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Abstract
In this paper, a sentence-based reasoning model is
introduced for the prediction of new individual ac-
tivities by means of memory reconsolidation that
enables the integration of incoming evidence with
related past experience. Both the evidence and pre-
vious experience are stored in extended semantic
networks (ESN) as memory. They are then pro-
cessed in Bayesian networks for inferring new and
unified memory. Symbolic approaches, which fo-
cus on the structural aspect of language, ensure the
correct extraction of the key information of words
according to the context. Effective mechanisms for
information propagation, Bayesian networks (BN)
construction and combination are adopted to enable
inference reasonable and adaptive to different sce-
narios based on the topic domain. Our model is
compared to other reasoning systems through ex-
periments. The results show that our model can
both deduce more implicit information from texts,
and avoid some incorrect reasoning caused by con-
fusing data in the knowledgebase.

1 Introduction
Successful reasoning on activities from text should be more
adaptive to different scenarios than other data-driven infer-
ence models that focus on structure and parameter lean-
ing. For that, a preprocessing must include both the integra-
tion with commonsense knowledge and the representation of
events after parsing the sentences [Klein and Manning, 2003].

Previous approaches have applied some language process-
ing operations and built effective reasoning models. One
method establishes “coreference mappings” of data in a mem-
ory system to reduce the number of ambiguous sentence in-
terpretations [Livingston and Riesbeck, 2009]; another builds
a large commonsense knowledgebase to make inference from
key words [Liu and Singh, 2004]. These methods, although
efficient in many cases, lack a systematic approach for dis-
ambiguation of word senses and scenario topics [Dahlgren,
1988], and hence may lead to partially incorrect inference.

Additionally, some data from commonsense knowledge are
not always true given a specific scenario. For example, the as-
sertion “if someone is a lawyer, he practices law” could sound

correct, however, there are non-practice lawyers and lawyers
are not likely to practice law during “their holidays” [Kath-
leen and Joyce, 1989].

To improve on the inference of individual activities from
simple sentences, we propose a reasoning model with the
characteristic of memory reconsolidation. Memory reconsol-
idation can be thought as an information-processing proce-
dure where a recall of memory can be updated or strength-
ened as a result of integration of incoming information into
the pre-existing “memory network”[Tulving and Thomson,
1973]. During this procedure, information similar in mean-
ings, topics or scenarios within a domain is activated and
selectively moved to working memory for cognitive pro-
cess. Inspired by this phenomenon, we build a robust and
scenario-adaptive memory system with extended semantic
networks (ESN) as the symbolic representation of the lan-
guage. Stanford Parser [Klein and Manning, 2003] is em-
bedded to parse sentences. Key information such as subjects,
verb and objects is extracted into working memory and re-
ferred to WordNet [Fellbaum, 1998] and VerbNet [Kipper
et al., 2006] for disambiguation of word senses and top-
ics. Ontology categories of noun phrases, built from Word-
Net and stored in directed acyclic graphs, describe the fea-
tures of entities of individual subjects. The relations of en-
tities(representing activities, events or features of entities),
are stored as sub-symbolic memory in multiple Bayesian net-
works (BN). The BNs are built from a)statistical analysis of
information in ESN, b)sentences containing causal relation
and c)other knowledge bases. Related BNs are adaptively se-
lected by matching the keywords of topics in a scenario, and
are combined together if they have nodes in common.

The selection and combination of BNs enable inference
processes to avoid inaccurate conclusion and obtain more im-
plicit information than previous models.

2 Related Work
We use the following programs to enable our memory model:

1) Stanford parser, a Java program, is used to analyze the
grammatical structure of sentences and obtain subjects, ob-
jects and predicates [Klein and Manning, 2003]. 2) WordNet
is an English lexical database that provides multiple mean-
ings and topic domains of a word. It also groups words into
sets of cognitive synonyms and indicate the relations of the
words. (e.g. “dog” belongs to “canine”, “canine” belongs to
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“carnivore”, “placental” and “mammal”.) We use it to con-
struct an acyclic graph for word disambiguation.

3) VerbNet classifies verbs into classes. Each class is as-
signed with thematic roles, selectional restrictions on the ar-
guments and syntactic frames. For example, the Class “Hit-
18.1” has a constraint on the syntax of the class members,
showing the subject of “hit” should be a human or animal.
Such constraints are used to disambiguate the meanings from
WordNet and ConceptNet.

