
From transformation traces to transformation
rules: Assisting Model Driven Engineering
approach with Formal Concept Analysis

Xavier Dolques1, M. Huchard1, and C. Nebut1

LIRMM, Université de Montpellier 2 et CNRS
161, rue Ada, 34392 Montpellier cedex 5, France

{dolques, huchard, nebut}@lirmm.fr

Abstract. In this paper we are interested in semi-automatically gen-
erating labelled graph (model) transformations conform to a particu-
lar syntax (meta-model). Those transformations are basic operations in
model driven engineering. They are usually developed by specialised pro-
grammers and for every change the source code must be updated. Our
proposition is about generating transformation rules between two par-
ticular syntaxes using transformation examples (transformation traces)
as input data. Examples are easier to write than a transformation pro-
gram and often are already available. We are proposing a method based
on FCA using relational descriptions of objects to find transformation
rules. This method has been implemented and tested on transformations
such as LATEX to HTML.

1 Introduction

Model Driven Engineering (MDE) is a recent paradigm that gives models a pre-
dominating role in the software development process. A well known initiative of
the Object Management Group (OMG) in this domain is Model Driven Archi-
tecture (MDA) [1]. Rather than developing programs in specific implementation
languages, engineers are encouraged to produce and maintain high-level mod-
els describing the domain and the specific problem they deal with. Models are
written in conformity with metamodels that capture concepts of the modeling
language, e.g. classes and attributes for UML class diagrams, or entities and
relationships for Entity-Relationship (ER) diagrams. Tools that assist modeling
or that semi-automatically transform models in several directions [2], e.g. going
from abstract models to code models or translating models from a modeling
language to another, accompany the approach. One consequence of this gener-
alized usage of models inside a wide range of tools and contexts is the huge
amount of metamodels. Some of them are regrouped in zoos, like the Atlantic
Zoo 1. Successive versions of modeling and meta-modeling languages are another
source of diversity. Then, the success of MDE approach strongly depends on the

1 http://www.emn.fr/x-info/atlanmod/index.php/Atlantic

easiness to develop metamodel-to-metamodel transformations, either dedicated
to a development step, or to guarantee tool interoperability.

The transformations are developed with general-purpose languages like Java,
or with specialized languages, as ATL [3] or QVT [4]. Most of them are rather
simple, because they mainly associate a pattern in the target model to a pattern
in the source model. One case of such transformation changes the metamodel
which is used to express concepts of a domain: going from UML to ER, or going
from UML to Java are usual transformation tasks for software developers.

Programmers of model transformations must have serious skills in the chosen
transformation language and in the involved metamodels, however in practice few
programmers have this kind of skills. For example, many programmers cleverly
handle UML models, but do not know the underlying metamodel.

In this paper, we propose a method inspired by "Programming By-example"
approaches [5] to alleviate the writing of transformations. Engineers only need
to handle models in their usual (concrete) syntax and to describe main cases of
a transformation, namely examples. Such a transformation example includes the
source model, the target model and trace links that make explicit how elements
from the source model are transformed into elements of the target model. The
transformation rules are generated from the transformation traces, using formal
concept analysis extended by relations.

We introduce our problem into detail in Section 2, through a running exam-
ple. Then, in Section 3, part of this example is used to present the extension
of Formal Concept Analysis we will use to take into account relations inside
models and traces. Section 4 describes the method we use to generate transfor-
mation rules from the lattices. Section 5 reports a case study. Related works are
presented in Section 6 and we conclude in Section 7.

2 Problem overview using an example

A classical transformation used during the workshop MTIP’2005 [6] is used to
illustrate our proposal. UML models (class diagrams) are converted into Entity-
Relationship models. Simplified metamodels (also called abstract syntax) of
UML and ER formalisms are presented in Figure 1.

