
A Neural Network Approach for First-Order Abductive Inference

Oliver Ray and Bruno Golénia
Department of Computer Science

University of Bristol
Bristol, BS8 1UB, UK

{oray,goleniab}@cs.bris.ac.uk

Abstract
This paper presents a neural network approach for
first-order abductive inference by generalising an
existing method from propositional logic to the
first-order case. We show how the original propo-
sitional method can be extended to enable the
grounding of a first-order abductive problem; and
we also show how it can be modified to allow the
prioritised computation of minimal solutions. We
illustrate the approach on a well-known abductive
problem and explain how it can be used to perform
first-order conditional query answering.

1 Introduction
Neurosymbolic research aims to combine neural inference
methods with symbolic knowledge formalisms in order to
better understand and exploit the cognitive functions of brain
and mind. The integration of neural networks and logic pro-
grams is a major focus in this field. But, most existing work
only deals with neural representations of propositional logic
programs – which are not very well suited to applications
with complex or incomplete information. Thus, our goal is
to develop a connectionist approach for typed abductive logic
programs – that are specifically intended for this purpose.

Abductive logic programs extend normal logic programs
by allowing the truth of particular literals, called abducibles,
to be assumed subject to certain conditions, called integrity
constraints, when deciding which instances of a query, or
goal, succeed from some program, or theory. Thus, any so-
lution to a first-order abductive problem has two parts: a set
of variable bindings, called an answer, denoting a successful
instance of the goal; together with a set of abducibles, called
an explanation, denoting a set of auxiliary assumptions. In
this way, abductive logic programming can be seen as a form
of conditional query answering.

This paper presents a neural network approach for first-
order abductive inference. The approach generalises an ex-
isting method of Ray & Garcez [9] from propositional logic
to the first-order case. Like its predecessor, the approach is
based on translating an abductive problem into a neural net-
work such that the fixpoints of the network are in one-to-one
correspondence with the solutions of the original problem.
Unlike other methods for neural abduction, such as [3; 10; 2;

13; 7; 12; 8; 1], our approach has the benefits of placing no
restrictions on the use of negation or recursion and being able
to systematically compute all required solutions.

Our main contributions are twofold: we show how the
propositional method can be extended to enable the practi-
cal grounding of a first-order abductive problem; and we also
show how it can be modified to allow the prioritised compu-
tation of minimal solutions. The former extension uses tech-
niques from the field of Answer Set Programming (ASP) [6]
to reduce the number of logically redundant clauses and lit-
erals in the ground program. The latter modification ensures
the hypothesis space is searched in a way that gives higher
priority to solutions with fewer abducibles. We illustrate the
approach and explain how it can be used to perform first-order
conditional query answering.

The rest of the paper is structured as follows: Section 2
recalls the relevant background material; Section 3 presents
our approach; and the paper concludes with a summary and
directions for future work.

2 Background
This section recalls some basic notions of neural networks
and logic programs. The definitions closely follow those of
Ray & Garcez [9], except that variables are now explicitly
typed and may appear in any input to an abductive problem.

(Threshold) Neural Networks: A neural network, or just
network, is a graph (N,E) whose nodesN are called neurons
and whose edges E ⊆ N × N are called connections. Each
neuron n ∈ N is labelled with a real number t(n) called its
threshold and each connection (n,m) ∈ E is labelled with a
real numberw(n,m) called its weight. The state of a network
is a function s that assigns to each neuron the value 0 or 1. A
neuron is said to be active if its value is 1 and it is said to be
inactive if its value is 0. For each state s of the network, there
is a unique successor state s′ such that a neuron n is active in
s′ iff its threshold is exceeded by the sum of the weights on
the connections coming into n from nodes which are active
in s. A network is said to be relaxed iff all of its neurons are
inactive. A fixpoint of the network is any state that is identical
to its own successor state. If a fixpoint t is reachable from an
initial state s by repeatedly computing successor states, then
t is referred to as the fixpoint of s.