4) ConceptNet provides a commonsense knowledgebase
that can describe concepts of nouns and provides causal re-
lations between predicates. The knowledge in ConceptNet is
expressed as five-tuple assertions (“relation type”, “A”, “B”,
“f”, “I”), where “relation type” indicates the relation of “A”
and “B”, f is the number of times a fact is uttered in their train-
ing corpus, i counts how many times an assertion was inferred
during the ’relaxation’ phase. For example, (CapableOf “an-
imal” “grow” “f=2; i=2;”) has a relation type “CapabaleOf”,
which indicates the category of “animal” is capable to per-
form the activity “grow”. Since some relation types provide
causal relations of the verb phrases (VP), we build two-node
Bayesian networks from each of the assertions and use them
for inference on focused topics.

3 Information Representation
Predicates in sentences describe the features or activities of
the subjects. Some predicates can break into a form of “joiner
+ object”, where the joiner contains a verb, indicating the re-
lations between the subjects and the objects (see Figure 1(a))
. From a graphical point of view, a vertex can symbolically
represent a subject or an object while an edge can represent
their relation. For this reason, our extended semantic net-
works(ESNs) are used as a memory that represents the infor-
mation derived from sentences .

The ESNs focus on the relations between the subject and
the object. Since the meaning of a word can be captured by
the distribution of commonly co-occurring words or phrases
[Landauer and Dumais, 1997]. The semantic roles of verbs
have been characterized with nouns, and were shown to pre-
dict the brain activity associated with the meanings of nouns
[Mitchell et al., 2008]. The relation in an ESN contains a verb
that helps to understand the subjects in a certain scenario.

3.1 Definition of Extend Semantic Network
Suppose S = (s1, s2, . . . , sn) is a set of sentences, an ex-
tended semantic network to store S is a graph G′ = (V ′, E′)
, where V ′ = {vk|k = 1, 2, . . . ,m} is a set of vertices repre-
senting the concepts of subjects or objects in the sentences in
S; E′ = {ed(Vi, Vj)|d = 1, 2, . . . ; i, j = 1, 2, . . . ,m} is a
set of edges representing the relations between vertex Vi and
Vj , which are indicated in the sentences in S.

Notice that ed(Vi, Vj) is the d-th edge from vertex Vi to
Vj , which means that there can be more than one relations
between two concepts. Vertex Vi can be the same as Vj (that
is, i = j), in which case it is a unary relation of Vi (e.g. edge
e1(V3, V3) in Figure 1(b)) representing a intransitive verb or
a property of a vertex.

In our model, the memory system has two kinds of mem-
ory: a long-term memory and a working memory. The long-
term memory is an ESN that stores all the refined information
from working memory. The working memory is a temporar-
ily created ESN and receives information from the Stanford
Parser, long-term memory and inferences from BNs. The
working memory provides a disambiguation mechanism to
ensure the accuracy of information by topic matching. Then,
the disambiguated information would be either stored into the
long-term memory as an update or propagated to BNs as evi-
dence for inferences.

3.2 Parsing a Sentence
The subject and predicate of an input sentence are first ex-
tracted with the Stanford Parser.

Figure 1 shows the storing of sentences in an ESN. In Fig-
ure 1(a), the subject “Mike” and the objects “apple” and
“room” are stored as vertices. The joiners “eat” and “is in”
in the Verb Phases (VP) are stored as directed edges between
vertices (Figure 1(c)).

Sentence1: Mike             eats              the apple.
Sentence2: Mike             is in               the room.

subject joiner object

predi atepredicate

Sentence3: the apple              is red.
(a) predicates containing an object

Sentence3: the apple        is red.

subject predicate

e1(V1,V1) is red

apple V1

(b) a predicate with no ob-
jects

e1(V1,V3) eat apple

e1(V3,V3) is red

V3

Mike

roome1(V1 V2) is in

e1(V3,V1) eaten_by
V1 V2

roome1(V1,V2) is in

(c) symbolic representation in ESN

Figure 1: Parsing sentences into an ESN.

3.3 The Vertices
Vertices in an ESN denote noun phrases (NP) from subjects
and objects in sentences. They represent the entities of people
or things in the world. Features and constraints are added to
these vertices to ensure the robustness of the memory system.

Ontology Categories
Ontology categories classify the vertices according to the
word senses. WordNet provides such hierarchical category
data with regard to the word meanings.

