
ConceptModeller: a Graph-Based Semantic Modeling Tool
for Building Enterprise Applications

Dr. Sergey V. Zykov, Ph.D.

State University Higher School of Economics
33/5 Kirpichnaya St., Moscow 105187 Russia

e-mail: szykov@hse.ru

Abstract. The paper outlines semantic-oriented methodology of enterprise software
development. The methodology provides integrated visual semantic-oriented enterprise
software development and integration in globally distributed heterogeneous environment.
The ConceptModeller CASE tool fills the gap between formal computer science models
and software engineering practices. The toolkit transforms frame-based data model
representation into UML diagrams and backwards, thus providing reverse engineering up
to model level. ConceptModeller is implemented under component-oriented approach,
and it features adapters for integration with state-of-the-art CASE tools. The object
repository of ConceptModeller is an XML (meta)database. Software development phases,
from initial conceptualization and formal modeling to target enterprise-level
implementation, are overviewed.

Keywords: ERP system, semantic modeling, software development.

1 Introduction

Bulky and avalanche-like growing heterogeneous enterprise data systems demand novel
approaches to the software development, which should be based on model and CASE-driven
database and metadata base integration. The paper presents the ConceptModeller CASE tool,
which bridges the model-engineering gap in the large-scale software development for globally
distributed heterogeneous enterprise resource planning (ERP) systems.

Research objective is to outline conceptual and methodological foundations of ERP
development and to apply them to enterprise-level CASE tools. Research methods are based
on a creative synthesis of fundamental concepts of finite sequence [1], category [2],
computations and semantic network [8] theories.

The integrated ERP development methodology [5] comprises a set of models and the
supporting tools. The models include a frame-based problem domain representation model [7],
and an abstract machine-based data manipulation model [12,13]. The tools are
ConceptModeller, which is used for visual semantic-oriented ERP system design/integration,
and an intelligent enterprise content management system [13-15].

2 Theoretical Background and Related Papers

ERP conceptual design, which is an essential component of the proposed methodology,
includes an object-based (meta)data computational model, formal languages and CASE-like
tools to represent and manipulate the objects. The ERP development methodology supports
continuous multi-level two-way iterative enterprise system design/implementation, and it
controls (meta)data objects state, consistency and integrity through the entire ERP system
lifecycle. The paper focuses on a CASE-like tool, which supports semantic-level ERP
integration and development. Let us define the frame related concepts to be discussed later on.

Under a primary concept, a physical or abstract object, selected within the problem domain,
is implied. A primary concept is an intensional object, i.e. a type or a sort interpreted as a set.
Under a constant (or an instantiation), a separate individual of an interpreted primary concept
is implied. Generally speaking, a constant is an intensional object, however under a certain
instantiation it should be bound to a single interpretation of a corresponding type. Under an
interpretation Di of a primary concept Di, all constants from Di are bound to respective
instantiations from Di.

Any variable (either a free or a bound one) should have an assigned type (for free variables
this is marked by a type arc, i.e., a “t”-marked arc pointing to a primary concept, which
corresponds to the type(s) of constant(s) that can be assigned to the variables).

Under a frame a graph is implied, which represents a knowledge unit in terms of access and
processing. Under a simple frame a frame is implied, which contains no sub-graphs, and which
contains only constants, variables and arcs. Frames correspond to relations at database level.
Arc type and interpretation frames are structurally subdivided into event, function (predicate)
and characteristic ones.

Event frames are used to model system or user activities. Events are treated as specific
predicates. A network representation of an elementary event frame is a node corresponding to
the event predicate and outgoing role-marked role arcs pointing to the nodes, which represent
predicate arguments. The arguments are either typed variables or typed constants of primary
concept(s). Event frames are templates (i.e. intensional objects), since their arguments are not
evaluated and, consequently, do not carry information on the real event. However, upon
evaluation of all variables by appropriately typed constants, the predicate (and the event
frame) gets a logical value. Role arcs correspond to event arguments and imply argument
semantics in the event. This is the major distinction between role arcs and logical predicate
arguments. Event frame role denotations are described in Table 1, an example is given in fig.3.

