
Abstract 

Performance assessment in training simulators is a 
complex task. It requires monitoring and interpret-
ing the student’s behaviour in the simulator using 
knowledge of the training task, the environment 
and a lot of experience. Assessment in simulators is 
therefore generally done by human observers. To 
capture this process in an automated system is 
challenging and requires innovative solutions. This 
paper proposes a new module for automated as-
sessment in simulators that is based on Neural-
Symbolic Learning and Reasoning and the Recur-
rent Temporal Restricted Boltzmann Machine 
(RTRBM). The module is capable of using existing 
and learning new rules for performance assess-
ment, by observing experts and students perform-
ing the training tasks. These rules are used to vali-
date and support the assessment process and to 
automatically assess student performance in a train-
ing simulator.  The module will be developed in a 
three year research project on assessment in driving 
simulators for testing and examination.  

1 Introduction 

Performance assessment in training simulators has always 
been a complex task that is generally performed by human 
observers. Performance assessment by automated systems is 
often limited to simple training tasks, because assessing 
complex tasks requires the modelling of all interrelations 
between the information present in the simulation, the train-
ing tasks, and the constructs being assessed (e.g. compe-
tences). Also, when it comes to more subjective assessments 
(e.g., how ‘safe’ is the student driving), conventional model-
ling techniques fall short, as the applied assessment rules are 
often implicit and difficult to elicitate from the simulation or 
domain experts. 

We propose a new module for automated assessment as 
part of the Virtual Instruction platform SimSCORM [Pen-
ning et al., 2008]. This assessment module will be able to 
learn new rules from the task description, (real-time) simu-
lation data, related assessment data of domain experts or 
students and already existing rules (also called background 
knowledge). These rules can be presented in a human-

readable (‘symbolic’) form, facilitating the validation of the 
assessment rules and supporting the assessment process.   

2 Global Architecture 

The automated assessment module requires real-time in-
teraction with the simulator(s), the student and human asses-
sors, and a description of the training task, a student profile 
and the simulated environment. SimSCORM provides a 
generic platform for definition and presentation of simula-
tion based training content and interaction between the con-
tent, its users and the simulation based on international 
standards (e.g. SCORM, HLA, XML, etc.). Via this plat-
form the automated assessment module can easily access the 
objects and attributes in the simulation and get information 
on the student profile and progress.  

Figure 1 depicts the automated assessment module 
(named CogAgent) in the SimSCORM context. Sim-
SCORM provides a player that presents a SCORM based 
training task to the students and possibly one or more asses-
sors (e.g. teachers, examiners or students) via a (web-based) 
Learning Management System. This player uses SimAgent 
to interact with the simulator(s) and CogAgent to do auto-
mated performance assessment and learn new assessment 
rules from observation. Therefore, the player configures 
CogAgent with information on the training task, measured 
variables, student profile, assessed constructs and existing 
symbolic rules. During execution of the training task, asses-
sors can provide feedback on the assessed constructs which 
will be presented to CogAgent as short-term evaluations 
(depicted as assessment data). SimAgent will act as a ge-
neric interface between the simulator(s) and CogAgent, and 
pre-processes received data from the simulator(s) based on 
measured variable descriptions. Based on the information 
from the player and SimAgent, CogAgent determines an 
overall (or long-term) evaluation for the assessed constructs 
which will be presented to the students (and assessors) as 
assessment result. Parallel to this it uses the measured data 
and assessment data to adapt the internal knowledge on as-
sessment rules, resulting in new rules that can be validated 
afterwards. All information, including the symbolic rules, 
will be encoded in XML as part of the working memory of 
the agents and will be distributed via SOAP (either locally 
or via a web-service).  
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Figure 1. Global architecture of the automated performance assessment module 

 

3 Neural-Symbolic Learning and Reasoning  

The CogAgent must be able to learn new rules from obser-
vation and existing rules, infer conclusions from these rules 
and present them in a human readable form. Research on 
Neural-Symbolic Learning and Reasoning focuses on the 
integration of learning techniques and architectures from 
Neural Networks with the symbolic presentation and reason-
ing techniques in (Fuzzy) Logic Programs (see [Bader and 
Hitzler, 2005]).  