2

T =

wont start(C)← flat battery(C)
wont start(C)← no fuel(C)
wont start(C)← spark plugs dirty(C)
head lights work(c1)
fuel gauge empty(c2)
spark plugs dirty(c3)

∪

 car(c1)
car(c2)
car(c3)

G =

{
wont start(C) ∧ ¬spark plugs dirty(C)

}
IC =

{
← flat battery(C) ∧ head lights work(C)
← no fuel(C) ∧ ¬fuel gauge empty(C) ∧ ¬broken gauge(C)

}

A =

 flat battery(C)
no fuel(C)
broken gauge(C)

D =

{
car(C)

}
Figure 1: Abductive context for the classic cars problem

(Typed) Logic Programs: A typed logic program, or just
program, is a set of rules of the form H ← B1 ∧ . . . ∧ Bn ∧
¬C1 ∧ . . . ∧ ¬Cm in which the H , Bi and Cj are atoms
and in which any variable is associated with a unary predi-
cate called its type or domain. The atom to the left of the
arrow is called head of the rule, while the literals to the right
comprise the body. The head atom H and the positive body
atoms Bi are said to occur positively in the rule, while the
negated body atoms Cj are said to occur negatively. A rule
with no negative body literals is called a definite clause and
written H ← B1 ∧ . . . ∧ Bn. A rule with no body literals
is called a fact and simply written H . A rule with no head
literal is called a denial and written← B1 ∧ . . . ∧ Bn. If P
is a program, then BP (the Herbrand base of P) is the set
of all atoms built from the predicate and function symbols
in P ; and GP (the ground expansion of P) is the program
comprising all well-typed ground instances of the clauses in
P . In addition, A+

p and A−P denote, respectively, the sets of
ground atoms that occur positively and negatively in GP . A
stable model of P is a Herbrand interpretation I ⊆ BP that
coincides with the least Herbrand model of the definite pro-
gram P I obtained by removing from GP each rule containing
a negative literal not in I , and by deleting all of the negative
literals in the remaining rules.

Abductive Logic Programs: An abductive logic program
[4] is a triple (T, IC,A) where T is a program (the theory),
IC is a set of denials (integrity constraints), A is a set of
facts (abducibles). Given a conjunction G of literals (goals),
the task of ALP is to compute a set θ of variable substitutions
(an answer) and a set ∆ of ground abducibles (an explana-
tion) such that there is a stable model of T ∪ ∆ (which, in
the terminology of [5], is called a generalised stable model
of T) that satisfies all of the denials in IC and all of the lit-
erals in Gθ. To specify an abductive problem, one must state
the theory T , goal G, constraints IC, and abducibles A. If
needed, the types of any variables can be explicitly given as a
set of facts D (domain declarations) with one atom p(X) for
every variable X of type p. For convenience, we will refer

to the collection of five inputs (T,G, IC,A,D) as a (typed)
abductive context. A context is propositional if it contains no
variables. When a context has many different solutions it is
usual to prefer explanations with the fewest number of ab-
ducibles. Intuitively, this corresponds to the principle of Oc-
cam’s Razor, which favours the simplest hypotheses that fit
the data. In practice, this means that subset-minimal and/or
cardinality-minimal explanations are usually required.

Example 2.1. Consider the abductive context in Figure 1.
The theory T describes a collection of three classic cars. It
states that a carC wont start if its battery is flat, if its fuel tank
is empty, or if its spark plugs are dirty. It also states that the
headlights of the first car c1 are working, that the fuel gauge
of the second car c2 is showing empty, and that the spark
plugs of the final car c3 are dirty. The constraints IC state,
firstly, that the battery of a car cannot be flat if the headlights
of that car are working and, secondly, that it is impossible
for a car to have no fuel if its fuel gauge is not empty and
not broken. The abducibles A allow us to assume that any
car has a flat battery, has no fuel, and/or has a broken fuel
gauge. The goal G asks for which cars C it is possible to
show that (1) the car does not start and that (2) the car does
not have dirty spark plugs. The domain declarationsD assert
that all occurrences of the variable C represent cars.