The simplified UML metamodel describes the main concepts, also called
metaclasses, that are used in UML structural models (class diagrams): classes
which are a subset of types, properties owned by classes, associations connecting
classes through properties. Attributes upper and lower indicate how many val-
ues a property can have (or how many objects can be connected when property
is used in the context of an association). A simple UML model, given in usual
concrete syntax in the lhs of Fig. 2, gathers two classes Account and Client,
respectively owning properties number and name, and an association owns as-
sociating Account and Client through properties owner and ownedAccount.
An account is linked to exactly one client while a client can have an unlimited
number of accounts.

Entity

Role

Attribute

RelationShip
Cardinality

1

2..* role 1
role

* attribute

entity1

1

*
role

refersTo

relationShip
cardinality0..1

min:int

max:intAssociation

Class

Type

Property

upper:int
lower:int

owning Association

ownedEnd

0..1 association

2..*
*

memberEnd

0..1

owningClass
0..1

ownedAttribute
*

type

1
*

Fig. 1. Simplified metamodels for UML (lhs) and Entity-Relationship (rhs) used in [7].

The metaclasses of the simplified ER metamodel are entities which have
attributes, relationships which connect entities through roles and cardinalities
that restrict the connection number. The rhs of Fig. 2 presents an ER model
composed of two entities Account and Client, with attributes number and name,
and connected via the relation possess and roles owner and ownedAccount.

Fig. 2 shows a transformation trace given by a designer who indicated in
dashed lines the correspondences between the source and target model.

Another view of the transformation trace is shown in Figure 3, where mod-
els are written using abstract syntax. Each element identifier (e.g. Account) is
followed by the name of the metaclass (e.g. Class) it belongs to. Going from
concrete syntax to abstract syntax is discussed in [7].

Client

name

owns
Client1

owns

L3
L4

L7/L8 L10/L11

number

Account
ownership owner name

Account

number
ownership

*

owner

1
*

L5

L1
L2

L6
L9

Fig. 2. UML (lhs) and ER (rhs) models in concrete syntax, and transformation links.

This example illustrates a common task in MDE: conversion between simi-
lar metamodels. A UML Property can be converted into an Attribute or a Role
depending on the context thus even in simple cases, it is not possible to create a
transformation rule using only the metaclass of the source elements: Analysing
the neighborhood of a property converted into an attribute (for example prop-
erty number), we find that the property is only connected to a Class through
owningClass. In the case of a property converted into a role (for example prop-
erty ownership) connections are with an association with a Class through type.

:Cardinality :Cardinality

Account :Entity

number :Attribute

Client : Entity

name : Attribute

owns:RelationShip

ownership:Role owner:Role

max=−1

min=1

max=1

min=1

Traceability link

type

memberEnd

ownedEnd

Client : Class

name : Property

owns:Association

memberEnd

owningClass

type

ownership:Property

Account : Class

number:Property

upper=−1
lower=1

upper=1
lower=1

owningClass owningClass

owner:Property

L2

L3

L4

L5

L6

L7

L8

L9

L10

L11

L1

Fig. 3. UML model, ER model, in abstract syntax, and transformation links. Inspired
by [7]. Some role names are omitted for the sake of clarity.

The found transformation rules can be expressed as follows, in a syntax close to
declarative transformation languages.

Rule c10
For all Property p
where p is connected to a Class through owningClass

and p is not connected to an Association through association
create Attribute a

As we have seen through this very restricted example, inferring the trans-
formation rules mainly consists in finding common features of source elements
and target elements connected by the transformation. Among these common
features, the neighborhood of the elements has to be considered. For all these
reasons, Formal Concept Analysis can be a relevant approach, if we consider an
extension able to include and exploit links in the description of elements.

3 Relational Concept Analysis

In this section, we briefly recall Formal Concept Analysis [8] and Relational
Concept Analysis, the extension we will use in our approach.

Formal Concept Analysis A formal context is denoted by K = (O,A, I), O
is an object set, A is an attribute set and I ⊆ O × A. (o, a) ∈ I when a is an
attribute of o.

