTCRBM as a com-
bination of visible units (or atoms) and recurrent hidden
units that represent applied rules in the previous timestep.
For example the proposition aSp denotes that a proposition
a has been true since the occurrence of proposition . This
can be translated to: f — aSp and a A e(aSp) — aSp,
where a and £ are modelled by visible units and e(aSp) is
modelled by a recurrent hidden unit.

We extend this logic with the use of equality and inequal-
ity formulas to represent the atoms for continuous variables
(e.g. A=x, A<x, etc). Note that the atoms for binary vari-
ables can also be represented as A=true or A=false, which
allows us to handle the outcome of these atoms in the same
way as with the continuous atoms. But for readability we
will use the classical notion A and —A.

Due to the stochastic nature of the sigmoid functions used
in our model, the atoms can be regarded as fuzzy sets with a
Gaussian membership function. This allows as to represent
fuzzy concepts, like good and bad or fast and slow or ap-
proximations of learned values, which is especially useful
when reasoning with implicit and subjective rules. In fact
our model can be regarded as a neural-fuzzy system similar
to the fuzzy systems described in [Kosko, 1992] and [Sun,
1994].

Now let’s take the training task depicted in Figure 3. Us-
ing our extended temporal propositional logic, we can de-
scribe rules about the conditions, scenario and performance
assessment related to this task.
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Figure 3. Example training task for driving simulation. The
Trainee drives on an urban road, approaching an intersection. The
Trainee has to apply the yield-to-the-right-rule.

Example rules for a driver training task:

Conditions:
(Area = urban)
(Weather > good)
(Time > 6) A (Time < 18)

Scenario:
(Speed > 0) A Approachinglintersection — Crossintersection
ApproachingIntersection A W(ApproachingTraffic = right)
((Speed > 0) A (HeadingIntersection)) S (Distancelntersection < x) —
ApproachingIntersection

Assessment:
Approachingntersection A (Distancelntersection = 0) A
(ApproachingTraffic = right) A O(Speed = 0) — (Evaluation = good)
Approachingintersection A (Distancelntersection = 0) A
(ApproachingTraffic = right) A 0(Speed > 0) — (Evaluation = bad)

The rule with temporal operator S, denotes that Approach-
inglIntersection is true when the driver has been driving to-
wards an intersection since a certain distance x to an inter-



section was passed. This rule and the actual value for x can
be learned from observation by clamping the actual speed,
heading and distance to the visible units and the value frue
to the unit for ApproachingIntersection when the trainee is
approaching the intersection. This can be done by an asses-
sor or the student, but could also be automatically inferred
by the model, as explained in the next section.

3.2 Rule encoding and extraction

To encode and extract symbolic rules in symmetric connec-
tionist networks, like the RBM, Pinkas [1995] describes a
generic method that directly maps these rules to the energy
function of such networks. Therefore he describes an exten-
sion to propositional logic, called penalty logic that applies
a penalty to each rule. This penalty can be regarded as the
“certainty” or “reliability” of a rule and is directly related to
the weights of the connections between the units that form
this rule. To apply the encoding and extraction algorithms of
Pinkas successfully to our model we need extend our tempo-
ral propositional logic with the use of penalties. [Sun, 1994]
describes a method to map atoms with classical modal op-
erators to real values. We propose to extend this method to
create a mapping of atoms and rules with the modal opera-
tors used in our model to penalties. Furthermore we need to
investigate what changes are required to the algorithms to
handle the use of equality formulas and continuous vari-
ables. For example, we need to prove that it is possible to
infer the correct value for unknown continuous variables in
a rule via pattern reconstruction based on known values and
(previously) applied rules. And to encode and extract rules
with inequality formulas we need to be able to transform
these to and from rules that contain only equality formulas.

The penalties that are encoded or learned by our model
can be used to rank the rules according to their applicability
in a certain context or scenario, giving the students and as-
sessors a nice overview of the applied rules. Also they allow
us to solve ambiguities in the application of rules, by using
such a ranking to select the most applicable (or reliable) rule
in each case.

4 Further Research and Experiments

The model described here is still conceptual and requires
further research. To summarize the previous sections, we
need to investigate the following topics:

e [s the proposed language for symbolic rules adequate
enough to represent the subjective and fuzzy rules ap-
plied in performance assessment?

How to determine the penalties of atoms and rules
based on their modalities? And how to map penalties to
temporal modalities of rules and atoms?

How to transform rules with inequality formulas to and
from rules with only equality formulas?

If and how to adapt the rule encoding and extraction
methods of Pinkas [1995] to make them applicable to
the RTCRBM?

How to integrate temporal difference learning in the
RTCRBM for long term evaluation of desires?
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These and many other topics will be investigated in a
three year research project on assessment in driving simula-
tors, carried out by TNO in cooperation with the Dutch li-
censing authority (CBR), Research Center for Examination
and Certification (RCEC), Rozendom Technologies and
ANWB driving schools. The resulting automated assess-
ment module will be validated in several experiments on a
large student population using multiple commercial driving
simulators. If successful, the module will be used to support
the Dutch driver training and examination program.
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