The Neural-Symbolic model proposed for CogAgent is 
based on the Recurrent Temporal Restricted Boltzmann 
Machine (RTRBM) [Sutskever et al., 2009] and is depicted 
in Figure 2. This partially connected symmetric neural net-
work implements an auto-associative memory of its input 
layers (called visible layers). CogAgent contains three visi-
ble layers that represent its beliefs, desires and intentions 
(introduced by [Bratman, 1999]). Beliefs are variables re-
lated to the training task (initial conditions, dynamic behav-
iour and measured variables) and the student profile. Inten-
tions are variables related to actions or instructions. And 
desires are variables related to performance assessments 
(e.g. evaluations or rewards). Beliefs and intentions are di-
rectly related to the current state of the context whereas de-
sires will be related to future states as well using Temporal 
Difference learning [Sutton, 1988]. This technique learns 
the model to predict a maximum obtainable value for its 
desires (e.g. overall evaluation scores) based on the current 
and previous states. Otherwise, the model would only learn 
to map short-term evaluations, which is not desired in this 
case.  

The hidden layer of the RTRBM is connected to the visi-
ble layers with symmetric connections. Each hidden unit 
represents a rule or relation between one or more visible 
units. It also contains recurrent hidden-to-hidden connec-
tions that enable the RTRBM to learn the temporal dynam-
ics in the visible layers using an algorithm based on contras-
tive divergence and backpropagation through time. Using 
this layer we can infer the posterior probability of beliefs, 
intentions and desires in relation to the state of current and 
previous beliefs, intentions and desires. 

3.1 Symbolic Rules and Fuzzy Atoms 

As described in section 2, the rules CogAgent needs to en-
code, learn and reason about are relations (or causalities) 
between XML encoded constructs, which will be called 
atoms hereafter. An XML based atom describes a belief, 
intention or desire as a function of measured data from the 
simulator and/or assessment data from the assessors (or stu-
dents). In case of training simulators this data is often ex-
pressed in both continuous and binary values. Therefore we 
need to use functions in the visible units that can express 
both. In [Chen and Murray, 2003] sigmoid functions are 
introduced that contain a ‘noise-control’ parameter to allow 
a smooth translation from noise-free deterministic behaviour 
to binary-stochastic behaviour. These continuous stochastic 
functions can express both binary and continuous variables. 
The ‘noise-control’ parameter controls the steepness of the 
sigmoid function and can be trained, such that the behaviour 
of a function dynamically changes according to the distribu-
tion of its input values. We will extend our model with such 
functions to create a Recurrent Temporal Continuous Re-
stricted Boltzmann Machine (RTCRBM). 
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Figure 2. Neural-Symbolic Cognitive Architecture for CogAgent 

 

To express relations between atoms in symbolic rules we 
propose to use the temporal propositional logic described in 
Lamb et al., [2007]. This logic contains several modal op-
erators that extend classical modal logic with a notion of 
past and future. All these operators can be translated to a 
form that relates only to the immediate previous timestep 
(denoted by the temporal operator ●). This allows us to en-
code any rule from this language in the RTCRBM as a com-
bination of visible units (or atoms) and recurrent hidden 
units that represent applied rules in the previous timestep. 
For example the proposition α“β denotes that a proposition 
α has been true since the occurrence of proposition β. This 
can be translated to: β → α“β and α ∧ ●(α“β) → α“β, 
where α and β are modelled by visible units and ●(α“β) is 
modelled by a recurrent hidden unit.  

We extend this logic with the use of equality and inequal-
ity formulas to represent the atoms for continuous variables 
(e.g. A=x, A<x, etc). Note that the atoms for binary vari-
ables can also be represented as A=true or A=false, which 
allows us to handle the outcome of these atoms in the same 
way as with the continuous atoms. But for readability we 
will use the classical notion A and ¬A.  

Due to the stochastic nature of the sigmoid functions used 
in our model, the atoms can be regarded as fuzzy sets with a 
Gaussian membership function. This allows as to represent 
fuzzy concepts, like good and bad or fast and slow or ap-
proximations of learned values, which is especially useful 
when reasoning with implicit and subjective rules. In fact 
our model can be regarded as a neural-fuzzy system similar 
to the fuzzy systems described in [Kosko, 1992] and [Sun, 
1994]. 