The UML example of Figure 3 is encoded in a formal context where O are
the model elements and A is divided in two subsets: A1 encodes the types and
A2 encodes the types of the neighbors (Tab.1). (o, a) ∈ (O,A1) is in I if a is the
metaclass of o; (o, a) ∈ (O,A2) if a is the metaclass of a neighbor of o.

Table 1. Formal context encoding the UML model of Fig. 3.

typez }| { neighbor typez }| {
Class Property Association Class Property Association

Account X X
Client X X
owner X X X

ownership X X X
owns X X

number X X
name X X

A concept is a pair (X, Y) with X ⊆ O, Y ⊆ A and X = {o ∈ O|∀y ∈
Y, (o, y) ∈ I} is the extent (covered objects), Y = {a ∈ A|∀x ∈ X, (x, a) ∈ I} is
the intent (shared attributes).

The concept lattice associated to Table 1 is given in Figure 4 with a simpli-
fied labelling. Each box represents a concept: the name in the upper part, the
simplified intent in the middle part and the simplified extent in the lower part.

c1

c2

type : Property
neighbour : Class

name
number

c3

neighbour : Property

c4

neighbour : Association

owner
ownership

c5

type : Class

Account
Client

c6

type : Association

owns

c7

Fig. 4. Concept lattice associated with Tab.1

The example of Fig. 4 shows a classification of the model elements depending
of their type and their neighbor type. The elements with type Property (concept
c2) have in their neighborhood at least an element of type Class. But some of
these elements, regrouped in the subconcept c4, also contain in their neighbor-
hood at least an element of type Association.

As shown in this example, it is possible with only one incidence relation I to
represent several kinds of characteristics of an object set. To have an accurate
description, we can use as formal attribute the type of the neighbors of an
element, and we could use also the link name which connects the element to
its neighbor. Nevertheless, in a single step, we cannot take into account the
created concepts. One solution is then to create a context which associates initial
objects and new created concepts through a special incidence relation. Applying
such an approach characterizes an element by its neighbors, the neighbors of its
neighbors, etc. to have a definition of the concept as accurate as possible.

Relational Concept Anaysis Relational Concept Analysis [9] is one of the ex-
tensions of Formal Concept Analysis that considers links between objects in the
concept construction. Considering these links leads to take into account concepts
created in one step of the process to enhance the object description and create
new abstractions at next steps. Connections can be made with other FCA-based
proposals to deal with relational descriptions or complex structures including
[10,11,12,13] to mention just a few.

Relational Concept Analysis (RCA) computes concepts based on a relational
context family composed of one or two formal contexts, as well as relational
contexts. A relational context describes a relation between objects of two formal
contexts (not necessarily different).

A relational context family R is a kind of multicontext [14] presented
as a pair (K, R). K is a set of formal contexts Ki = (Oi, Ai, Ii), R is a set of
relational contexts Rj = (Ok, Ol, Ij) (Ok et Ol are the object sets of Kk et Kl

de K). Ok is called the source of Rj .
With RCA, data are divided into several object sets. In our example, we

consider the elements of the models (context K1 = (O1, A1, I1)) and the meta-
classes of the metamodels (context K2 = (O2, A2, I2)), these two contexts are
shown in Figure 5. K1 objects are described by two kinds of characteristics:
their metaclass and their neighbors. The relation which connects an element to
its metaclass (resp. neighbor) is represented by a relational context included in
O1 ×O2 (resp. O1 ×O1).

Each association end of the metamodel (e.g. owningClass) is encoded into
a separated relational context (Fig. 7). The attribute set of K1 is empty. K2

elements are described by a unique identifier in order to generate a first lattice
where each object belongs to a concept different from the others (Fig. 6). The
metaclasses are not used as attributes in K1 to obtain a clearer modeling and an
easy evolution. Relations describing metaclasses can be easily added, for example
inheritance. For the sake of clarity, inheritance is not encoded and metaclass Type
does not appear in K2.

New abstractions emerge iterating two steps. The first step is classical concept
lattice construction. In the second step, formal contexts are added to relational
contexts enhanced by concepts created in previous lattice construction, then
lattices are built.

