
The Modding Web:
Layman Tuning of Websites

Cristóbal Arellano (Student),
Oscar Díaz, and Jon Iturrioz (Supervisors)

ONEKIN Research Group, University of the Basque Country,
San Sebastián, Spain

{cristobal-arellano,oscar.diaz,jon.iturrioz}@ehu.es
http://www.onekin.org

Abstract. The Web is still much regarded as a user space rather than an author
space. Hence, Web engineering cares for both current user requirements (e.g.
usability) and future user requirements (e.g. maintainability), but overlooks
author needs. This tendency is already observed in the increasing availability
of open APIs and mashup applications. This work addresses another way of
end user authorship, client scripting, whose vigour is evidenced by initiatives
such as Greasemonkey. Client scripting permits end users to locally customize
content, layout or style of their favourite websites. But current scripting suffers
from a tight coupling with the website. As a result, website upgrades can make
the script to fall apart. This can refrain users from participating, and slow down
open innovation for website owners. To avoid this situation, this work proposes to
characterise websites with a "tuning interface" in an attempt to decouple layman’s
script from website upgrades. Scripts do not longer access the website code (i.e.
the implementation) but a stable description of the website (i.e. the interface).
This interface limits tuning but increases change resilience, and offer a balance
between openness (scripter free inspection) and modularity (scripter isolation
from website design decisions).

Key words: Personalization, Tuning, Web 2.0

1 Introduction

The evolution of Web applications can be staged based on the degree of layman’s
involvement. In Web 1.0 applications, layman activities are mainly restricted to reading
and form filling. Next, Web 2.0 puts content authoring in the user’s hand: blogging and
tagging are nowadays common practices among "webies". This work is about the last
frontier of layman participation, tuning.

Traditional adaptive techniques [2] permit to adjust websites to the user profile
with none (a.k.a. adaptive) or minimum (a.k.a. adaptable) user intervention. Traditional
adaptive techniques seem to follow the motto of the Enlightenment movement (i.e.
"Everything for the people, nothing by the people") where data is collected to improve
the user experience but avoiding user involvement as much as possible. Yet, it is not
always easy for designers to foresee the distinct customization settings and user profiles.



No design can provide information for every situation, and no designer can include
personalized information for every user [9].

Hence, traditional customization approaches do not preclude the need for a do-it-
yourself (DIY) approach where users themselves can locally tune websites for their own
purposes [3,4,7]. To denote this scenario, the term "tuning" is borrowed from hardware
and computer-game practices to denote the practice of locally changing an existing
website by the layman for the layman’s purposes.

So far, a popular DIY technology to website tuning is JavaScript using special
weavers such as Greasemonkey [1]. A script can react to events when interacting or
loading a page. The script accesses any DOM1 node of the page. And finally, the script
can also change the DOM at wish. But this freedom has a trade off. Making use of the
knowledge about how a page is implemented, can make the script bound to the actual
page structure, data and style. If the page changes, all the scripting can fall apart. The
problem is that websites are reckoned to evolve frequently, and this can jeopardize all
your efforts in tuning the website. This is a main stumbling block for robust, scalable
and widely-adopted scripting.

2 Problem Statement

Tuning implies at least three actors, namely,
* the base website, i.e. the website to be tuned. It is perceived as an agent that

delivers DOM documents,
* the scripter, an end user that modifies the rendering of the website to perform

a function not originally conceived or intended by the webmaster. This is achieved
through client-side scripting, specifically, JavaScript. For the purpose of this paper,
it suffices to say that a script operates on the DOM tree that realises the website’s
page. The script is triggered by low-level, User Interface (UI) events on this DOM
tree (e.g. load, click, ...). Finally, the script’s action can cause the tree to be updated:
deleting/adding nodes on the actual DOM tree,

* the weaver, a mechanism for inlaying the script’s outputs into the base website.
Since websites are delivered to the user through general-purpose browsers, weavers are
realized as extensions to browsers. This is the case for Firefox (e.g. Greasemonkey),
Internet Explorer (e.g. Turnabout or Trixie), Opera (e.g. User javascript), Safari (e.g.
SIMBL+GreaseKit) and Chrome (e.g. Greasemetal). This work uses Greasemonkey and
Firefox, though the insights can be easily extrapolated to other browsers.

