
Extracting Propositional Rules from Feed-forward Neural Networks by
Means of Binary Decision Diagrams

Sebastian Bader
Department of Computer Science, University of Rostock, Germany

sebastian.bader@uni-rostock.de

Abstract

We discuss how to extract symbolic rules from
a given binary threshold feed-forward net-
work. The proposed decompositional approach
is based on an internal representation using bi-
nary decision diagrams. They allow for an effi-
cient composition of the intermediate results as
well as for an easy integration of integrity con-
straints into the extraction. We also discuss
some experimental results indicating a good
performance of the approach.

1 Introduction
During the training process, neural networks acquire
knowledge by generalising from raw data. Unfortunately,
this learnt knowledge is hidden in the weights associated
to the connections and humans have no direct access
to it. One goal of rule extraction is the generation of
a human-readable description of the output units be-
haviour with respect to the input units. Usually, the
result is described in form of if-then rules, giving condi-
tions that activate (or inactivate) a given output unit.
Rule extraction from connectionist systems is still an
open research problem, even though a number of algo-
rithms exists. For an overview of different approaches we
refer to [Andrews et al., 1995] and [Jacobsson, 2005]. Ex-
traction techniques can be divided into pedagogical and
decompositional approaches. While the first conceives
the network as a black box, the latter decomposes the
network, constructs rules describing the behaviour of the
simpler parts, and then re-composes those results.

In [Bader et al., 2007], we proposed the CoOp-
algorithm, a decompositional approach for the extrac-
tion of propositional rules from feed-forward neural net-
works. Here, we discuss an extension of this approach. In
this new extension, binary decision diagrams (BDD) are
used to store intermediate results, i.e., rules extracted
from single units (perceptrons). This representation has
three advantages:

1. results are stored in a very compact form,
2. intermediate results can easily be combined, and
3. integrity constraints can easily be incorporated.

After a presentation of all necessary concepts in Sec-
tion 2, we discuss the proposed extension of the CoOp-
approach, i.e., the extraction of BDDs from simple per-
ceptrons. Afterwards, we discuss how to compose the
intermediate results and how to incorporate integrity
constraints. In Section 6 first experimental results are
presented and further work is discussed in Section 7.

2 Preliminaries
In this section, we introduce some necessary concepts.
After defining feed-forward neural network and the rule-
extraction problem, we discuss binary decision diagrams.

Feed-forward artificial neural networks (ANNs), also
called connectionist systems, consist of simple computa-
tional units (neurons) which are connected. The set of
units U together with the connections C ⊆ U×U form an
acyclic directed graph. In this paper we concentrate on
networks with units applying the ±1-threshold function.
Such a neural network can be represented as a 6-tuple
〈U,Uinp ,Uout , C, ω, θ〉. Uinp ,Uout ⊆ U denote input and
output units of the network, i.e., are sources and sinks
of the underlying graph. The functions ω : C → R as-
sign a weight to every connection and θ : U → R a
threshold to every unit. Every unit u has an activation
value actu ∈ {−1,+1} which is set from outside for in-
put units, or computed based on the activation value of
its predecessor units and the threshold θ(u) as follows:

actu =

{
+1 if

∑
c=(v,u)∈C actv · ω(c) ≥ θ(u)

−1 otherwise

Figure 1 shows a simple network serving as running ex-
ample throughout the paper.

Because every unit can be active (actu = +1) or inac-
tive (actu = −1) only, we can associate a propositional
variable u to it, which is assumed to be true if and only if
the unit u is active, and we use ū to denote the negation
of u. Furthermore, we can characterise network inputs
as interpretations I ⊆ Uinp of the propositional variables
Uinp . We use actu(I) to denote the state of unit u if
all input units contained in I are active and all other
input units are inactive. Using this notation, we can
define the rule extraction problem as follows: The rule
extraction problem for a given node u of a feed-forward

22

a

b

0

c

2

d

4

e

−4

f

4
g

−2
h

ω c d e f g h

a 1 -2 5 2
b 1 1 -3 1

c 1 0
d 2 -3
e 3 0
f 5 -2

Figure 1: A simple network serving as running exam-
ple. The threshold are shown within the nodes and the
connection weights are shown on the right.

threshold network 〈U,Uinp ,Uout , C, ω, θ〉 is the construc-
tion of a propositional formulae F over Uinp such that
for all interpretations I we find

actu(I) =
{

+1 if I |= F

−1 otherwise

I.e., we are looking for propositional formula stating nec-
essary and sufficient conditions (in terms of the activa-
tion of input units) such that the unit u is active.

