
An Approach to a Test Oracle for XML Query Testing

Dae S. Kim-Park, Claudio de la Riva, Javier Tuya

University of Oviedo

Computing Department

Campus of Viesques, s/n, 33204 (SPAIN)

kim_park@lsi.uniovi.es, claudio@uniovi.es, tuya@uniovi.es

Abstract. XML queries are broadly used in Web environments, but the existing

approaches towards software quality based on testing have not deeply addressed

them. Although there are some works oriented to generate test inputs for testing

XML queries, the evaluation of expected outputs against the actual outputs

resulting from the tests has not been tackled as far as we are concerned. In this

paper, a research proposal is presented to deal with the absence of the expected

outputs when testing XML queries, focusing the efforts on the definition of a

feasible test oracle.

1 Introduction and motivation

In recent years, Web Engineering has emerged as a new discipline motivated by the

swift growth of the World Wide Web. This growth has been accompanied by an

increasing complexity of Web applications (WebApps) as we can clearly see, for

example, in today’s WebApps formed by compositions of Web Services created, in

turn, with heterogeneous fast-evolving technologies. The development of these

complex WebApps, like other software systems, should involve quality criteria to

guarantee a certain degree of reliability based on testing, verification and validation

activities. Regarding testing, current approaches on WebApps are commonly centered

in checking static and dynamic navigational paths [9][15][11]. However, much

functionality of WebApps depends on data access operations, for example, to retrieve

and manipulate data requested by the user or by a software component in execution.

For this reason, it is expected that testing data access operations may have some

impact on the improvement of the quality of WebApps.

There are well-known technologies intended to carry out data access operations,

such as the SQL language for relational databases, but XML-based technologies for

data querying are becoming popular as is the use of XML-based formats for data

representation and interchange in the Web. The existing approaches and tools to test

data access operations on XML-based applications are commonly conceived to test

data repositories or query engines [2][1], while the queries utilized to retrieve the data

(XML queries) are generally ignored, although being prone to faults [7]. In previous

works [7][4][5], we entailed this concern by defining a technique to automatically

generate the inputs for testing XML queries. However, the expected outputs for the

2 Dae S. Kim-Park, Claudio de la Riva, Javier Tuya

tests were dismissed despite they are a key factor to determine the correctness of test

executions.

To address the lack of the expected outputs, some researchers state that there

should be an entity, called oracle, capable to determine whether or not a program

under test has behaved as expected during execution. The definition of such oracle

derives in the so called oracle problem, as oracles are usually difficult or even

impossible to obtain [8]. In order to overcome this problem, it is assumed that a

human can act as an oracle by manually checking the correct behaviour of the

program under test, but this approach may be unfeasible in some circumstances.

Particularly, a human oracle for XML query testing raise some problems because (1)

the test inputs may be large, (2) there may be many queries to test, and (3) there may

be numerous test cases to consider.

In this research proposal we present a line of work intended to tackle some of the

problems concerning testing of queries for data access in XML-enabled environments

(such as the Web), with a focus on the definition of a test oracle oriented to solve the

absence of the expected outputs during testing.

The paper is structured as follows. In section 2 the aims and objectives of the

research are outlined. Section 3 briefly describes the current work and, finally, in

section 4 the expected contributions of the research and plans for future work are

presented.

2 Research hypotheses and objectives

The current research activity in the field of test oracles is not significant in contrast

to the huge variety of the existing approaches involving test input generation.

Amongst the works encompassing test oracles, partial oracles seem to be the best

alternative to XML query testing. Such partial oracles are capable to determine

whether an actual output of a test case is incorrect while ignoring the correct output

[8]. Thus, they do not need to infer the expected output of a test in order to provide a

diagnostic about the correctness of the target program. In XML query testing, this is a

remarkable advantage considering the large volumes of XML data that may be

provided as test inputs and/or outputs.

With these considerations, our research hypothesis is intended to prove that a

partial oracle is a viable alternative when dealing with large volumes of data for

testing. In particular, we are aiming to prove that a partial oracle may be suitable to

test data access operations based on queries in XML-enabled environments. To cover

the hypothesis, the following objectives are in scope:

1. Define a feasible partial oracle to test XML queries. The automation of the oracle

will be one of the main points to consider.

2. Validate the proposal to prove its effectiveness in a real testing scenario, which

may include developing a proof of the concept to show the practical application of

the proposal.

An Approach to a Test Oracle for XML Query Testing 3

3. Find possible alternatives to the proposed oracle if required. The proposed oracle

may not be suitable in every case. Because of that, other alternatives should be

studied, specially the existing ones that could be adapted to XML query testing,

such as metamorphic testing [3].