As a real case, consider that fav.icio.us22 script is simultaneously deployed with
delicious_show_URL3 script at delicious base website. The latter script adds the URL
link before the bookmark tags. Both scripts work fine when installed separately.
However, if both are run concurrently, the final output is not as expected. Based on
the raw page structure, both scripts place new content and in so doing, modify this

1 The Document Object Model (DOM) is a platform- and language-independent standard object
model for representing HTML or XML documents as well as an Application Programming
Interface (API) for querying, traversing and manipulating such documents.

2 Script http://userscripts.org/scripts/source/3406.user.js thanks to Vasco Flores.
3 Script http://userscripts.org/scripts/source/7043.user.js thanks to Noah Sussman.



Fig. 1. Script co-existence. Installation order matters: (up) delicious_show_URL before
fav.icio.us2 (down) fav.icio.us2 before delicious_show_URL.

page structure. This makes the final result dependent on the order in which these scripts
are enacted. Figure 1 shows the results: (up) delicious_show_URL before fav.icio.us2,
and (down) fav.icio.us2 before delicious_show_URL. Notice that in Figure 1(down) the
delicious_show_URL script does no longer work, the cause being that the structure
of the page has been changed by the first script. This highlights the weakness of the
current approach that does not scale up to even two simple scripts, not to mention deeper
changes in the base website.

This certainly hinders our vision of the modding Web by refraining Greasemonkey
practitioners from becoming a mature community, not so in size but on the complexity
of the scripts available. So far, most scripts are just few lines long, and the lack
of "stable platforms" (i.e. websites) in which scripts can be anchored, is certainly a
main stumbling block. As learnt from previous experiences in Software Engineering,
the approach is to abstract the way scripts are developed by moving away from "the
implementation platform" (basically, the DOM document, and the UI events). This is
the aim of the tuning interface.



3 Tuning Requirements

Therefore, the challenge is not on feasibility. The previous mods can be supported
with current JavaScript technology. The difficulty stems from making previous
scripting robust and easy enough for laymen to do themselves, not just for experience
practitioners. More to the point, the larger the number of scrapped websites, the more
exposed is your script to website upgrades (e.g. upgrades in the delicious site can also
break the script apart) [6,8]. Additionally, scrapping is tedious and error-prone which
prevents you from focusing on the real value of your script: the integration.

Based on these observations, we strive for modding to be:

– non-disruptive. Rather than providing a bright-new paradigm, we stick with
the JavaScript programming model. JavaScript is mainstream among Web
practitioners, even more with the booming of AJAX. Therefore, this project is
targeted to the large JavaScript community, not just the professionals but the long-
tail of amateur programmers whose contributions can serve small communities
(e.g. users of delicious) but their total value is very significant as demonstrated
by Greasemonkey supporters.

– agile. This goal has been traditional achieved through three strategies: encapsulation,
modularity, and loose coupling. So far, scripting can be a daunting endeavour since
these strategies are not common place. This calls for bringing componentware to
the scripting realm.

– low footprint. The solution should account for easy adoption and minimal system
requirements. To this end, tuning should be built on top of the existing Web
standards and browser implementations.

Therefore, JavaScript, componentware and standard compliance define our strategy for
Web modding. So far, modding is mainly a programming activity. However, meeting
the above requirements advice to perceive websites as components, and the script as the
glue that keeps these components together. Componentware facilitates to meet the agile
requirement through [5]:

– components should be preexisting reusable software units which developers can
reuse to compose software. Specifically, "black box reuse", which allows using an
existing component without caring about its internals, as long as the component
complies with some predefined set of interfaces,

– components should be produced and used by independent parties. That is,
component developers need not be the same people as component customers, such
as system developers. This is important for ensuring that components are truly
reusable by third parties,

– components should be composable into composite components which, in turn,
can be composed with (composite) components into even larger composites (or
subsystems), and so on. Composition means not only reuse but also a systematic
approach to system construction.