This problem has many solutions. There are two
cardinality-minimal solutions which bind C to c2 after ab-
ducing no fuel(c2) or flat battery(c2), respectively. There
is one more subset-minimal solution which binds C to c1
after abducing no fuel(c1) and broken gauge(c1). Note
that, by the second constraint, no fuel(c1) can only be ab-
duced if broken gauge(c1) is also abduced (at its gauge
is not showing empty). Note also, by the first constraint,
flat battery(c1) cannot be abduced (as its headlights work).
More than a hundred non-minimal solutions can be obtained
by adding redundant abducibles to the explanations above.

As non-minimal solutions are often of little practical use,
this paper will develop a neural approach for preferentially
finding minimal solutions of first-order abductive problems.

3

3 First order Neural network abduction
The approach in this section builds on well-known methods
for translating propositional logic programs into neural net-
works whose fixpoints correspond to stable models. In actual
fact, we build upon an extension of these methods proposed
by Ray and Garcez [9] for translating propositional abductive
contexts into neural networks whose fixpoints correspond to
generalised stable models. This is done by rewriting negative
literals as abducibles and adding clauses that, when translated
into a neural network, perform a systematic search through
the space of abductive solutions.

In principle, one could try and solve a first-order problem
by applying the method of [9] to the propositional context
obtained by taking all possible well-typed ground instances of
the abductive inputs. But, in practice, this naive approach is
not feasible as it generates neural networks that are too large
and take too long to find the minimal solutions.

To address these limitations, we developed an improved
method for more effectively computing the minimal solutions
of first-order problems. The new approach exploits an ASP
system called LPARSE [11] to allow the efficient grounding
of a first-order program; and it also ensures the prioritised
computation of minimal solutions by modifying the search
strategy of the original method.

Given a typed first-order abductive context, the new
method has six main steps: First it introduces new predicates
into the language to represent abducibles and negations. Then
it translates the typed abductive context into a normal propo-
sitional abductive context using LPARSE together with some
appropriate pre- and post-processing. Next it rewrites any
negative literals in the theory as abducibles subject to some
simple integrity constraints that preserve their logical mean-
ing. After that, it adds some clauses that allow the result-
ing network to compute abductive solutions. At this point, it
translates the resulting context into a neural network. Finally
it allows the network to compute the abductive solutions in
order of minimality. These steps are now described in turn.

STEP 0: Extending the Language
The logical transformations used in our method require the
introduction of predicates to represent abducibles and nega-
tions. For every predicate p in a given abductive context, we
assume two new predicates, denoted p† and p∗, which repre-
sent the assumption of p and the negation of p, respectively.

STEP 1: Obtaining a Propositional Context
Our approach for translating a typed first-order abductive
context into a normal propositional abductive context uses a
system called LPARSE which, as described in [11], is practi-
cal tool for grounding typed logic programs. Compared to a
naive propositionalisation approach, LPARSE further simpli-
fies the ground program by removing literals that are known
to be true from the body of a clause and by removing clauses
whose bodies are known to be false from the program. Since
LPARSE is not specifically designed to work with abductive
logic programs, some pre- and post-processing is needed to
make the approach work. Thus we have three sub-steps:

• Pre-processing: We first turn an abductive context into
a logically equivalent program by temporarily employing
negative cycles to represent abducibles. This is needed to
prevent LPARSE from treating abducibles as undefined do-
main predicates, which would otherwise be removed from
the ground program. Then domain declarations of the form
#domain p(V) are added for each variable V of type p in D
(which causes LPARSE to add the atom p(V) into the body of
every clause containing V). Finally, the goal G is turned into
a clause by using a new propositional atom goal as the head.
This is carried out by the function ζ below.
Definition 3.1 (ζ). Let X = (T,G, IC,A,D) be a typed
abductive context and let G′, A′ and D′ be as follows
G′ = {goal← L1 ∧ . . . ∧ Ln |L1 ∧ . . . ∧ Ln = G},

A′ =
{
a← ¬a∗
a∗ ← ¬a a ∈ A

}
D′ = {#domain p(V) | p(V) ∈ D}
Then Y = ζ(X) is the logic program T∪G′∪IC∪A′∪D′.