Initialisation step. Lattices are built at this step using FCA. For each
formal context Ki, a lattice L0

i is created (in our example, it is shown in Fig. 6).
Step n+1. For each relational context Rj = (Ok, Ol, Ij), an enhanced re-

lational context Rs
j = (Ok, A, I) is created. A is the concept set of the lattice

Ln
l (created at step n). Incidence relation I contains the set of pairs (o, a) s.t.

S(R(o), Extent(a)) is true, where S is a scaling operator. The scaling opera-
tor we use in the rest of the paper is S∃(R(o), Extension(a)), which is true
iff ∃x ∈ R(o), x ∈ Extent(a). Other operators could be used, and especially
S∀∃(R(o), Extent(a)), which is true iff ∀x ∈ R(o), x ∈ Extent(a)∧∃x ∈ R(o), x ∈
Extent(a). For each formal context Ki extended with enhanced relations with
source Oi, the lattice Ln+1

i is created.

K1

Account
Client
owner

ownership
owns

number
name

K2 idClass idProperty idAssociation
Class X

Property X
Association X

Fig. 5. Initial formal contexts K1

(up) et K2 (down) for the UML
model.

c1

Account
Client
owner

ownership
owns

number
 name

c1

c2

id : idClass

Class

c3

id : idProperty

Property

c4

id : idAssociation

Association

c7

Fig. 6. Lattice at initialization step
for contexts K1 (lhs) and K2 (rhs)

owningClass Account Client
number x
name x
owner x

ownedAttribute number name owner
Account x x
Client x

type Account Client
ownership x

owner x

owningAssociation owns
ownership x

memberEnd ownership owner
owns x x

association owns
ownership x

owner x

ownedEnd ownership
owns x

meta-class Class Property Association
Account X
Client X
owner X

ownership X
owns X

number X
name X

Fig. 7. Relational contexts. Contexts in the upper part correspond to relations in
K1 ×K1. Context in the lower part is a relation in K1 ×K2.

The computed lattice stemming from the context K1 extended by relational
contexts is shown in Figure 8. The final lattice stemming from the context K2 is
still the lattice of Fig. 6 because K2 is never the source of a relational context.

4 Generating transformation rules

Our approach includes three steps: first, classification of the elements of source
and target models of the transformation; second, classification of the links that
show how elements are connected by the transformation; third, transformation
of the resulting concepts into transformation rules.

4.1 Classification of model elements

Elements of a model (necessarily conform to metamodel) yet belong to an explicit
classification driven by their metaclass. But the elements that instantiate a same

c0

meta-class:K2.c1

c3

meta-class:K2.c2
ownedAttribute:c0
ownedAttribute:c2
ownedAttribute:c8

Account
Client

c4

meta-class:K2.c4
memberEnd:c0
memberEnd:c7
memberEnd:c8
ownedEnd:c0
ownedEnd:c5
ownedEnd:c7
ownedEnd:c8

owns

c8

meta-class:K2.c3

c2

owningClass:c0
owningClass:c3

number
name

c7

association:c0
association:c4

type:c1
type:c3

c6

owner

c5

owningAssociation:c0
owningAssociation:c4

ownership

c1

Fig. 8. Final lattice obtained by RCA
for K1.

c0

L7
L8

c2

linkA:MEA.c0
linkB:MEB.c0

c4

linkA:MEA.c3
linkB:MEB.c2

L1
L2

c5

linkA:MEA.c4
linkB:MEB.c5

L5

c9

linkA:MEA.c8

c3

linkA:MEA.c2

c8

linkA:MEA.c7
linkB:MEB.c4

c10

linkB:MEB.c3

L3
L4

c6

linkA:MEA.c5

L6

c7

linkA:MEA.c6

L9

c1

voidFig. 9. Part of final MapLink lattice
obtained by RCA. MEA (resp. MEB)
refers to ModelElementA (resp. Mod-
elElementB).

metaclass may have different meanings and be transformed in different ways: e.g.
UML properties can be transformed into ER attribute or roles. To capture these
different meanings, we study the neighborhood of elements: an UML Property
used as a role is linked to an association, while an UML property used as an
attribute has a link owningClass with a class and no link with an association.