The integrated ERP problem domain features high complexity of the object classes and
incomplete information on the structure of certain instantiations of these classes. However,
both the set of class attributes and the set of operations over class objects can be determined
rigorously. Thus, the suggested frame-based methodology appears to be applicable due to the
following reasons: variety of heterogeneous classes, importance of association-based inter-
class relationships, and class inference (the latter is possible even under weak-structured
character of some of the class instances).

Ontology-based approaches (such as Cyc project and its extensions [4], [6]), even being
aimed at large knowledgebase integration (as in [5], [9]), tend to be comparable in efficiency
to the approach suggested only under a total class-level uncertainty. However, such total class-
level uncertainties actually belong to quite different problem domains than the ECM. Such

domains usually involve thesaurus to meet the relevance levels required (as in the task of
building a web-page parser for semantic web [9], [8]). The methodology foundations are rather
similar to the ontology-based approaches (e.g. Cyc project uses predicate calculus-based CycL
language, quite similar to Lisp [4], “conceptual model” [8] etc.). Also, the ontology-based
approaches use certain tools to simplify the data modeling and integration processes (e.g.,
UML and XML-based tools are used in [6]). However, the ontology-based approaches often
lack a well-balanced combination of formal models and industry-level SDKs (including
visualization tools) for the entire ERP lifecycle, which results in low scalability and non-
suitability for the majority of enterprise-level applications [5], [6], [8].

Table 1. Event frame roles

Abbreviation Meaning Semantics Interpretation

a agent Action initiator (actor)

o object Addressee of the action

s source Location of the addressee of the action before the
event

d destination Location of the addressee of the action after the
event

r result Result of the action

3 The Integrated ERP System Development Methodology

The methodology overview as a diagram is presented in fig.1.
The methodology develops conceptual approach to software engineering [10] and some

other approaches known as yet by the integrated set of object calculus models for problem
domain (meta)data representation and manipulation. The models are based on a synthesis of
typed -calculus [1] and category theory, represented by category combinatory logic [2]. The
system environment is modeled by a state-based abstract machine in Cartesian closed
categories [2]. Computation semantics are modeled in terms of variable domains [8]. Frame-
based approach [6] is used to visually model the object behavior of heterogeneous weak-
structured globally distributed problem domains.

The major benefits of the suggested composite theoretical background are unified control of
(meta)information within a single model framework, and adequate object-relational mapping
for semi-structured, heterogeneous ERP systems in globally distributed environments.

Definition and manipulation languages for data and metadata objects in globally distributed
environments, which are based on relational algebra for ERP system data and object-oriented
SQL extensions, can be represented as a specific (meta)data object model, extended by
embedded scenario-activated scripts and stored procedure-based queries. UML-based object-
relational (meta)data transformation results in the architectural scheme of the ERP systems,
represented by a set of model-and-CASE-driven UML diagrams and source code.

Fig. 1. General software development diagram

Thus, ERP system development starts from problem domain conceptualization and ends by the
implementation in terms of software module and interface code. Each of the development
stages includes multiple levels, where statements are described in terms of a corresponding
universe (world), embracing a domain of objects, environment, and formal languages for
(meta)data definition and manipulation (fig.1).

At the first stage of the methodology, the world is the problem domain specification in
natural language terms, the data manipulation language is first order logic, and in case of a
dynamic problem domain – higher order logic.

The second stage is conceptualization, i.e. transformation from natural language problem
domain representation to the formal model, and the universe is changed to conceptual model
description of the problem domain [10]. Therewith, problem domain specification elements are
mapped into concepts, and natural language relationships – into role relators. Logic of
predicates is adequate for static problem domain conceptual models [10], while dynamics is

formalized by higher order logic, based on semantic domains, and descriptors [8] are used in
the data object definition language.

To increase visibility without losing rigorousness, we are using semantic network data
definition language with Roussopulos type of frames for visualization [7]. Thus, logical and
casual relationships, integrity constraints and some other problem domain features are
modeled. (Meta)data class hierarchy is modeled by partial order relationship (ISA). Due to
frame algebra synthesis with finite sequence and category theories, formal software testing and
verification of ERP systems and enterprise data warehouses becomes possible.

Dynamic (meta)data object behavior model is visualized by event frames. Frame algebra is
used to model data object manipulation, it includes extensions for embedded functions and
integrity constraints [7].