Usually not all input combinations make sense in a
given application domain, because some of them would
correspond to invalid states of the world. We use the
term valid inputs to denote the set of allowed input com-
binations. Even more important for the extraction is the
fact that all training samples are taken from this subset.
Therefore, the network learns to solve a task under the
implicit conditions hidden in the selection of inputs. In-
tegrity constraints are a way to make those conditions
explicit during the extraction. An integrity constraint
is a formula IC over Uinp describing the set of valid in-
puts V ⊆ P(Uinp) as follows: For all I ⊆ Uinp we find
I |= IC if and only if I ∈ V . Using integrity constraints,
we can reformulate the extraction problem as follows:
The rule extraction problem for a given network N and
a given integrity constraint IC is the construction of a
propositional formulae F over Uinp such that for all in-
terpretations I with I |= IC we find

actu =
{

+1 if I |= F

−1 otherwise

Networks can be decomposed into their basic build-
ing blocks, namely single units together with their in-
coming connections. Those single units can be seen as
simple sub-networks (perceptrons) consisting of a num-
ber of inputs and a single output unit, together with the
corresponding weighted connections. To simplify the no-
tations we use Pp = 〈θ, I, ω〉 to denote the perceptron
corresponding to the unit p together with its threshold
θ, the set of predecessor units I and the weight function
ω. Figure 2 shows the perceptron for the output unit g.

Binary decision diagrams (BDD) are a data structure
to represent propositional formulae in a very compact
way and to manipulate them easily. A nice introduction

5
3

2
1

4
g

f

e

d

c Pg = 〈θ, I, ω〉 with
θ = 4
I = {c, d, e, f}

ω(x) =

1 if x = c

2 if x = d

3 if x = e

5 if x = f

Figure 2: The perceptron corresponding to unit g.

a 4

b 2 b 3

01

BDD = 〈≺, 0, 1, R,N〉 with
R = 4
N = {〈2, b, 0, 1〉, 〈3, b, 1, 0〉,

〈4, a, 2, 3〉}
pf(2) = (b ∧ ⊥) ∨ (¬b ∧ >) = ¬b
pf(3) = (b ∧ >) ∨ (¬b ∧ ⊥) = b

pf(4) = (a ∧ ¬b) ∨ (¬a ∧ b)

Figure 3: A simple BDD, nodes are annotated with their
variables and their ID on the right. High branches are
depicted as solid and low branches as dashed lines. On
the right you find the underlying data structure and the
logic formulae corresponding to the internal nodes.

can be found for example in [Andersen, 1999]. Intu-
itively, a BDD is a directed acyclic graph with a variable
associated to every node and such that all nodes n 6= 0, 1
have exactly two successors, called high and low branch
of n. The nodes 0 and 1 are the sinks of the graph. We
use 〈≺, 0, 1, R,N〉 to refer to a BDD with sinks 0 and
1, a set of nodes N and a root-node with identifier R.
And we use 〈i, v, h, l〉 to denote the node with identi-
fier i, with variable v = var(i), and with high and low
branch pointing to the nodes with identifiers h and l,
respectively.

Usually a BDD is assumed to be ordered and reduced.
It is called ordered iff there exists a linear order ≺ on
the variables and the successors of a node are marked
with variables that are bigger with respect to ≺. It is
called reduced if no two nodes for the same variable have
identical high and low branch, and for no node high and
low-branch coincide.