4 Research Objectives

This work raises two research questions,

1. how can websites be developed that facilitate layman tuning while still permitting
the website to evolve?

2. how can scripts be developed so that they do not interfere with the tuned website,
hence, ensuring resilience to website upgrades?

By addressing these questions, this work introduces the notion of "tuning interface".
This interface is provided by the website for scripters to safely build on top of it.
It aims at shielding the script from design decisions that are likely to change in the
website. These decisions are restricted to those of how content is structured, rendered
or browsed. Accordingly, a tuning interface declaratively specifies what, when and how
website’s pages can be safely changed, i.e. changes being resilient to upgrades on the
underlying website. In this way, we attempt to find a compromise between the freedom
that layman’s creativity requires, and the stability that is needed for this effort to pay
off.

The main aim of this research is to create a “stable platform” for the scripters. To
obtain this goal is mandatory to define and to support the tuning interface. The definition
should be expressed using standards as much as possible and be easy to understand. The
support should be and extension of the actual weavers, a component container. This
extension should take into account the requirements of simplicity and non-disruptive
with JavaScript. As a secondary aim, it is recommendable to provide help to scripters
and webmasters, promoting the adoption of this initiative. Tools as tuning interface
creation/update and visualization are necessary to motivate them.

5 Contribution

Fostering a win-win relationship between website owners and website users,
substantiates the efforts from moving away from "fragile scripting" to scalable, robust
scripting. To this end, this work introduces the tuning interface as an attempt to isolate
layman’s script from upgrades in the website while abstracting the way scripts are
developed. From the owner’s viewpoint, this interface realizes a controlled setting for
tuning, and fosters the user community that adds value to the site. From the scripter’s
perspective, the tuning interface reduces the freedom but increases change resilience,
and eases coding.

Acknowledgements

This work is co-supported by the Spanish Ministry of Education, and the European
Social Fund under contract TIN2008-06507-C02-01/TIN (MODELINE), and the
Avanza I+D initiative of the Ministry of Industry, Tourism and Commerce under
contract TSI-020100-2008-415. Arellano has a doctoral grant from the Spanish
Ministry of Science & Education.



References

1. Greasemonkey Homepage. http://www.greasespot.net/.
2. P. Brusilovsky and M. T. Maybury. From Adaptive Hypermedia to the Adaptive Web.

Communications of the ACM, 45:30–33, 2002.
3. O. Díaz, S. Pérez, and I. Paz. Providing Personalized Mashups Within the Context of Existing

Web Applications. In International Conference on Web Information Systems Engineering
(WISE), 2007.

4. R. Ennals and M. Garofalakis. Mashmaker: Mashups for the Masses. In ACM SIGMOD
International Conference on Management of Data, 2007.

5. K. Lau and Z. Wang. Software Component Models. IEEE Transactions on Software
Engineering, 33:709–724, 2007.

6. J. Y. Lee, S. H. Lee, and Y. Kim. An experiment on visible changes of web pages. In Semantic
Information Integration on Knowledge Discovery SIIK Workshop, 2006.

7. S. Lingam and S. Elbaum. Supporting end-users in the creation of dependable web clips. In
International World Wide Web Conference (WWW), 2007.

8. J. Raposo, A. Pan, M. Álvarez, and J. Hidalgo. Automatically maintaining wrappers for semi-
structured web sources. Data & Knowledge Engineering, 61(2):331–358, 2007.

9. B. J. Rhodes. Margin Notes: Building a Contextually Aware Associative Memory. In
International Conference on Intelligent User Interfaces, 2000.