Problem domain conceptual model supported by the ConceptModeller tool [5], which is
used for the third stage, the ‘lower’ CASE. The universe is changed for visual problem domain
conceptual model representation in terms of frame hierarchy, the elements of which include
concepts as nodes, relationships as arcs, and metadata as possible data object value ranges
(including quantifiers, etc.).

The ConceptModeller tool is aimed at frame-based automatic visual ERP system design,
development and integration. The tool supports partial order-based frame hierarchy, basic
frame elements (e.g., arcs, nodes, etc.) and various frame types (including event frames). The
ConceptModeller XML-based repository stores data and metadata (identifiers, integrity
constraints, etc.) in a uniform way. The data object manipulation language is based on frame
algebra.

During the fourth stage (intermediate CASE), the visual representation of problem domain
conceptual model is automatically translated by ConceptModeller into UML standard
specifications. At this stage, the universe is a UML model as a family of interrelated diagrams
(use-case, class, etc.).

UML has been chosen for complex distributed problem domain modeling (including
heterogeneous and weak-structured problem domains), since it is an international standard for
(large-scale) ERP system engineering. Frame elements are translated into UML diagrams,
while hierarchy and integrity constraints are maintained (UML representation is preferred for
complex heterogeneous ERP systems). The OCL language is used to describe integrity
constraints for complex problem domains, which is a part of UML standard. The rest ERP
implementation stages, from ‘upper’ CASE to implementation (fig. 1), can be automated by
traditional CASE tools.

4 ConceptModeller: an Integral Part of the Methodology

To provide an adequate automation level of iterative ERP system development, reverse
engineering is implemented in ConceptModeller as a semi-automated backward translation
from UML to the frame model representation [7].

According to the methodology, the integration algorithm for embedding new components
into the existing ERP system environment involves ConceptModeller as follows [11,12]:

1. Design problem domain conceptual model and data model for the new component
using ConceptModeller;

2. Reverse engineer existing components (possibly to as low as the problem domain
conceptual model and data model level) using CASE tools, and ConceptModeller;

3. Define semantically preferable entities/objects and relationships for the components
of the integration area(s) using ConceptModeller;

4. Eliminate doubling and contradictory entities and relationships of the integration
area(s), so that only semantically preferable ones remain in the resulting problem domain
conceptual model and data model using ConceptModeller;

5. Component-wise development of the integrated ERP system using ConceptModeller,
and CASE tools.

The major benefits of ConceptModeller are: adequacy to problem domain and the data

model; problem domain orientation (experts use familiar terms for objects and relationships);
visualized software development; state-of-the-art development standards support (UML,
XML, etc.); interface bridges to industrially approved CASE tools (IBM Rational, Microsoft
Visual Studio, etc.); and two-way ERP system development (including reverse engineering).
Due to the above benefits, ConceptModeller can be easily used by a wide spectrum of problem
domain experts, and it allows to construct models in nearly natural language terms.

To ergonomically visualize frames, the interface has been improved to match the most user-
friendly and efficient vector graphic processing application standards, such as Adobe
PhotoShop. An example of simple frame visualization in ConceptModeller is given in fig. 4.

Moreover, it becomes possible to automatically translate the integrated ERP and enterprise
data warehouse scheme into problem domain conceptual model at any development stage
(problem domain modeling, CASE-guided UML-based implementation, testing, maintenance,
etc.). Thus, it becomes possible to formally verify and validate the software at various
abstraction levels. Certain programming languages and techniques, such as SML.NET, can be
used to accelerate the verification and validation processes.

The conceptual approach to visual software development is based on N.Roussopulos frame
notation [7].

ConceptModeller user interface for visual problem-oriented (simple) frame development
(fig. 2) is the basic way of (meta)data entry and correction. Note, that the interface contains
visualization facilities for the major elements of (simple) frames, such as concepts, variables,
and various types of role arcs (variable, constant, type, characteristic and event frame roles).

In the above example, an event frame is visualized that describes a (simplified) business
situation of enterprise web content publishing.

As the example demonstrates, the event frame visualization is fully adequate to
conventional mathematical formal representation (fig. 3,4).