BDDs represent propositional formulae in if-then-else
normal form. The corresponding formula for a given
node is defined recursively as follows:

pf(0) := ⊥ pf(1) := >
pf(i) := (var(i) ∧ pf(h)) ∨ (¬ var(i) ∧ pf(l))

Figure 3 shows a simple BDD using a graphical repre-
sentation as well as the underlying data structure and
the corresponding logic formulae for every node.

23

3 From Perceptrons to Search Trees
In this section, we discuss an algorithm to extract a BDD
from a single unit such that the BDD represents neces-
sary and sufficient condition on the inputs to turn the
unit active. Following [Bader et al., 2007], we define
input patterns I as subsets of the inputs I of a given
perceptron Pp = 〈θ, I, ω〉 which are assumed to be ac-
tive. The inputs not contained in I can be either active
or inactive. And we define the corresponding minimal
input imin(I) as follows:

imin(I) =
∑
a∈I

ω(a)−
∑

a∈I\I

|ω(a)|

The minimal input is computed by adding the contri-
bution of the fixed inputs

∑
a∈I ω(a) and the minimal

input caused by all other inputs. A perceptron is called
positive, if all weights are positive. For the following
constructions, we assume the perceptrons to be positive.
In Section 5, we discuss how to apply the extraction to
arbitrary perceptrons.

The construction of BDDs below is based on the search
trees described in [Bader et al., 2007]. These search trees
contain a node for every possible input pattern. Children
of a given node correspond to input patterns which con-
tain exactly one symbol more and all nodes are sorted
with respect to their minimal inputs. If the minimal
input of some node exceeds the threshold, that node is
marked (I.e., the corresponding input pattern represents
a sufficient condition to turn the perceptron active). The
complete tree is pruned by removing all those nodes for
which no descendant is marked and all those nodes which
are descendants of marked nodes. The construction of a
pruned tree is shown in Algorithm 1. Figure 4 shows the
full and the resulting pruned search tree on top of it.

Input: A positive perceptron P+
p .

Output: A pruned search tree.

Fix an order ≺ such that b ≺ c if ω(b) ≥ ω(c).1

Create a root node for the empty input pattern.2

Add a child labelled x for each input symbol x3

(sorted wrt. ≺).
foreach newly added node labelled y do4

Add a new child c for every symbol z with5

y ≺ z (sorted wrt. ≺).
Label c with the corresponding pattern I.6

Mark c if imin(I) > θ(p).7

Remove all descendants of marked nodes.8

Remove all nodes for which no descendant is9

marked.
Algorithm 1: Constructing a pruned search tree.

Exploiting the structure of these search trees, we can
easily construct BDDs representing conditions to turn
the perceptron active. I.e., we find the perceptron to be
active for all those input patterns which, understood as
interpretation, turn the logic formula corresponding to
the BDD true.

· -11
{}

f
-1

{f}

e 5
{e,f}

d
9

{d,e,f}

c 11
{c,d,e,f}

c 7
{c,e,f}

d
3

{d,f}

c 5
{c,d,f}

c 1
{c,f}

e -5
{e}

d
-1

{d,e}

c 1
{c,d,e}

c -3
{c,e}

d
-7

{d}

c -5
{c,d}

c -9
{c}

· -11
{}

f
-1

{f}

e 5
{e,f}

d
3

{d,f}

c 5
{c,d,f}

Figure 4: The pruned search tree for the perceptron Pg

from above. The underlying full tree is depicted in grey
using dashed lines. The nodes contain the newly added
symbol and are annotated with the corresponding input
pattern and the resulting minimal input. All nodes for
which the minimal input exceed the threshold of θ(g) = 4
are shown with grey background.

· -11
{}

f
-1

{f}

e 5
{e,f}

d
9

{d,e,f}

c 11
{c,d,e,f}

c 7
{c,e,f}

d
3

{d,f}

c 5
{c,d,f}

c 1
{c,f}

e -5
{e}

d
-1

{d,e}

c 1
{c,d,e}

c -3
{c,e}

d
-7

{d}

c -5
{c,d}

c -9
{c}

· -11
{}

f
-1

{f}

e 5
{e,f}

d
3

{d,f}

c 5
{c,d,f}

01

Cg

f

e d

c

Figure 5: The BDD corresponding to the pruned search
tree from Figure 4.