• Grounding: The resulting program is now grounded and
simplified by LPARSE, as indicated by the function χ below.
Definition 3.2 (χ). Let Y be a logic program (possibly con-
taining domain declarations). Then Z = χ(Y) is the ground
logic program obtained by running LPARSE on Y .

• Post-processing: After running LPARSE, any surviving
ground instances of the negative cycles introduced by the pre-
processing phase are converted back into explicit abducibles.
This is done by replacing each cycle of the form a← ¬a∗
and a∗ ← ¬a with a bridging clause a ← a† and making
the ground atom a† abducible. It is interesting to note that
this re-conversion is not strictly necessary as any negations
will be replaced by abducibles and integrity constraints in the
next step. But, it is more efficient to exploit the fact that each
cycle represents a single abducible in order to avoid the un-
necessary introduction of one additional abducible and two
additional integrity constraints. The bridging clauses allow
to distinguish instances of an atom whose truth is abduced
from those whose truth is implied. In addition, any resulting
ground instances of the goal clause are added to the theory
T1 and their head atom goal becomes the new propositional
goal. This process is performed by the function µ below.
Definition 3.3 (µ). Let Z be any ground logic program and

define

ZIC = {← L1 ∧ . . . ∧ Ln ∈ Z}
ZG = {goal← L1 ∧ . . . ∧ Ln ∈ Z}
ZA = {a← ¬a∗ ∈ Z} ∪ {a∗ ← ¬a ∈ Z}
ZT = Z \ (ZIC ∪ ZG ∪ ZA)

Then W = µ(Z) is the propositional abductive context
(T1, G1, IC1, A1, D1) such that

T1 = ZT ∪ ZG ∪ {a← a† | {a← ¬a∗} ∈ ZA}
G1 = {goal}
IC1 = ZIC

A1 = {a† | {a← ¬a∗} ∈ ZA}
D1 = ∅

4

T1 =

car(c1)

car(c2)

car(c3)

wont start(c1)← flat battery(c1)

wont start(c2)← flat battery(c2)

wont start(c3)← flat battery(c3)

wont start(c1)← no fuel(c1)

wont start(c2)← no fuel(c2)

wont start(c3)← no fuel(c3)

wont start(c1)← spark plugs dirty(c1)

wont start(c2)← spark plugs dirty(c2)

wont start(c3) ← spark plugs dirty(c3)

spark plugs dirty(c3)

fuel gauge empty(c2)

head lights work(c1)

∪

broken gauge(c1)← broken gauge†(c1)

broken gauge(c2)← broken gauge†(c2)

broken gauge(c3)← broken gauge†(c3)

no fuel(c1)← no fuel†(c1)

no fuel(c2)← no fuel†(c2)

no fuel(c3)← no fuel†(c3)

flat battery(c1)← flat battery†(c1)

flat battery(c2)← flat battery†(c2)

flat battery(c3)← flat battery†(c3)

∪

goal← wont start(c1) ∧¬spark plugs dirty(c1)

goal← wont start(c2) ∧¬spark plugs dirty(c2)

goal← wont start(c3) ∧ ¬spark plugs dirty(c3)

IC1 =

← flat battery(c1) ∧head lights work(c1)

← flat battery(c2) ∧ head lights work(c2)

← flat battery(c3) ∧ head lights work(c3)

← no fuel(c1) ∧ broken gauge∗(c1) ∧¬fuel gauge empty(c1)