The use of RCA allows us to obtain a classification of the elements of a
model taking into account this neighborhood. We have seen in the previous
section parts of the used modeling. For a given model, a first formal context
ModelElement is created which contains all the model elements (it is equivalent
to the context K1 of Section 3). Objects of this context are the model elements
and the set of attributes is an empty set. A second formal context called Meta-
ModelElement, contains the metamodel elements (it is equivalent to the context
K2 of section 3). A relational context connects ModelElement and MetaMod-
elElement : the incidence relation is here the link between an element and its
metaclass (its type), this is equivalent to the context metaclass in Figure 7).
This leads to classify elements of ModelElement according to their metaclasses.
Each relation end R of the metamodel is encoded into a relational context in
ModelElement × ModelElement (Tables of Figure 7). Using those relations
refines the classification of ModelElement.

The result of this encoding is a concept lattice that describes the elements
available in a model. Concept intents will be used to generate part of the transfor-
mation rules. Figure 8 presents the concept lattice describing the elements of the
UML model. For example, concept c2 describes Properties which are connected

through owningClass links to Classes. More precisely, elements of the simplified
extent of c2 (namely number and name) are not connected to anything else.

4.2 Classification of transformation links

Transformation links are given in a transformation example to describe the cor-
respondences between several elements of two models. We consider here 1-1
links (one source element transformed into one target element), or 1-n links
(one source element transformed into n target elements). Links are encoded into
a formal context MapLinks: objets are the links and there are no attributes.
From the MapLinks context, we build the lattice which is used to generate the
transformation rules.

For two models A and B involved in the transformation, we create two rela-
tional contexts LinkA ⊆ MapLinks × ModelElementA and
LinkB ⊆ MapLinks×ModelElementB. An element of MapLinks is connected
to a concept of the ModelElement lattice if one element of the concept extent
is end of the link. The lattice2 represents a classification of links based on their
ends.

4.3 Concept interpretation and rule generation

A transformation link is characterized by the concept containing its end in model
A and the concept containing its end in model B. The concepts of the lattice
built on top of MapLinks regroup links which have common characteristics in
their two ends. For example, concept c10 (lattice of Figure 9) regroups links that
connect properties linked to classes and not to associations (concept c2, lattice
Fig. 8 classifying UML elements), and attributes (concept c3 of the lattice classi-
fying ER elements). We propose to extract the transformation rules using these
characteristics. The description of source elements (linkA values) can be seen as
premise of the rule, while the description of target elements (linkB values) can
be interpreted as the conclusion. Concept c10 leads to the Rule 10 of Section 2:
the premise is derived from the UML concept c2 and expresses that the involved
source elements are precisely the properties p where p is connected to a Class
through owningClass and p is not connected to an Association through associa-
tion. The conclusion of the rule is derived from the ER concept c3, expressing
that the target element is an ER attribute.

In other words, we consider a rule as a mapping taking as parameter a source
element conform to metamodel A. If this element satisfies given required char-
acteristics, it is transformed into target elements conform to metamodel B and
satisfying other required characteristics. All required characteristics are indicated
inside the concepts.

For a rule stemming from a concept c of the lattice associated with MapLink,
required properties are obtained analysing the concept MEA.c’ (for ModelEle-
mentA.c’), which is the most specialized concept of ModelElementA in c intent.
There are three categories of characteristics:
2 All the lattices are at this url: http://www.lirmm.fr/˜dolques/publications/data/iccs09

Mandatory characteristics, described in MEA.c’ intent. They are com-
mon to all c links.