Our model uses WordNet to build directed acyclic graphs
to represent these categories. Each category has descriptions
of its features and activities. Figure 2 shows a sub-graph of
the category graph generated from data in WordNet. Sup-
pose “research professor” belongs to the categories of “pro-
fessor” and “researcher”. In WordNet, “professor” is a kind
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of “academician” who “works at a college or university”. Af-
ter extracting the subject and predicate in the annotation of
“professor” with the Stanford Parser, “professor” can be as-
signed to the category of “academician” and the feature activ-
ities are “work at a college” or “work at a university”. Simi-
larly, “research professor” is also in the descendant categories
of “educator” (“someone who educates young people”) and
“researcher” ( “scientist who devotes himself to research”).categorycategory

person

professional 
person

person

person

educator
scientist ……

academician
researcher

…..

professor

researcher
……

Research 
professor

Figure 2: part of a directed acyclic graph for categories

In our category graph, a category can obtain the features
or activities either from its parent categories or by importing
data from the knowledgebase in ConceptNet.

The ontology categories are important to the entities in
working memory because they can help to disambiguate the
word sense and provide predicates to connect BNS(see next
section).

Possible States of a ESN Vertex
During information processing in the human brain, some neu-
rons are highly active, whereas others remain silent. This
leads to the formation of neural circuits for specific memory.
In analogy with biological neural memory, a vertex in an ESN
has different states: 1)active, 2)semi-active and 3)inactive .

Table 1 shows the differences among the three states of a
vertex. An active vertex represents an entity ready for infer-
ence. It comes from a subject or an object in a sentence or
from the long-term memory. Its meaning is disambiguated
and its renewed relations in the working memory with other
entities will be directly updated to the long term memory. A
semi-active vertex will become an active vertex if it is linked
to another active vertex once there exists a new relation be-
tween them. An inactivated vertex is not for inference and
remains in the long term memory. This can reduce the size of
ESNs, which makes computation less complex.

state Long-term Working For information assigned

memory Memory inference update a category

active Yes Yes Yes Yes Yes
semi-active No Yes Yes No No

inactive Yes No No No No

Table 1: Three states of a vertex in an ESN.

3.4 The Directed Edges
In a sentence, a predicate with an object is regarded as the
form of “joiner + object”. Edges in the ESNs represent the
joiners. They denote the relations between vertices in ESNs
and have features that are important to the inference in BNs:

1) The indicator of the evidence. Edges are indicated as
evidence if they are generated from input sentences. These
edges will be directly stored in both the long-term and work-
ing memory regardless of their probabilities.

2) The probability of an edge. The non-evidence edges
are generated from inferences by BNs. Their probabilities
can change after each inference. In a working memory, a non-
evidence edge is added or removed depending on whether its
probability is beyond or below a given threshold. After infer-
ences in the working memory are finished, the non-evidence
edges are transported to the long-term memory.

3) Edges representing a passive voice. As each BN in our
model predicts the activities of only one subject, the interac-
tion of two entities cannot be inferred in one BN. A reversed
edge representing the passive voice of a verb is used in the
ESN to ensure information can be propagated among the BNs
for different entities. For example (Figure 1), “Mike eats the
apple”. An edge e3(V3, V1) representing “be eaten by” will
be created, and a node representing “be eaten by Mike” in a
BN if the activities of the apple need to be inferred.

4) Unary and binary relation. Edges connecting two dif-
ferent vertices indicate binary relations. Unlike standard SNs,
loop edges are allowed as unary relations in our ESN when
the predicate has no object(e.g. “stops” ), or when the pred-
icate only describes a property of its subject (e.g. “is red”
e1(V3, V3) in Figure 1(b)).

5) Multiple edges between two vertices. Multiple re-
lations between two vertices are represented as multiple
edges in the ESN. In referring to Figure 1(c), suppose also
“Mike likes the room”, then another edge “like”, denoted as
e2(V1, V2), would connect “Mike” to the “room”.

3.5 Disambiguation for Meanings
Words with multiple senses are classified into multiple cate-
gories in WordNet and cause ambiguities. We suggest opera-
tions that can disambiguate the word senses:

1) choosing categories with constraints in VerbNet :
For example, “a bat catches insets”. The “bat” can be a

kind of “mammal” or a kind of “club” for ball game. Verb-
Net constrain that “Catch” should have a human or animal as
agent, so the meaning of “bat” should be a “mammal”( be-
longing to the “animal” category) not a “club” for sport.