← no fuel(c2) ∧ ¬broken gauge(c2) ∧ ¬fuel gauge empty(c2)

← no fuel(c3) ∧ broken gauge∗(c3) ∧¬fuel gauge empty(c3)

← broken gauge∗(c1) ∧ broken gauge∗(c1)

← ¬broken gauge∗(c1) ∧ ¬broken gauge∗(c1)

← broken gauge∗(c3) ∧ broken gauge∗(c3)

← ¬broken gauge∗(c3) ∧ ¬broken gauge∗(c3)

G1 = { goal }

A1 =
{
no fuel†(c1), f lat battery†(c1), broken gauge†(c1), broken gauge∗(c1)

}
∪

{
no fuel†(c2), f lat battery†(c2), broken gauge†(c2)

}
∪

{
no fuel†(c3), f lat battery†(c3), broken gauge†(c3), broken gauge∗(c3)

}
Figure 2: Propositional abductive context for the classic cars example (where boxes identify clauses and literals removed by
the grounding process)

5

Example 3.1. The result of applying the above transforma-
tion to the abductive context of Example 2.1 is shown in Fig-
ure 2 — which, for convenience, also shows, within boxes, the
clauses and literals removed by LPARSE. Note that the omit-
ted rules can never be true and the omitted constraints can
never be violated.

STEP 2: Obtaining a Definite Theory
To avoid potential problems resulting from the unrestricted
use of negation in the theory (which could result in networks
where some states have no fixpoints) we use a well-known
equivalence between negation and abduction which allows us
to treat each negative literal ¬p(t1, . . . , tn) as an abducible
p∗(t1, . . . , tn) subject to integrity constraints stating that an
atom and its negation cannot both be true or both be false in
the same model. Intuitively, we are free to assume the fal-
sity of any atom if it is consistent to do so. As formalised by
the function η, below, we add such constraints for all ground
atoms appearing negatively in the context. For convenience,
this function uses some notation for representing the positive
form of an expression obtained by replacing all negative lit-
erals by their abducible proxies.

Definition 3.4 (∗). Let C = H ← B1 ∧ . . . ∧ Bn ∧ ¬C1 ∧
. . .∧¬Cm be a clause. Then C∗ is the (definite) clause C∗ =
H ← B1 ∧ . . . ∧Bn ∧ C∗1 ∧ . . . ∧ C∗m.

Definition 3.5 (η). Let W = (T1, G1, IC1, A1, D1) be a
propositional abductive context. Then η(W) is the abductive
context, (T2, G2, IC2, A2, D2) such that

T2 = {C∗ |C ∈ T1}
G2 = {C∗ |C ∈ G1}
IC2 = {C∗ |C ∈ IC1}

∪
{
← a ∧ a∗
← ¬a ∧ ¬a∗ a ∈ A−T1∪IC1∪G1

}
A2 = A ∪ {a∗ | a ∈ A−T1∪IC1∪G1

}
D2 = D1

STEP 3: Adding Clauses for Abduction
We now add some extra clauses that, when translated into a
neural network, will perform a systematic search through the
space of abductive solutions.

As in the method of Ray & Garcez [9], we use a binary
counter whose output determines which abducibles are as-
sumed and which are not. In earlier work, the output of this
counter followed a simple binary sequence: 000, 001, 010,
011, 100, etc. But, in this paper, we wish to keep the num-
ber of abducibles as small as possible for as long as possible.
Thus we use a modified search sequence (called a Banker’s
sequence) where the number of true bits increases monotoni-
cally: 000, 100, 010, 001, 110, etc.