Authorized characteristics, described in the intents of concepts special-
izing MEA.c’, under the condition that the concept extent includes the end of
a link of c. For example, in the case of the concept c8 of MapLink regrouping
links L6 and L9 (Figure 3), MEA.c’ corresponds to MEA.c7; ownership (end of
L6) which belongs to MEA.c5 and owner (end of L9) which belongs to MEA.c6

are then authorized.
Forbidden characteristics, described by the intents of the concepts which

do not include in their extent the end of a link of c. These characteristics are espe-
cially important if they belong to concepts specializing MEA.c’. In our example,
if we consider the concept of MapLink regrouping links L3 et L4, MEA.c’ corre-
sponds to MEA.c2. The rule must not include description coming from MEA.c6

since no element of its extent is end of L3 or L4.

5 Case Study

This section provides a proof-of-concept of our technique in the form of a case
study. We are interested here in the quality and usability of the obtained rules.

By quality, we mean the rules adequacy with what a developer would have
done by hand: ideally, the results obtained with our approach should give similar
or identical rules. The usability evaluates if the number of obtained rules does
not explode, as could unhappily be expected with lattices.

5.1 Preparation

In order to gather experimental data, we organized a session with graduate
students around model transformation, during their Model Driven Engineering
class. The models and metamodels were written using the Eclipse Modeling
Framework (EMF) and the Sample Reflective Ecore Model Editor, the students
were familiar with them. We created small models conform to metamodels that
students were used to handle. These models were given to the students as source
examples and they were asked to create by-hand a transformed model conform to
another given metamodel. They were also asked to write the trace links between
the two models and the transformation using an imperative language.

These models were given to the students as source examples, as well as the
specification of a model transformation. The transformation was specified with
written natural language, and also orally explained by the teacher. The target
metamodels of the transformations were also familiar to the students. The stu-
dents were asked to create by-hand the result model. The students were told
that their work will be used for a research experiment but they did not know
the exact purpose of the experiment. They had all the time they wanted to
produce their data, but they worked alone and two nearby students in the class-
room were given different models. We then gathered all the data and applied our
RCA-technique on them. We have then studied the lattices to extract the rules.

The metamodels used for this case study are simplified versions of LATEX and
HTML, the subjects were asked to make transformations from one to another in
both directions.

Table 2. Data obtained from the case study.

d15 d16 d43 d44 d25 d26 d29
Transformation latex to html html to latex
Source MetaModel size 3 3 3 3 7 7 7
Target MetaModel size 7 7 7 7 3 3 3
Source Model size 9 12 9 12 13 13 13
Target Model size 11 14 14 22 12 11 12
Trace size 9 12 13 21 10 11 10
Source MetaModel coverage 3 3 3 3 3 4 3
Rules Space size 5 5 5 4 4 4 3
Detected problems 2 2 4 3 1 1 0
Real problems 2 2 2 1 1 1 0
Number of links 9 12 13 14 9 11 10
Number of correct links 8 11 11 14 8 11 10
Number of links from rules
without problems

4 10 4 14 8 11 10

Number of correct links from
rules without problems

4 10 4 14 8 11 10

From the obtained data, we gathered the results presented in Table 2. At
first, we measured the size of all the handled models. The metamodel size is the
number of its EClass. The model size corresponds to the number of its metamodel
EClass instances. A trace size is given by its number of links.

We also measured the source metamodel coverage, using the number of
EClass for which instances were traced. The final lattice used to generate the
rules contains concepts that cannot be used as they do not contain enough in-
formation to make a rule. The Rules Space defines the set of concepts that are
usable as rules.

During the experiments, a lot of factors could cause error, and we needed
to know whether the technique was sensible to errors. We have determined that
concepts with the same source but different targets could cause problems, that is
what is measured for the detected problems. We then checked if these problems
were real and if all problems were detected. By problems, we mean trace link
errors or an incoherent target model.

For the last metrics, we applied the rules we obtained on the source example,
and we measured the difference between the result obtained and the target model
example. As in some cases the rules do not cover all the elements in the source
model, we have based our measurement on trace links. As some problems have

appeared in the data used to generate the rules, we also made measurement
excluding links from the rules that cause problems due to trace errors.