4 From Search Trees to BDDs

Before presenting an algorithm to construct BDDs from
a given pruned search tree, we introduce some further
notations. Every node in the search tree is represented
as a pair 〈I, C〉 with I being the corresponding input
pattern and C being the set of children. id(n) denotes
a unique identifier for the node n (e.g., the correspond-
ing input pattern, or some index), this identifier is also
used as internal index for the BDD nodes. We assume
id(n) := 0 if there is no node n. var(n) denotes the
symbol which is added to the input pattern at node n.

The construction of a BDD for a given search tree
is shown as Algorithm 2. This algorithm transforms a
search tree into a BDD, by traversing the tree in a left-
depth-first manner. A node’s high branch points to 1, if
its minimal input exceeds the threshold. Otherwise, it
points to its left-most child, or to 0 if there is no child.
The low-branch points to the right sibling, or to 0 if
there is none. The result for the perceptron Pg is shown
in Figure 5.

24

Input: A search tree T for Pp = 〈θ, I, ω〉 wrt. ≺.
Output: A corresponding OBDD 〈≺, 0, 1, R,N〉.
if T is empty then1

R = 0 and N = {}2

else if T contains only the root node then3

R = 1 and N = {}4

else5

R = id(rl) for the leftmost child of the root.6

N = {}.7

foreach leaf node n in T do8

Add 〈id(n), var(n), 1, l〉 to N with l = id(r)9

for the right sibling r.
foreach node 〈I, C〉 in T with left sibling l do10

Let 〈id(l), var(l), hl, ll〉 be the node for l11

Let 〈id(ll), var(n), hl1 , ll1〉 be the node for12

the leftmost child ll of l
if mci(l)− 2ω(l) + 2ω(n) > θ then13

Add 〈id(n), var(n), ll1 , ln〉 to N with14

ln = id(rn) for the right sibling rn of n

foreach other non-root node 〈I, C〉 do15

Add a node 〈id(n), var(n), id(c), l〉 to N for16

the leftmost child c and l = id(rn) for the
right sibling rn of n and l = 0 if there is
none

Algorithm 2: Constructing a BDD.

Please note, that the BDD can be constructed without
constructing the search tree first. The tree is used only
to describe the underlying ideas. All conditions tested
in Algorithm 2 can be tested by expanding the tree step-
by-step. Looking a little closer at the constructed search
tree we find that some sub-trees have an identical in-
ternal structure, which is exemplified in Figure 6. If the
condition tested in Line 13 of Algorithm 2 is fulfilled, two
neighbouring sub-trees are structured identically. mci(n)
denotes the minimum of all minimal inputs associated
to nodes below n. Please note, that mci(n) can be com-
puted without expanding the sub-tree by looking at the
associated input pattern.

The mentioned structural equivalence can be exploited
by using a shortcut into the already constructed BDD
and thus preventing the expansion of an identical sub-
tree. Figure 6 contains a number of those shortcuts,
e.g., one from node {b} to the node {c, a}, because the
children of {b} are annotated the same way as the node
below and right of {c, a}. Please note that this identity
can be recognised without expanding the second sub-
tree, i.e., the construction of whole tree below {b} can
be avoided.

The condition on Line 13 is fulfilled whenever the per-
ceptron shows a so called n-of-m behaviour, i.e., if there
are m inputs from which n suffice to turn the percep-
tron active. In this case, there will be n equivalent sub-
trees, which can be shortcut. As discussed in [Towell and
Shavlik, 1993], this occurs quite frequently while training
neural networks.

a a

b b

0 1

g h

Figure 7: The global BDD for the network from Figure 1.