2)selecting the word sense by matching the topics in the
working memory and those in BNs:

E.g. “bank” has more than four meanings in its
noun form in WordNet and thus can be related to top-
ics such as “deposit”, “depository financial institution”,
“flight maneuver”, “slope” and so on. The sentence “he
goes to the bank” can be confusing because the “bank”
may relate to any of the topics. Two BNs contain-
ing conditional probability P (depositmoney|gotobank) and
P (jumpintothewater|gotothebank) can limit the meaning
to “bank building” and “sloping land beside water” within the
topic domains “deposit” or “slope, water”. Other information
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in the working memory (e.g. a vertex representing “river”,
has the same topic “water” as “sloping land beside water”)
can then decide that the “bank” should be related to a “slope”.

4 An Adaptive BN Mechanism for Reasoning
Our model focuses on update new activities of entities based
on new information in memory. Each BN at a time infers ac-
tivities of only one subject and takes in predicates from work-
ing memory to infer new ones.

During inference, activities in the working memory are re-
garded as in the same scenario, and BNs are selected to the
topic domain only.

4.1 The Bayesian Network Structure
BNs are used in our model to update information in ESNs.
Each BN is constructed with the causal relations between
predicates. Thus, the agent of the predicate should be the
same as the inferred ESN. Each BN has a vector containing
words and representing a topic domain. Multiple BNs will be
used for different entities in the working memory. Figure 3
shows two BNs for the hunter and antelope.

hunter antelope

e1(V1,V2) hunt

V1 V2

e1(V2,V1) be hunted by

(a) hunting scenario in an ESN

Be  hunted 
by hunter

Run 
away

Be Get 
catchedinjured

(b) a BN for the antelope

Hunt 
antelope

success
Be 

happy

(c) a BN for the hunter

Figure 3: Propagating information from an ESN to BNs.

The Nodes
We choose the predicates as the nodes of BNs. Figure 3 illus-
trates how the predicate “be hunted by hunter” is passed from
the working memory to a BN as a node .

Evidence in BNs
In BNs, each node has a property called “evidence”. At the
beginning of inference, nodes are set to “evidence” if they
match the edges of evidence in the working memory. “be
hunted by hunter”(Figure 3(b)) and “hunt antelope” (Figure
3(c)) are viewed as evidence.

4.2 BN Construction
We propose a mechanism for automaitc self-generation of BN
nodes. There are two ways to construct a BN in our model.

The first way is to learn from experience. After an update
in the long-term memory, if two predicates of a subject co-
appear for a large number of times, they are considered to
have causal relation and are extracted as a predicate pattern
pair. The predicate pattern here consists of a verb phrase and
the specific object category.

For example, an “alarm sounds” and 8 out of 12 “person”s
hear it. The vertex “alarm” and the 12 vertices of different
“person” are activated and moved to the working memory.
The 12 “person”s are in the same category of human accord-
ing to WordNet. So the predicate pattern is “be heard by +
human”. “Sound” and “heard by human” are converted to
BN nodes. Both predicates share “alarm” as their subject.

VerbNet has the syntax restriction to ensure the verb phrase
“be heard by” to have a correct “agent” alarm and object “hu-
man”. The edge “be heard by human” only goes from the ver-
tex “alarm” to the other 12 “human” vertices. When counting
the frequency of “be heard by”, the maximum number should
be 12. Thus p(heardby = true|sound = true) = 8/12 =2/3.
Another conditional distribution we can get from the data is
p(sound|heardby). The conditional distribution is initialized
according to the frequency.

The second method is to extract information from other
knowledge bases. For example, BN can be constructed from
data in the eight of the twenty semantic relations in Concept-
Net as described in Table 2.

relation probability probability
type function value

(PrerequisiteEventOf P (A = true|B = true) 0.9
“A”,“B”) P (A = true|B = false) 0.2

(FirstSubeventOf P (A = true|B = true) 0.7
“A”,“B”) P (A = true|B = false) 0.3
(EffectOf P (A = true|B = true) 0.7
“A”,“B”) P (A = true|B = false) 0.2

(CapableOf P (A = true|B = true) 0.7
“A”,“B”) P (A = true|B = false) 0.1

(SubeventOf P (A = true|B = true) 0.9
“A”,“B”) P (A = true|B = false) 0.1

(MotivationOf P (A = true|B = true) 0.6
“A”,“B”) P (A = true|B = false) 0.1

(DesirousEffectOf P (A = true|B = true) 0.6
“A”,“B”) P (A = true|B = false) 0.4

(IsA P (B = true|A = true) 1
“A”,“B”) P (B = true|A = false) 0.6

Table 2: Integrate information to a BN from ConceptNet.