In fact, we use two cascaded Banker’s sequences, one for
pure abducibles a† ∈ A2 and one for (the negations of)
the negative literals a∗ ∈ A2. The clauses which define
these counters are formalised in the theory C below. Firstly,
C1,n1 denotes a counter with n1 bits a1

n1
, . . . , a1

1 bits cor-
responding to the abducibles a†n1

, . . . , a†1. Secondly, C2,n2

denotes a counter with n2 bits a2
n2
, . . . , a2

1 bits corresponding
to the abducibles a∗n2

, . . . , a∗1. Each counter i has HOLDi

and MOV Ei conditions that determine its behaviour when a
global next signal is applied to the network. If HOLDi is
true, it will keep its current value. If MOV Ei is true, it will
advance to the next value in the Banker’s sequence. If neither
is true, the counter will reset to zero.

The definition of each counter Ci,n is split into five macros
Ci,n

1 to Ci,n
5 that together provide a logical specification of

the counter state transition table. In brief, bij is true iff the
jth bit of counter i is true; cij is true iff bij is true and bij−1 is
false; di

j is true iff cij is true and cik is false for all k < j; ei
j is

true iff bij is false and bij−1 is true; and alli is true iff all the
bits of counter i are true.

C = C1,n1 ∪ C2,n2 where

Ci,n =
5⋃

k=1

Ci,n
k such that

Ci,n
1 =

n⋃
k=0

bik ←
n∧

j=1

¬di
j ∧ bin−k ∧MOV Ei

bik ←
n∧

j=1

¬di
j ∧ ei

n−k ∧MOV Ei

bik ← bik ∧ ¬next
bik ← bik ∧HOLDi

Ci,n

2 =

bin ←

n∧
j=0

¬bij ∧MOV Ei

alli ←
n∧

j=0

bij

Ci,n

3 =
n⋃

k=2

k−1⋃
j=0

{
bik−2−j ← bij ∧ di

k ∧MOV Ei
}

Ci,n
4 =

n⋃
k=1

ei
k ← ¬bik ∧ bik−1

cik ← bik ∧ ¬bik−1

di
k ←

k−1∧
j=1

¬cij ∧ cik

bik−1 ← di
k ∧MOV Ei

ai
k ← ABDi

k

Ci,n

5 =
n⋃

k=1

n⋃
j=k+1

{
bij ← bij ∧ di

k ∧MOV Ei
}

MOV E1 = next ∧ all2
MOV E2 = next ∧ ¬all2
HOLD1 = ¬all2
HOLD2 = false
ABD1

k = b1k for all k
ABD2

k = ¬b2k for all k

The 2nd counter increments until its maximum is reached,
whence it resets. The 1st counter holds until the 2nd re-
sets, whence it increments. To preferentially minimise the
number of assumed abducibles the outputs a1

n1
. . . a1

1 of the
1st counter are obtained by copying the corresponding bits
b1n1

. . . b11. To preferentially maximise the number of atoms
assumed false, the outputs a2

n2
. . . a2

1 of the 2nd counter are
obtained by negating the corresponding bits b2n2

. . . b21.

6

As in [9], we advance the counter if a fixpoint fp is reached
that violates the goal goal or integrity constraints ic. Previ-
ously, this was done by a clock with a constant period de-
termined by worst case propagation delay through the net-
work generated by the program. For efficiency, we now add
clauses to detect as soon as a fixpoint is reached. These are
given by the theory S below, which uses four new proposi-
tions z′, z+, z−, z$ to compare the current state of each atom
z (in a set Z of atoms) with their previous states.

In brief, z′ denotes the previous state of z; z+ is true iff
the current and previous states are both true; z− is true iff
they are both false; and z$ is true iff they are the same. The
w1-w4 are wait signals that just give the counters enough
time to compute their next value before the network decides
whether the current abducibles are a solution (in which
case the signal soln is activated) or whether another set
of abducibles are needed (in which case the signal next is
activated). fp indicates when a fixpoint has been reached.
The signal done indicates when all solutions are exhausted.