5 Composition of Intermediate Results
In the previous section, we have been concerned with
positive perceptrons only. But we can easily turn every
perceptron into a positive one, by multiplying negative
weights by −1 and inverting the corresponding input
symbols. By doing so, we can apply the algorithm to
all output units of a given network, and obtain a BDD
describing necessary conditions with respect to the pre-
decessor units that turn the output unit active. But
some of the input symbols may have been inverted. I.e.,
we need another algorithm to construct BDDs stating
conditions which turn a perceptron inactive. Due to the
symmetry of the threshold function, we find this algo-
rithm to be dual to Algorithm 1 and 2. I.e., by inverting
the order and the inequalities we obtain an algorithm
that constructs such a BDD.

Once we have extracted the BDD for a given output
unit, we can continue by substituting the nodes test-
ing non-input nodes (i.e., nodes not corresponding to in-
put units of the network) by their corresponding BDDs.
A non-negated node is replaced by the BDD as con-
structed above, and negated nodes are replaced by the
dual BDDs. As mentioned above, BDDs have been de-
signed to allow for an efficient manipulation of logic for-
mulae. And in fact it is straightforward to compose the
intermediate results into an overall diagram by simply
replacing the nodes. But this is not the best approach,
because the resulting ‘global’ BDD would not be ordered
any more. But while expanding the BDD, we can keep it
ordered (and reduced) as described in [Andersen, 1999].
After expanding all non-input nodes, we obtain a final
BDD representing necessary and sufficient conditions on
the network’s input to turn a given output unit active.

Using BDDs as internal data structure has some fur-
ther advantages. We can actually extract all output
units into the same global BDD. Doing so leads auto-
matically to a sharing of intermediate results, because
common substructures are contained only once within
this BDD. Figure 7 shows the final ‘global’ BDD for the
network from Figure 1. Please note that the right node
labelled b is used for both output units g and h.

Furthermore, we can integrate integrity constraints in
a straightforward fashion. Instead of starting with an
empty BDD, we extract the output nodes into a BDD
representing the integrity constraints. To exemplify this,
a network has been trained to the Encode-Decoder task.
It contains 8 input, 8 output units and 3 hidden units

25

· -5
{}

a -3
{a}

b
-1

{b,a}

c 1
{c,b,a}

d
3

{d,c,b,a}

e 5
{e,d,c,b,a}

e 3
{e,c,b,a}

d
1

{d,b,a}

e 3
{e,d,b,a}

e 1
{e,b,a}

c -1
{c,a}

d
1

{d,c,a}

e 3
{e,d,c,a}

e 1
{e,c,a}

d
-1

{d,a}

e 1
{e,d,a}

e -1
{e,a}

b
-3

{b}

c -1
{c,b}

d
1

{d,c,b}

e 3
{e,d,c,b}

e 1
{e,c,b}

d
-1

{d,b}

e 1
{e,d,b}

e -1
{e,b}

c -3
{c}

d
-1

{d,c}

e 1
{e,d,c}

e -1
{e,c}

d
-3

{d}

e -1
{e,d}

e -3
{e}

· -5
{}

a -3
{a}

b
-1

{b,a}

c 1
{c,b,a}

d
1

{d,b,a}
e 1
{e,b,a}

c -1
{c,a}

d
1

{d,c,a}
e 1
{e,c,a}

d
-1

{d,a}

e 1
{e,d,a}

b
-3

{b}

c -1
{c,b}

d
1

{d,c,b}
e 1
{e,c,b}

d
-1

{d,b}

e 1
{e,d,b}

c -3
{c}

d
-1

{d,c}

e 1
{e,d,c}

01

Ct

a b c

b c d

c d e

Figure 6: A larger BDD and its underlying search tree. The tree has been constructed for a perceptron with 5 inputs
whose weights are all 1 and with threshold 0. I.e., this perceptron is active if 3 of the five inputs are +1. Please note
that there are certain symmetries in the tree: All label and minimal inputs of the sub-trees of node {b} coincide with
those of the right sub-trees of {a} if a is substituted by b. This has been exploited by linking from {b} to {c, a}.