Fig 2. ConceptModeller visual user interface

Fig. 3. An example of a simple event frame

MANAGER

WEBSITE

publish

CONTENT y

z

a
o

d

managers 'publish' content to websites

x

Fig. 4. ‘Publish’ event frame visualization in ConceptModeller

5 ConceptModeller: Visual Semantic-Oriented Translation

The ConceptModeller tool includes event-oriented components that visualize frames, store
their XML representations, translate them into UML code, and visualize it as UML diagrams.
A generalized scheme of problem domain conceptual model translation by ConceptModeller is
given in fig. 5. The scheme contains forward and reverse enterprise software development
directions (since ConceptModeller supports both of them). Frame-to-UML translation is done
component-wise and element-wise. The translation is based on algorithms and data structures,
described in more detail in [11].

The majority of frame types (including event frames as in fig. 3) allows transformation to
standard UML diagrams (e.g., class diagrams, as in fig. 6), which unifies user interface.
Therewith, the data format is based on certain metadata types (including cardinality, frame
type and some other parameters), which is not visualized in the interface, but which is used for
ERP software system development both in forward (from frames to UML diagrams) and in
reverse directions.

The above ConceptModeller interface example can be interpreted as a primary report form.
ConceptModeller features internal (system-level) report generation. The system reports
contain a elaborate metadata, which is used to describe certain internal parameters of frames
and UML diagrams (e.g., semantic roles for the arcs joining the concepts, etc.). Detailed

description of the metadata structure is beyond the scope of the paper, more details are given
in [11].

Fig. 5. ConceptModeller translation scheme

ConceptModeller GUI elements are designed similarly to software imaging packages
(particularly, Adobe Photoshop), so that they provide intuitive transparency for problem
domain analysts, high ergonomics and efficiency level for enterprise system development and
integration.
The ConceptModeller GUI elements are stored and processed within a separate
(meta)database. Data exchange with ERP and CASE applications is based on a unified
technology of system resources. Resources are file structures that contain metadata
descriptions in XML format.
Double representation of frames as graphics and database structure elements requires multi-
level data structure development for frame storage. The (meta) database should possess
properties of completeness, extendibility for adding metadata, and flexible visual interpretation
(including multiple instance support). Microsoft .NET framework has been chosen as the
development platform to simplify the process of frame-to-UML translation. XML is a standard
database format solution with convenient visualization. The XML database manipulation is
based on XML Designer component of Microsoft Visual Studio 2005/2008. The XML
Designer is used for schema generation of template database defining frame elements. A short
XML code example (fig. 7) demonstrates description of a frame variable MyVar of type Var
and of a visual size in ConceptModeller GUI of 100 by 50 pixels.
The major benefits of the ConceptModeller tool architecture and interface are problem-
oriented IS development in nearly natural language terms, situation-based problem domain
conceptual model visualization through the entire software lifecycle, intuitive transparency due
to usage of an industry approved UML standard of (visual) ERP development/integration, and
interface-level support of two-way software development (reverse engineering). Details of
implementation mechanisms for software development with ConceptModeller, frame model
translation into UML diagrams, and metadata storage are given in [11,12].

Fig. 6. UML diagram, the result of ‘publish’ event frame translation

Fig. 7. XML description of a frame fragment in visualization database

Manager Content

Website

-1

*

-0..n

*

-0..n*

-0..n*
-0..n*

-Publish

*

6 Implementation Summary, Conclusion and Future Work

The ConceptModeller tool is implemented in C# language and contains over 5,000 lines of
source code including event-driven components for frame visualization, frame translation to
UML code and for the visual representation of the resulting code. Microsoft Visual Studio
.NET has been chosen as the platform for ConceptModeller implementation and was used as
the application environment. The major platform choice criteria included Internet orientation,
programming language spectrum for heterogeneous (meta)data manipulation, heterogeneous
(meta)database integration degree, semi-structured (meta)data storage capacity, UML standard
meeting, and technical support quality level.
To provide efficient ERP development and integration in heterogeneous, globally distributed
environments, a problem-oriented visual ConceptModeller CASE tool has been implemented.
The tool allows to eliminate the logical gaps in existing software development methodologies
by bridging problem domain formal model and conventional CASE systems.
The CASE tool as a part of the software development methodology has been approved by a
number of successful implementations of ERP systems in ITERA International Group of
Companies with nearly 10,000 employees in around 150 companies of 24 countries [13-15].
During the ERP development and integration, the problem domain specifications (in terms of
semantic networks) have been transformed by ConceptModeller to UML diagrams, and,
finally, into target ERP architecture and (meta)database schemes. The resulting Web pages
have been published in ITERA Internet/Intranet portal (www.iteragroup.com) [14].
As a result of the implementation based on the proposed methodology, implementation terms
and costs compared to commercial software available have been considerably reduced (by the
average of 30% in case of heterogeneous environments). The implementation proved
efficiency of the approach on the whole and its separate components (concepts, models, and
CASE tools).
The author is going to continue his studies of problem-oriented software development
methodologies, and the supporting models, algorithms and tools. A promising direction would
be ConceptModeller revision on the basis of domain specific language (DSL) technology and
the emerging UML-based visualization capabilities of Microsoft Visual Studio.