Since some commonsense knowledge bases do not provide
the probabilities of causal relations, we initialize the probabil-
ity distributions to default values(Table 2). The probabilities
of nodes without a parent are set to 0.5.

BN Selection and Connection
BNs need to be selected and joined together as a new large
Bayesian net for the activity prediction.

The BN selection is based on the predicates in the sen-
tences and the topics in the working memory. The first step
is to search BNs whose nodes represent the same predicate as
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in the sentences. E.g. for the sentence “He goes to the bank”,
BNs containing probability P (depositmoney|gotobank) or
P (jumpintothewater|gotothebank) are all selected.

The second step is to remove BNs with a different topic
from the working memory. E.g. if the working memory has
entities in the categories related to “money” or edges related
to financial operation, BNs without these topics are removed.

An adjacency matrix M is built for combining BNs. If BN
i and BN j share a common predicate, then Mij = Mji = 1,
otherwise, the element in the matrix is 0. By multiply the ad-
jacency matrix, a path connecting the BNs can be found. This
approach saves us from learning and inferring about unrelated
data, and hence reduces much complexity.

The Joint Distribution Function
Suppose the shared node s has parents sk ∈ pai(s) in BN i
and parents yl ∈ paj(s) in BN j, where yl /∈ pai(s). the
conditional distribution p(s|pai(s)) in BN i and p(s|paj(s))
in BN j are known and the new joint conditional distribution
p(s|pai(s), paj(s)) should be initialized for the new network.

5 Making Inference on Evidence
There are several main steps to infer new information from
new sentences:

1)A new entity from arriving sentences are automatically
created as an active vertex in the working memory. If there
are other entities have relation to the new entity, they are
brought to the working memory as well.

2)Classify the entities into categories.
3)Predicates in the coming sentences are evidences. New

predicates can be inferred from the evidence via BNs. BNs
containing the to-be-inferred predicates are target BNs. They
are selected for the next step.

4)Find a link path from the target BN to the BN containing
evidence with the adjacency matrix. (e.g. fig.5) (If the link
does not exist, then the evidence does not affect the activities
in that target BN.)

5)Combine the BNs in the path to a large BN. Set the joint
conditional distribution values of the share nodes.

6)Search a d-connecting path from the evidence node to the
target node.

7)Calculate the probability of the variables in the BN
8)Update the working memory and the long-term memory

6 Case Study
In the following, we will compare our model and Direct
Memory Access(DMAP) on the data provided by [Liv-
ingston and Riesbeck, 2009]. A scenario is built to compare
the inference result of our system and ConceptNet.

6.1 Comparison with DMAP
DMAP uses a story of bombing attack at U.S. soldiers to test
how well the model can understand the text. One of the sto-
ries is as follow: “An attack occurred in Afghanistan. The
bombing was performed by Al Qaeda. The attack occurred
on July 18, 2008. The attack targeted United States soldiers.”

The aim of DMAP is to integrate the information of
“bombing” and “attack” by using a language pattern to map

the two words to the same reference in its memory sys-
tem.E.g, the sentence “the bombing was performed by Al
Qaeda” is represented as (performedBy, Bombing-54 Al-
Qaeda). DMAP then searches if there are assertions such
as (performedBy ?attack Al-Qaeda) to map the two words.
DMAP successed in integrating the information only if
“bombing” and “attack” share the same assertion pattern (per-
formedBy xxx Al-Qaeda). However, if there is another key-
word that share the assertion pattern as “bombing”, DMAP
would be confused. For example, if the “Al-Qaeda performed
a celebration” after the attack, the three word “bombing”, “at-
tack” and “celebration” would share the same pattern “per-
formed by Al-Qaeda”. Thus, DMAP could falsely reason that
“bombing” is equal to “celebration”.

In our model, a disambiguation for the word sense is per-
formed in the working memory by using WordNet. The
meaning of “bombing” can be referred to “bomb”, which has
a meaning “throw bombs or attack with bombs”. The key-
word “attack” in the annotation is extracted by the Stanford
Parser and matches the “attack” in the sentences. In this way,
the word “celebration” can be omitted as an unrelated word.