and is trained to learn the identity mapping for all inputs
in which exactly one unit is active. I.e., the network has
to learn a compressed representation within the hidden
layer. But applying the algorithm presented above yields
an unwanted result shown in Figure 8 on the left. Using
the integrity constraint that at most one input is active
at a time yields the BDD shown on the right. 900 nodes
have to be constructed (including all intermediate re-
sults while constructing the BDD) for the ‘normal’ BDD,
but only 124 while using the integrity constraint. This
shows the advantage of using integrity constraints right
from the beginning of the extraction process. Usually
they are used to refine the extraction result afterwards.
This would be possible here as well by simple computing
the conjunction of the ‘normal’ BDD with one repre-
senting the integrity constraint. But starting with the
constraint avoids the construction of many intermediate
nodes which would be removed afterwards.

6 Experimental Evaluation

To evaluate the approach a Prolog implementation has
been used to gather some statistics. The results are
shown in Table 1. The table shows average numbers
for different numbers of inputs, the size of the full search
tree, the number of minimal input patterns, the size of
the corresponding BDD and the number of BDD nodes
per input pattern. All numbers have been collected from
100 random perceptrons per size. The extraction using
the full search tree is not feasible due to the exponential
growth. The number of input patterns is a conservative
lower bound for the size of the pruned search tree, be-
cause those trees have at least one node per minimal in-
put pattern. The result shows that the use of BDD pro-
posed here yields a very compact representation. Even
though the number of nodes in the BDD grows, the ratio
(node/IP) of size of the BDD and the number of minimal
coalitions decreases.

i1

i2 i2

i3 i3 i3 i3

i4 i4 i4 i4 i4 i4 i4

i5 i5 i5 i5 i5 i5 i5 i5 i5 i5

i6 i6 i6 i6 i6 i6 i6 i6 i6 i6

i7 i7 i7 i7 i7 i7 i7 i7

i8 i8

01

o1

i1

i2

i3

i4

i5

i6

i7

i8

0 1

o1

Figure 8: The result of extracting output unit 1 from
an 8-3-8 encoder-decoder network. The BDD on the left
is the result of the ‘normal’ extraction. On the right
the constraint that at most one unit is active has been
incorporated.

|I| |T| #IPs |BDD| node/IP
1 2 0.58 2.58 4.448
5 32 4.31 8.49 1.969

10 1024 63.51 49.97 0.786
15 32768 1270.45 313.25 0.246
20 1048576 25681.70 1863.90 0.072

Table 1: The size of the full search tree (|T|), the number
of minimal input patterns as a lower bound for the size
of the pruned search tree (#IPs) and the corresponding
BDDs (|BDD|) for different number of inputs (|I|).

A second experiment has been performed to show the
effect of the usage of integrity constraints while extract-
ing the BDDs. A network with 6 inputs, 4 hidden and 2

26

92

758

396.98

6

111

813

442.62

5

199

863

514.14

4

258

791

502.80

3

194

497

341.90

2

94

151

118.14

1
n

|BDD|

Figure 9: Resulting BDD sizes of the extraction for
different maxn-integrity constraints. The bars indicate
minimal, maximal and average sizes of the BDDs. The
size of the sub-BDD for the constraint is shown in grey.

output units has been used for the experiment. The pos-
sible inputs have been constrained by a maxn integrity
constraint for 0 ≤ n ≤ 6. The results are presented
in Figure 9. For every n the experiment has been con-
ducted for the same 100 randomised networks and the
following numbers have been collected: the size of the
sub-BDD encoding the constraint, the minimal, maxi-
mal and average size of the final BDD. Please note that
the numbers show the total number of internal nodes
constructed for the BDD, i.e., including all necessary in-
termediate nodes. For n = 1, i.e., the biggest restriction,
we obtain very small BDDs. The size of the BDD grows
up to n = 4 and decreases again for n > 4. From those
observations we can conclude that the incorporation of
integrity constraints into the extraction process can lead
to big savings in terms of nodes constructed for the final
BDD. Without their use during the extraction, we would
have to construct the BDD corresponding to n = 6. This
big BDD of ≈ 400 nodes would have to be refined with
respect to the constraints afterwards. There seem to be
cases (e.g., for n = 4) where the use of integrity constrain
yields larger BDDs, but nonetheless, the final BDD does
not have to be revised afterwards, and the difference is
not too big.