5.2 Evaluation

The results on the different models seem satisfying as every rule applied, if it
has been generated from sane data, behaves in the expected way. We also see
that errors can be treated in most cases: they were all detected on our data and
good rules can be obtained from the remaining sane model elements. But we can
also see some cases of false positives, that could be more frequent with bigger
models.

A problem that could arise when working with RCA is the size of the lattice,
and especially the number of possible rules. But, this does not appear to be a
problem with the transformation we have here.

5.3 Threats to validity

– Conclusion validity: Our results are valid as a proof-of-concept: we conducted
our experiments on a little number of models. The subjects knowledge was
good enough.

– Internal validity: The high number of problems comes from the used tools
(Eclipse Model Editor) and the edition of XMI files, this is highly error-
prone.

– Construct validity: The correctness of the transformation is measured by
the transformation of an element in another element with the good type, but
we do not take into account the relations between the transformed elements.

– External validity: We are using here little metamodels and examples, as it is
needed to make a proof-of-concept, but it makes results hardly generalizable
on bigger metamodels. However, metamodels are reasonably different so that
the transformations to generate are not obvious.

6 Related Work

In Model-Driven Engineering domain, the automatic generation of model trans-
formation is a recent and active research topic. Roots and inspiration can be
found in the domains of ontology and schema matching [15,16] and program-
ming by-example or by-demonstration [17,5].

Metamodel alignement-based approaches search for mappings that provide
transformation rules. In [18], metamodels are mapped to a pivot ontology, then
an ontology-based reasoning is used to generate a relational-QVT transforma-
tion. In [19], refactoring is applied to metamodels in order to make explicit hidden
concepts of metamodels and obtain an ontology where all concepts are reified be-
fore mapping. Similarity Flooding [20] propagates similarity values in a labeled
graph whose vertices are potential mappings. It is used in several proposals for
metamodel alignment such as in [21] and [22].

Another track of research aims at inferring transformation rules from trans-
formation examples (traces). Particle swarm optimization is used in [23] to gen-
erate a consistent transformation of a model. The transformation of a model
source element is encoded as a particle which has to be placed in the space of
possible transformations. Graph transformation rules are semi-automatically de-
rived from mappings given by a user between two models in [24]; Analysis is then
based on model element neighboring, inductive logics and interaction with an
expert. ATL rules are derived from transformation examples written in concrete
syntax in [7].

Meta-model alignment approaches are especially suitable to give mappings in
the case of rather simple transformations in the context of tool interoperability
or version changes. Approaches based on rule inference have a larger application
spectrum including complex transformations or transformations where meta-
models are quite different. RCA allows us

to map connected elements (patterns) rather than isolated elements. Lattices
classify results and help navigation among generated rules to choose the relevant
ones. Compared to the opaqueness of the optimization approach which just pro-
vides a transformation result, inferred rules provide a transformation procedure,
and are a clear and easy-to-handle artefact.

7 Conclusion and future work

In this paper, we propose to generate model transformation rules using exam-
ples of transformed models and transformation links between source and target
elements. This allows engineers involved in Model Engineering tasks to rapidly
have a transformation program even if they are not familiar with transformation
languages and metamodels. Using Formal Concept Analysis, rules are classified
through a lattice which helps navigation and choice. On simple models, we show
that the results are satisfying as the method produces correct rules most of the
time and is usable on erroneous data. From these encouraging results we plan to
test our approach on bigger and more complex transformations. But to achieve
this goal, we need to complete our tools for generating and manipulating rules.
By using other scaling operators we expect to enhance the produced rules and
detect new patterns for rule premise and conclusion.