3 Proposed approach

The complexity of the XML queries is a concern since there are many broadly used

alternatives oriented to query XML data. XML queries are commonly expressed using

the XPath [12] and XQuery [13] languages, but also other programming technologies

can be used to cover the similar functionalities, such as the Java language supported

by the SAX/DOM API [10][14]. To overcome this heterogeneity, we abstracted the

representation of the queries under test by treating them as black-box programs, each

of which receives an XML document as input, and outputs an XML document

fragment (a set of XML structures not necessarily well-formed) resulting from the

query operation. Formally, let FDq →: be the query under test, where D is the

set of all possible inputs (XML documents), and F is the set of all possible outputs

(XML document fragments). Then, q is a black-box query program under test that

takes an XML document DI ∈ and produces the actual output FIq ∈)(.

With this abstraction, we propose the use of a partial oracle to test the query

programs according to a specification composed by the following two elements:

─ Behavioural requirements, which establish a specification about the correct

behaviour of a determined target query program under test. This specification is

loose, which means that it need not be complete, and

─ Oracle constraints, which define invariant properties of the expected outputs that

must be satisfied by every correct query program. Each oracle constraint is

intended to check the presence a known type of fault.

Since behavioural requirements depend on the target program, the tester must

provide them manually. In contrast, oracle constraints are invariant; thus, they could

be embedded in the partial oracle internals and their evaluation could be automated.

Fig. 1 shows the structure of the oracle and its integration in the testing

environment. As it can be seen, the oracle receives as input the behavioural

requirements, as well as the test input and the actual output of the test, and yields a

“Pass” or “Fail” response as a result of the oracle constraints evaluation.

Because oracle constraints specify general properties of the expected outputs, prior

to their evaluation, they are particularized to the target programs under test by means

of the behavioural requirements. Whenever an oracle constraint is not satisfied given

a set of behavioural requirements, it is understood that the partial oracle has detected a

fault, in which case, the partial oracle should respond with a “Fail” message.

4 Dae S. Kim-Park, Claudio de la Riva, Javier Tuya

Fig. 1. Partial test oracle in the testing environment.

In the paper in [6] we detail the partial oracle approach with a set of behavioural

requirements and oracle constraints, including a case study. Some of the proposed

behavioural requirements and oracle constraints are presented in the next sections.

3.1 Behavioural requirements

In order to ease the manual specification of the query program under test,

behavioural requirements are loose, which means that they do not comprise a

complete specification of the target program. However, the precision of the partial

oracle will increase as the tester specifies these requirements closer to the complete

specification. This provides flexibility to balance the relationship between the cost

and the precision of the oracle.

The behavioural requirements are given by the tuple

S = < sA , sD , st >,

where:

─ sA is a set of XML nodes (XML elements or attributes) that are expected to be

in the actual output of the target program, but are not included in the test input,

─ sD is a set of XML nodes that are expected to be in the input, but not in the

actual output.

─ st is a relaxed specification-compliant query. It is defined as a function with the

same domain and image as the query under test q . Then, the property

)()(ItIq ss ⊆ must hold for the definition of st , where sq denote the correct

implementation of the query that meets the specification, also in the domain and

image of q , and)(Iqs is the expected output for the test input I . Note that

sq it is not available for the tester. In practice, st is expected to be a less

expressive query than sq , and hence, it should be less error-prone and easier to

specify. For example, suppose that we need to obtain the title of an XHTML

Web page only if its body contains the string value "Contents". The

specification-compliant query, sq would be represented with the XPath syntax

as /html/head/title[../body = "Contents"]. Then, st could be

An Approach to a Test Oracle for XML Query Testing 5

defined as the query /html/head/title, which always returns the title of

the page, independently of the body contents. As seen, st should be simpler and

easier to code than sq .

The elements of the behavioural requirements tuple need not be defined as a

complete specification. It is not required to specify every possible node in sA or sD ,

and the query st does not need to be as expressive as sq in order to detect some

types of errors. In the next section, the use of these behavioural requirements is

shown.

3.2 Oracle constraints

Oracle constraints set necessary conditions for the correct behaviour of the queries

under test. Since these constraints are intended to deal with operational aspects of the

querying processes, they are domain-independent, and thus, can be embedded in the

oracle (as shown in Fig. 1). Some of the oracle constraints we currently propose are

presented and described below.

─ ss AAIq =I)(. This constraint establishes that the XML nodes specified in

the set sA must be contained in the actual output,)(Iq .

─ ØDIq s =I)(. The constraint establishes that the actual output must not

contain nodes from sD .