S = SZ
1 ∪ SZ

2 ∪ SZ
3 where

SZ
1 =

⋃
z∈Z

z′ ← z
z+ ← z ∧ z′
z− ← ¬z ∧ ¬z′
z$ ← z+

z$ ← z−

SZ
2 =

w1 ← next
w2 ← w1

w3 ← w2

w4 ← w3

fp←
∧
z∈Z

z$ ∧
4∧

i=1

¬wi ∧ ¬next

SZ

3 =

next← ¬next ∧ fp ∧ ic
next← ¬next ∧ ¬goal ∧ fp
soln← ¬next ∧ goal ∧ fp ∧ ¬ic
done← all1 ∧ all2 ∧ fp

To properly specify these additional clauses, it is necessary

to state the parameters n1, n2 and Z in C and S. This is done
by the function δ below, which defines n1 as the number of
abducibles a†, n2 as the number of negations a∗, and Z as
the set of all atoms appearing (positively or negatively) in
the context. In addition, this function adds a special atom
ic into the head of every integrity constraint, and adds the
literal ¬next into the body of every rule to ensure the net-
work is fully relaxed whenever a new solution is attempted.
The resulting network architecture is summarised in Figure 3.

Definition 3.6 (δ). Let (T2, G2, IC2, A2, D2) be a proposi-
tional abductive context with G2 = {goal} and D2 = ∅.
Now let n1 = |{a† ∈ A2}|, let n2 = |{a∗ ∈ A2}|, let
Z = A+

T2∪G2∪IC2
∪A−T2∪G2∪IC2

, and let R be the program

R =
{
H ← B1 ∧ . . . ∧Bn ∧ ¬next
|H ← B1 ∧ . . . ∧Bn ∈ T2

}
∪

{
ic← B1 ∧ . . . ∧Bn ∧ ¬next
| ← B1 ∧ . . . ∧Bn ∈ IC2

}

Then, P = δ(T2, G2, IC2, A2) is the program R ∪ C ∪ S.

STEP 4: Obtaining a neural network
Now we translate the clauses obtained so far into a network
using the method of Ray & Garcez [9], recalled below, which
is based on well-known neurosymbolic techniques.

Definition 3.7 (θ). Let P be a logic program, then θ(P) is
the network (N,E) such that

N =
⋃

r∈GP

{
r,H,B1, . . . , Bn, C1, . . . , Cm

| r = H ← B1 ∧ . . . ∧Bn ∧ ¬C1 ∧ . . . ∧ ¬Cm

}
E =

⋃
r∈GP

{
(r,H), (B1, r), . . . , (Bn, r), (C1, r), . . . , (Cm, r)
| r = H ← B1 ∧ . . . ∧Bn ∧ ¬C1 ∧ . . . ∧ ¬Cm

}
and for all r = H ← B1∧. . .∧Bn∧¬C1∧. . .∧¬Cm ∈ GP

t(r) = n− 1/2
t(H) = 1/2
t(Bi) = 1/2
t(Cj) = 1/2

w(r,H) = 1
w(Bi, r) = 1
w(Cj , r) = −1

STEP 5: Computing Abductive Solutions
In the last step, we compute the answers with the neural
network. Starting from a relaxed network, we activate the
node next. Then, on every other subsequent state, we check
whether the network has reached a fixpoint where soln acti-
vated. If it has, then the current abducibles are recorded and
we see which of the goal rules is activated in order to extract
the successful ground instances of the query. If more solu-
tions are required then we activate next in order to seek the
next answer. We stop this process when a suitable answer is
computed or done is true, meaning the entire search space
has been explored.

4 Conclusion and future work
We believe that the integration of abductive and inductive in-
ference is necessary to develop improved learning and reason-
ing approaches. In this paper we presented a neurosymbolic
approach for first-order abductive inference. Unlike most
other such approaches, we do not impose any restrictions on
the use of negation or recursion. However, the ASP ground-
ing procedure assumes that all variables have finite domains,
which limits the use of function symbols. We have imple-
mented our method using the C++ programming language
and applied it to the abductive context shown in Figure 1.
In this way, we correctly obtained the minimal solutions fol-
lowed by all of the other non-minimal solutions. Even in this
simple example we note that the search time increases sig-
nificantly if a naive grounding is used in place of our more
efficient ASP approach. We also note that the time needed
to compute all minimal solutions is significantly less than
the time needed to compute all (non-minimal) solutions. In
this sense we have improved existing methods of neurosym-
bolic abduction. However, the complexity of the approach
is still exponential in the number of abducibles, which limits
its practical use. In future work, we will compare our neural
approach with related symbolic approaches and investigate
ways of parallelising our method.