6.2 Comparison with ConceptNet
Suppose there are three sentences in a scenario: “Mike
swings a bat”, “John throws baseball” and “Jones catches the
ball”. ConceptNet and our model will use the same knowl-
edgebase to reason on the sentences. The following asser-
tions can be found in the database in ConceptNet(explanation
of the assertion can be seen in section 2):

1. (CapableOf “batter” “hit ball” “f=2;i=1;”)

2. (SubeventOf “play tennis” “hit ball” “f=7;i=1;”)

3. (CapableOf “baseball player” “hit ball” “f=7;i=1;”)

4. (CapableOf “bat” “hit ball” “f=2;i=0;”)

5. (MotivationOf “play tennis” “hit ball” “f=3;i=0;”)

6. (Isa “batter” “baseball player” “f=2;i=0”)

7. (CapableOfReceivingAction “baseball pitcher” “throw base-
ball” “f=2;i=0;”)

8. (CapableOf “baseball player” “throw ball” “f=3;i=1;”)

9. (SubeventOf “play baseball” “throw ball” “f=2;i=1;”)

10. (CapableOf “ baseball pitcher” “throw ball” “f=4;i=1;”)

11. (SubeventOf “play football” “throw ball” “f=2;i=0;”)

12. (Capableof “cathcer” “catch ball”)

13. (CapableOf “batter” “swing bat” “f=2;i=0;”)

14. (Isa “catcher” “baseball player” “f=2; i=0”)

By matching the keywords, ConceptNet can get the fol-
lowing results about “Mike”: “Mike might be a batter.(from
assertion 13)” “Mike can hit ball.( from assertion 1)”, “Mike
might be a baseball player.( from assertion 3)” “Mike might
play tennis(from assertion 2)” “Mike might be a bat.( from
assertion 4)” Notice that “tennis” and “baseball” are differ-
ent sports and “Mike” cannot play them at the same time.
Additionally, ConceptNet cannot infer the exact activities of
“John” because there are four different assertions regarding
“throw ball”(from assertion 8 to 11).

In our model, the probability generated from data in
ConceptNet is initialized as in Table 2. Joint conditional
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distribution is initialized as follow:P (S|xk, yl) = 0.8,
P (S|x̄k, yl) = P (S|xk, ȳl) = 0.55,P (S|x̄k, ȳl) = 0.1.

BNs were constructed and combined according to the
knowledge base(Figure 4).

Is h

S i

Is 
baseball 
pitcher

pitch

Swing  
bat

Throw 
baseball

Catch 
ball

Is 
batter

Hit ball
Is 

baseball 
playerplayer

Figure 4: Constructed BN

Table 3 summaries the inferred result. We choose the
threshold of probability for adding an edge in memory as
0.65, hence the first three row in table 3 are selected ass new
inferred information and added to long-term memory. Notice
that “is a baseball pitcher” is not in the D-connecting path
given the evidence “swing bat”. This means it is independent
of “swing bat”. Table 4 shows the inference about John’s ac-
tivities. Our concluded inferences, as shown in Table 3 and
Table 4, are more reasonable than that in the ConceptNet.

Predicate for “Mike” probability value
Is batter P (Isbatter) 0.77
Hit ball P (Hitball) 0.67

Is baseball player P (Isbaseballplayer) 0.86
Throw ball P (Throwball) 0.62

Is baseball pitcher P (Isbaseballpitcher N/A
Catch ball P (Catchball) 0.62

Table 3: probability of Mike’s activities.

Predicate for “Mike” probability value
Is baseball player P (Isbaseballplayer) 0.84

Pitch P (Pitch) 0.70
Is baseball pitcher P (Isbaseballpitcher 0.65

Hit ball P (Hitball) 0.61
Catch ball P (Catchball) 0.61
Is batter P (Isbatter) 0.60

Swing bat P (Swingbat) 0.50

Table 4: probability of John’s activities.

7 Discussion and Future Work
In this paper, we built a reasoning model to represent and
infer new information from texts. Experiments compare
DMAP, ConceptNet and our model. Results show that our
model is both robust and scalable because the disambiguation
mechanism enables it to avoid inaccurate reasoning caused by
confusing data. Through calculation, our model can obtain
reasonable probabilities of the activities of entities.

The parameters of BNs are set to default values when BNs
are first constructed. In the future, we will add a training
mechanism of BNs to adjust the parameters after the BN com-
bination. The threshold for adding edges should also be ad-
justed according to a specific scenario.
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