─)()(ItIq s⊆ . It checks that the actual output is contained in the relaxed

specification-compliant query. If this constraint is satisfied, it means that data

selection faults (such as mistaken predicates or bad node references) were not

detected in the query under test, q .

Note that each constraint makes use of a different behavioural requirement from

the tuple in Section 3.1, and every behavioural requirement could be defined with a

custom precision by the tester.

After a test execution, if any of the constraints does not hold for a given query

program, then a fault has been detected, and the oracle could notify the cause of that

fault with a human-readable message for the tester.

4 Expected contributions and plan for future work

The expected contribution of the research to Web Engineering consists on improving

the quality of WebApps by means of testing XML queries. For this purpose, we focus

on an approach to a test oracle whose main characteristics are outlined below:

1. Allows the tester to balance the cost and the effectiveness of the oracle. The tester

can provide a loose specification (behavioural requirements) of the program under

test, instead of giving a complete specification, which would be more costly and

complex.

2. The proposed oracle is highly automatable. The mechanism of the oracle depends

on the rules defined by oracle constraints whose evaluation could be automated.

6 Dae S. Kim-Park, Claudio de la Riva, Javier Tuya

At this moment, the proposed oracle can detect a relatively small set of faults. For

future work, we plan to add/modify behavioural requirements and oracle constraints

(as shown in the example in Section 3) to enhance the fault detection capabilities of

the oracle. It is also necessary to define a systematic method for the evaluation of

oracle constraints as this will result in the automation of the oracle. Besides, the

oracle proposal should be validated to prove its effectiveness. We are planning to do

the validation by using experimental techniques such as mutation, and by providing

real/industrial case studies.

5 Acknowledgements

This work was partially funded by the Department of Education and Science (Spain)

and ERDF funds within the National Program for Research, Development and

Innovation, project Test4SOA (TIN2007-67843-C06-01) and the RePRIS Software

Testing Network (TIN2007-30391-E).

6 References

[1] D. Barbosa, A.O. Mendelzon, “Declarative Generation of Synthetic XML Data”, Software

Practice and Experience, vol 36, pp. 1051-1079, 2006.

[2] A. Bertolino, J. Gao, J. Marchetti, A. Polini, “Automatic Test Data Generation for XML

Schema-based Partition Testing”, Proceedings of Automation of Software Test, pp. 4-11,

2007.

[3] T.Y. Chen, F.-C. Kuo, T.H. Tse, Z.Q. Zhou, “Metamorphic Testing and Beyond”,

Proceedings of the Eleventh Annual International Workshop on Software Technology and

Engineering Practice, 00: 94:100, 2003.

[4] D.S. Kim-Park, C. de la Riva, J. Tuya, J. García-Fanjul, “Generating Input Documents for

Testing XML Queries with ToXgene”, Proc. of the 3rd IEEE Testing: Academic and

Industrial Conference, Fast Abstract Track, 2008.

[5] D.S. Kim-Park, C. de la Riva, J. Tuya, J. García-Fanjul, “Synthetic Data Generation for

XML Query-aware Testing”, 6th Workshop on System Testing and Validation, 2008.

[6] D.S. Kim-Park, C. de la Riva, J. Tuya, “A Partial Test Oracle for XML Testing”, Testing:

Academic and Industrial Conference – Practice and Research Techniques, 2009.

[7] C. de la Riva, J. García-Fanjul, J. Tuya, “A Partition-Based Approach for XPath Testing”,

Proceedings of the International Conference on Software Engineering Advances,

Washington, DC, USA, 2006.

[8] E.J. Weyuker, “On Testing Non-testable Programs”, The Computer Journal, 25(4): 465-

470, 1982.

[9] F. Ricca, P. Tonella, “Analysis and Testing of Web Applications”, Proceedings of the 23rd

International Conference on Software Engineering, 2001.

[10] SAX Project, http://www.saxproject.org/, 2009.

[11] S. Elbaum, S. Karre, G. Rothermel, “Improving web application testing with user session

data”, Proceedings of the 25th International Conference on Software Engineering, 2003.

[12] World Wide Web Consortium, “XML path language 2.0 (XPath 2.0)”,

http://www.w3.org/TR/xpath20/, 2007.

An Approach to a Test Oracle for XML Query Testing 7

[13] World Wide Web Consortium, “XQuery 1.0. An XML query language”,

http://www.w3.org/TR/xquery/, 2007.

[14] World Wide Web Consortium, “Document Object Model (DOM)”,

http://www.w3.org/DOM/, 2009.

[15] Y. Deng, P Frankl, J. Wang, “Testing web database applications”, SIGSOFT Software

Engineering Notes, 29(5), 2004.