7 Conclusions and Future Work
A novel approach for the extraction of propositional rules
from feed-forward networks of threshold units has been
presented. After decomposing the network into percep-
trons, binary decision diagrams representing precondi-
tions that activate or inactivate the perceptron have
been extracted. Those intermediate representations can
be composed using the usual algorithms for BDDs, or
they can be combined during their construction by ex-
tracting one into the other. The latter approach does
also allow for an incorporation of integrity constraints
– already during the extraction of the intermediate re-
sults. As already mentioned in [Bader et al., 2007], the
pruned search trees constructed above are related to the

approach presented in [Krishnan et al., 1999]. But due
to a different order, we do not need to expand them
completely, which would otherwise be necessary.

The extraction as presented here is applicable to
all feed-forward networks composed of binary threshold
units computing ±1-threshold function. This limitation
can be softened by allowing arbitrary symmetric thresh-
old functions. The symmetry is necessary to construct
negative and positive forms of the perceptron without
changing the global network function.

Finally, we discussed first experimental results indi-
cating a good performance of the approach. On the
one hand, we obtain a very compact representation and
on the other hand, we circumvent the construction of
non-necessary intermediate results while incorporating
integrity constraints right from the start.

Nonetheless, much remains to be done. In particular,
the extraction for non-threshold units has to be studied.
For the encoder-decoder experiments mentioned above
the algorithm has simply been applied to networks com-
puting the symmetric hyperbolic tangent as activation
function. Interestingly, the result coincide with our ex-
pectations. This is due to the fact, that networks when
trained to compute crisp decisions tend to behave like
threshold networks. But the details of this need to be
investigated in the future. Furthermore, a detailed anal-
ysis of the performance is necessary, in particular using
networks trained for real-world problems. The approach
as presented here detects equivalent sub-BDDs for n-
of-m patterns. But there are more cases for equivalent
sub-BDDs [Mayer-Eichberger, 2008]. Those have to be
integrated into the extraction procedure. It would also
be interesting to study the evolution of a network during
the training process by repeatedly applying the extrac-
tion method and compare the results.

Acknowledgements The author is thankful for the
comments of Valentin Mayer-Eichberger and two anony-
mous reviewers.

References
[Andersen, 1999] H. R. Andersen. An introduction to binary decision

diagrams. Lecture Notes, 1999.

[Andrews et al., 1995] R. Andrews, J. Diederich, and A. Tickle. A
survey and critique of techniques for extracting rules from trained
artificial neural networks. Knowledge–Based Systems, 8(6), 1995.

[Bader et al., 2007] S. Bader, S. Hölldobler, and V. Mayer-Eichberger.
Extracting propositional rules from feed-forward neural networks —
a new decompositional approach. In Proceedings of the 3rd Inter-
national Workshop on Neural-Symbolic Learning and Reasoning,
NeSy’07, January 2007.

[Jacobsson, 2005] H. Jacobsson. Rule extraction from recurrent neu-
ral networks: A taxonomy and review. Neural Computation,
17(6):1223–1263, 2005.

[Krishnan et al., 1999] R. Krishnan, G. Sivakumar, and P. Bhat-
tacharya. A search technique for rule extraction from trained neural
networks. Non-Linear Anal., 20(3):273–280, 1999.

[Mayer-Eichberger, 2008] V. Mayer-Eichberger. Towards solving a sys-
tem of pseudo boolean constraints with binary decision diagrams.
Master’s thesis, Universidade Nova de Lisboa, SEP 2008.

[Towell and Shavlik, 1993] G. Towell and J. W. Shavlik. Extract-
ing refined rules from knowledge-based neural networks. Machine
Learning, 13:71–101, 1993.

27