References

1. Soley, R., the OMG Staff: Model driven architecture. Technical report, Object
Management Group (2000)

2. Mens, T., Gorp, P.V.: A taxonomy of model transformation. Electr. Notes Theor.
Comput. Sci. 152 (2006) 125–142

3. Jouault, F., Kurtev, I.: Transforming models with atl. In Bruel, J.M., ed.: MoDELS
Satellite Events, Springer (2005) 128–138

4. OMG: MOFTM Query / Views / Transformations. Technical report, OMG (2008)
5. Lieberman, H.: Your Wish is My Command: Giving Users the Power to Instruct

their Software. Morgan Kaufmann (2000)

6. MTIP: Model transformations in practice workshop.
http://sosym.dcs.kcl.ac.uk/events/mtip05/ (2005)

7. Wimmer, M., Strommer, M., Kargl, H., Kramler, G.: Towards model transforma-
tion generation by-example. In: HICSS, IEEE Computer Society (2007) 285

8. Ganter, B., Wille, R.: Formal Concept Analysis, Mathematical Foundations.
Springer (1999)

9. Huchard, M., Hacene, M.R., Roume, C., Valtchev, P.: Relational concept discovery
in structured datasets. Ann. Math. Artif. Intell. 49(1-4) (2007) 39–76

10. Priss, U.: Classification of meronymy by methods of relational concept analysis. In:
Online Proceedings of the 1996 Midwest Artificial Intelligence Conf., Bloomington,
Indiana. (1996)

11. Prediger, S., Wille, R.: The lattice of concept graphs of a relationally scaled context.
In: Proc. of the 7th Intl. Conf. on Conceptual Structures (ICCS’99), Springer (1999)
401–414

12. Ganter, B., Kuznetsov, S.: Pattern structures and their projections. In Delugach,
H., Stumme, G., eds.: Conceptual Structures: Broadening the Base, Proc. of the
9th Intl. Conf. on Conceptual Structures (ICCS’01), Stanford, CA. Volume 2120
of LNCS., Springer (2001) 129–142

13. Ferré, S., Ridoux, O., Sigonneau, B.: Arbitrary relations in formal concept analysis
and logical information systems. In: ICCS 2005. Volume 3596 of LNCS., Springer
(2005) 166–180

14. Wille, R.: Conceptual structures of multicontexts. In: Conceptual Structures:
Knowledge Representation as Interlingua, Springer (1996) 23–39

15. Rahm, E., Bernstein, P.A.: A survey of approaches to automatic schema matching.
VLDB J. 10(4) (2001) 334–350

16. Shvaiko, P., Euzenat, J.: A survey of schema-based matching approaches. In: J.
Data Semantics IV, Volume 3730 of LNCS. (2005) 146–171

17. Cypher, A., Halbert, D.C., Kurlander, D., Lieberman, H., Maulsby, D., Myers,
B.A., Turransky, A.: Watch What I Do: Programming by Demonstration. The
MIT Press (1993)

18. Roser, S., Bauer, B.: An approach to automatically generated model transforma-
tions using ontology engineering space. In: Proceedings of Workshop on Semantic
Web Enabled Software Engineering (SWESE). (2006)

19. Kappel, G., Kapsammer, E., Kargl, H., Kramler, G., Reiter, T., Retschitzegger,
W., Schwinger, W., Wimmer, M.: Lifting metamodels to ontologies: A step to the
semantic integration of modeling languages. In: MoDELS. Volume 4199 of Lecture
Notes in Computer Science., Springer (2006) 528–542

20. Melnik, S., Garcia-Molina, H., Rahm, E.: Similarity flooding: A versatile graph
matching algorithm and its application to schema matching. In: ICDE, LNCS
2593. (2002) 117–128

21. Lopes, D., Hammoudi, S., Abdelouahab, Z.: Schema matching in the context
of model driven engineering: From theory to practice. In: Advances in Systems,
Computing Sciences and Software Eng., Springer (2006) 219–227

22. Falleri, J.R., Huchard, M., Lafourcade, M., Nebut, C.: Meta-model Matching
for Automatic Model Transformation Generation. In: MODELS’08, LNCS 5301,
Springer (2008) 326–340

23. Kessentini, M., Sahraoui, H., Boukadoum, M.: Model Transformation as an Opti-
mization Problem. In: MODELS’08, LNCS 5301, Springer (2008) 159–173

24. Balogh, Z., Varró, D.: Model transformation by example using inductive logic
programming. Software and Systems Modeling (2008) Appeared online.