7

goal ic

a*

n2
a

1
*a†

n1
a

1
†

next

soln done

S
1
Z

S
3
Z

negative assumptions

abducible assumptions

current
states

stable
states

fp

S
2
Z

R

MOVE1 HOLD1

a1

n1
a

1

1
all 1

MOVE2 HOLD2

a2

n2
a

1
2

all 2

C2,n2 C1,n1

z i

z
i
$

Figure 3: Network architecture showing the logical interactions between the counters C1,n1 , C2,n2 control blocks SZ
1 , SZ

2 , SZ
3 ,

and the ground program R

References
[1] A. Abdelbar, M. El-Hemaly, E. Andrews, and D. Wun-

sch II. Recurrent neural networks with backtrack-points
and negative reinforcement applied to cost-based abduc-
tion. Neural Networks, 18(5-6):755–764, 2005.

[2] B. Ayeb, S. Wang, and J. Ge. A Unified Model For Neu-
ral Based Abduction. IEEE Transactions on Systems,
Man and Cybernetics, 28(4):408–425, 1998.

[3] A. Goel and J. Ramanujam. A Neural Architecture for
a Class of Abduction Problems. IEEE Transactions on
Systems, Man and Cybernetics, 26(6):854–860, 1996.

[4] A.C. Kakas, R.A. Kowalski, and F. Toni. Abductive
Logic Programming. Journal of Logic and Computa-
tion, 2(6):719–770, 1992.

[5] A.C. Kakas and P. Mancarella. Generalized Stable Mod-
els: a Semantics for Abduction. In Proceedings of
the 9th European Conference on Artificial Intelligence,
pages 385–391. Pitman, 1990.

[6] V. Lifschitz. Answer set programming and plan genera-
tion. Artificial Intelligence, 138(1-2):39–54, 2002.

[7] P. Lima. Logical Abduction and Prediction of Unit
Clauses in Symmetric Hopfield Networks. In Artificial
Neural Networks, 2, volume 1, pages 721–725. Elsevier,
1992.

[8] J. Medina, E. Mérida-Casermeiro, and M. Ojeda-
Aciego. A neural approach to abductive multiad-

joint reasoning. In Proceedings of the 10th Interna-
tional Conference on Artificial Intelligence: Methodol-
ogy, Systems, and Applications, volume 2443 of Lecture
Notes in Computer Science, pages 213–222, 2002.

[9] O. Ray and A. d‘Avila Garcez. Towards the integration
of abduction and induction in artificial neural networks.
In Proceedings of the ECAI’06 Workshop on Neural-
Symbolic Learning and Reasoning, pages 41–46, 2006.

[10] J. Reggia, Y. Peng, and S. Tuhrim. A Connectionist
Approach to Diagnostic Problem-Solving Using Causal
Networks. Information Sciences, 70:27–48, 1993.

[11] P. Simons, I. Niemelä, and T. Soininen. Extending and
implementing the stable model semantics. Artificial In-
telligece, 138(1-2):181–234, 2002.

[12] R. Vingrálek. A connectionist approach to finding stable
models and other structures in nonmonotonic reasoning.
In Proceedings of the Second International Workshop
on Logic Programming and Non-Monotonic Reasoning,
pages 60–81. MIT Press, 1993.

[13] C. Zhang and Y. Xu. A Neural Network Model for Diag-
nostic Problem Solving with Causal Chaining. Neural
Networks and Advanced Control Strategies, 54:87–92,
1999.

8