Now let’s take the training task depicted in Figure 3. Us-
ing our extended temporal propositional logic, we can de-
scribe rules about the conditions, scenario and performance 
assessment related to this task. 

T
 

Figure 3. Example training task for driving simulation. The 

Trainee drives on an urban road, approaching an intersection. The 

Trainee has to apply the yield-to-the-right-rule. 

 

Example rules for a driver training task: 

 
Conditions: 

(Area = urban) 

(Weather ≥ good) 

(Time ≥ 6) ∧ (Time ≤ 18) 

 
Scenario: 

(Speed > 0) ∧ ApproachingIntersection → CrossIntersection 

ApproachingIntersection ∧ ◊(ApproachingTraffic = right) 

((Speed > 0) ∧ (HeadingIntersection)) “ (DistanceIntersection < x) → 

ApproachingIntersection 

 
Assessment: 

ApproachingIntersection ∧ (DistanceIntersection = 0) ∧  

(ApproachingTraffic = right) ∧ □(Speed = 0) → (Evaluation = good) 

ApproachingIntersection ∧ (DistanceIntersection = 0) ∧  

(ApproachingTraffic = right) ∧ ◊(Speed > 0) → (Evaluation = bad) 

 
The rule with temporal operator “, denotes that Approach-
ingIntersection is true when the driver has been driving to-
wards an intersection since a certain distance x to an inter-

37



section was passed. This rule and the actual value for x can 
be learned from observation by clamping the actual speed, 
heading and distance to the visible units and the value true 
to the unit for ApproachingIntersection when the trainee is 
approaching the intersection. This can be done by an asses-
sor or the student, but could also be automatically inferred 
by the model, as explained in the next section. 

3.2 Rule encoding and extraction 

To encode and extract symbolic rules in symmetric connec-
tionist networks, like the RBM, Pinkas [1995] describes a 
generic method that directly maps these rules to the energy 
function of such networks. Therefore he describes an exten-
sion to propositional logic, called penalty logic that applies 
a penalty to each rule. This penalty can be regarded as the 
“certainty” or “reliability” of a rule and is directly related to 
the weights of the connections between the units that form 
this rule. To apply the encoding and extraction algorithms of 
Pinkas successfully to our model we need extend our tempo-
ral propositional logic with the use of penalties. [Sun, 1994] 
describes a method to map atoms with classical modal op-
erators to real values. We propose to extend this method to 
create a mapping of atoms and rules with the modal opera-
tors used in our model to penalties. Furthermore we need to 
investigate what changes are required to the algorithms to 
handle the use of equality formulas and continuous vari-
ables. For example, we need to prove that it is possible to 
infer the correct value for unknown continuous variables in 
a rule via pattern reconstruction based on known values and 
(previously) applied rules. And to encode and extract rules 
with inequality formulas we need to be able to transform 
these to and from rules that contain only equality formulas. 

The penalties that are encoded or learned by our model 
can be used to rank the rules according to their applicability 
in a certain context or scenario, giving the students and as-
sessors a nice overview of the applied rules. Also they allow 
us to solve ambiguities in the application of rules, by using 
such a ranking to select the most applicable (or reliable) rule 
in each case. 

4 Further Research and Experiments 

The model described here is still conceptual and requires 
further research. To summarize the previous sections, we 
need to investigate the following topics:  
• Is the proposed language for symbolic rules adequate 

enough to represent the subjective and fuzzy rules ap-
plied in performance assessment? 

• How to determine the penalties of atoms and rules 
based on their modalities? And how to map penalties to 
temporal modalities of rules and atoms? 

• How to transform rules with inequality formulas to and 
from rules with only equality formulas? 

• If and how to adapt the rule encoding and extraction 
methods of Pinkas [1995] to make them applicable to 
the RTCRBM? 

• How to integrate temporal difference learning in the 
RTCRBM for long term evaluation of desires? 

 

These and many other topics will be investigated in a 
three year research project on assessment in driving simula-
tors, carried out by TNO in cooperation with the Dutch li-
censing authority (CBR), Research Center for Examination 
and Certification (RCEC), Rozendom Technologies and 
ANWB driving schools. The resulting automated assess-
ment module will be validated in several experiments on a 
large student population using multiple commercial driving 
simulators. If successful, the module will be used to support 
the Dutch driver training and examination program. 
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