References

1. Barendregt H.P. The lambda calculus (revised edition), Studies in Logic, 103, North Holland,
Amsterdam, 1984

2. Curry H.B., Feys R. Combinatory logic, Vol.1, North Holland, Amsterdam, 1958
3. Forbus K., Birnbaum L., Wagner E. et al. Combining analogy, intelligent information retrieval, and

knowledge integration for analysis: A preliminary report. In: 2005 International Conference on
Intelligence Analysis, McLean, Virginia, USA, 2005

4. Lenat D., Guha R.V. Building Large Knowledge-Based Systems: Representation and Inference in the
Cyc Project. Addison-Wesley, 1990

5. Masters J., Güngördü Z. Structured Knowledge Source Integration: A Progress Report. In: Integration
of Knowledge Intensive Multiagent Systems, Cambridge, MA, USA, 2003

6. Reed S., Lenat D. Mapping Ontologies into Cyc. In: AAAI 2002 Conference Workshop on
Ontologies For The Semantic Web, Edmonton, Canada, 2002

7. Roussopulos N.D. A semantic network model of databases. Toronto Univ., 1976
8. Scott D.S. Lectures on a mathematical theory of computations. Oxford University Computing

Laboratory Technical Monograph. PRG-19, 1981. - 148 pp
9. Witbrock M., Panton K., Reed S.L., et al. Automated OWL nnotation Assisted by a Large Knowledge

Base. In: Workshop on Knowledge Markup and Semantic Annotation at the 3rd International
Semantic Web Conference (ISWC 2004), Hiroshima, Japan, 2004, pp. 71-80

10. Wolfengagen V.E. Event Driven Objects. Proceedings of the Workshop on Computer Science
and Information Technologies CSIT'99. Moscow, Russia, 1999, p.p.88-96

11. Zykov S.V. ConceptModeller: Implementing a Semantically-Based Toolkit for Enterprise
Applications // Proceedings of the 1st International Conference on Computer Science and Engineering
(CSE-2006) – Lviv, Ukraine, October 2006.– Lviv: Publishing House of Lviv Polytechnic National
University, 2006.– pp.23-26

12. Zykov S.V. Enterprise Content Management: Bridging the Academia and Industry Gap In:
C.Shoniregun, A.Logvinovsky (Eds.), Proc. of International Conference on Information Society (i-
Society 2007), Merrillville, Indiana, U.S.A., October 7-11, 2007, Vol. I, p.p.145-152 (ISBN 0-
9546628-1-4)

13. Zykov S.V. Enterprise Content Management: Theory and Engineering for Entire Lifecycle
Support // Proceedings of the 8th International Workshop on Computer Science and Information
Technologies (CSIT'2006), Vol. 1, Ufa State Aviation Technical University, USATU Editorial-
Publishing Office, Karlsruhe, Germany, 2006, pp. 86-92

14. Zykov S.V. Integrated Methodology for Internet-Based Enterprise Information Systems
Development. 1st International Conference on Web Information Systems and Technologies
WEBIST2005, Miami, FL, USA, May 2005, p.p.168-175

15. Zykov S.V. An Integral Approach to Enterprise Content Management. In: N.Callaos, W.Lesso,
C.D.Zinn, B.Zmazek (Eds.), Proc. of International World Multi-Conference on Systemics,
Cybernetics and Informatics (WMSCI 2007), Orlando, FL, U.S.A., July 8-11, 2007, Vol. I, p.p. 212-
216 (ISBN 10-1-934272-15-9)

