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Abstract. XML queries are broadly used in Web environments, but the existing 

approaches towards software quality based on testing have not deeply addressed 

them. Although there are some works oriented to generate test inputs for testing 

XML queries, the evaluation of expected outputs against the actual outputs 

resulting from the tests has not been tackled as far as we are concerned. In this 

paper, a research proposal is presented to deal with the absence of the expected 

outputs when testing XML queries, focusing the efforts on the definition of a 

feasible test oracle. 

1 Introduction and motivation 

In recent years, Web Engineering has emerged as a new discipline motivated by the 

swift growth of the World Wide Web. This growth has been accompanied by an 

increasing complexity of Web applications (WebApps) as we can clearly see, for 

example, in today’s WebApps formed by compositions of Web Services created, in 

turn, with heterogeneous fast-evolving technologies. The development of these 

complex WebApps, like other software systems, should involve quality criteria to 

guarantee a certain degree of reliability based on testing, verification and validation 

activities. Regarding testing, current approaches on WebApps are commonly centered 

in checking static and dynamic navigational paths [9][15][11]. However, much 

functionality of WebApps depends on data access operations, for example, to retrieve 

and manipulate data requested by the user or by a software component in execution. 

For this reason, it is expected that testing data access operations may have some 

impact on the improvement of the quality of WebApps.  

There are well-known technologies intended to carry out data access operations, 

such as the SQL language for relational databases, but XML-based technologies for 

data querying are becoming popular as is the use of XML-based formats for data 

representation and interchange in the Web. The existing approaches and tools to test 

data access operations on XML-based applications are commonly conceived to test 

data repositories or query engines [2][1], while the queries utilized to retrieve the data 

(XML queries) are generally ignored, although being prone to faults [7]. In previous 

works [7][4][5], we entailed this concern by defining a technique to automatically 

generate the inputs for testing XML queries. However, the expected outputs for the 
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tests were dismissed despite they are a key factor to determine the correctness of test 

executions. 

To address the lack of the expected outputs, some researchers state that there 

should be an entity, called oracle, capable to determine whether or not a program 

under test has behaved as expected during execution. The definition of such oracle 

derives in the so called oracle problem, as oracles are usually difficult or even 

impossible to obtain [8]. In order to overcome this problem, it is assumed that a 

human can act as an oracle by manually checking the correct behaviour of the 

program under test, but this approach may be unfeasible in some circumstances. 

Particularly, a human oracle for XML query testing raise some problems because (1)  

the test inputs may be large, (2) there may be many queries to test, and (3) there may 

be numerous test cases to consider. 

In this research proposal we present a line of work intended to tackle some of the 

problems concerning testing of queries for data access in XML-enabled environments 

(such as the Web), with a focus on the definition of a test oracle oriented to solve the 

absence of the expected outputs during testing. 

The paper is structured as follows. In section 2 the aims and objectives of the 

research are outlined. Section 3 briefly describes the current work and, finally, in 

section 4 the expected contributions of the research and plans for future work are 

presented. 

2 Research hypotheses and objectives 

The current research activity in the field of test oracles is not significant in contrast 

to the huge variety of the existing approaches involving test input generation. 

Amongst the works encompassing test oracles, partial oracles seem to be the best 

alternative to XML query testing. Such partial oracles are capable to determine 

whether an actual output of a test case is incorrect while ignoring the correct output 

[8]. Thus, they do not need to infer the expected output of a test in order to provide a 

diagnostic about the correctness of the target program. In XML query testing, this is a 

remarkable advantage considering the large volumes of XML data that may be 

provided as test inputs and/or outputs. 

With these considerations, our research hypothesis is intended to prove that a 

partial oracle is a viable alternative when dealing with large volumes of data for 

testing. In particular, we are aiming to prove that a partial oracle may be suitable to 

test data access operations based on queries in XML-enabled environments. To cover 

the hypothesis, the following objectives are in scope: 

1. Define a feasible partial oracle to test XML queries. The automation of the oracle 

will be one of the main points to consider. 

2. Validate the proposal to prove its effectiveness in a real testing scenario, which 

may include developing a proof of the concept to show the practical application of 

the proposal. 
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3. Find possible alternatives to the proposed oracle if required. The proposed oracle 

may not be suitable in every case. Because of that, other alternatives should be 

studied, specially the existing ones that could be adapted to XML query testing, 

such as metamorphic testing [3]. 

3 Proposed approach 

The complexity of the XML queries is a concern since there are many broadly used 

alternatives oriented to query XML data. XML queries are commonly expressed using 

the XPath [12] and XQuery [13] languages, but also other programming technologies 

can be used to cover the similar functionalities, such as the Java language supported 

by the SAX/DOM API [10][14]. To overcome this heterogeneity, we abstracted the 

representation of the queries under test by treating them as black-box programs, each 

of which receives an XML document as input, and outputs an XML document 

fragment (a set of XML structures not necessarily well-formed) resulting from the 

query operation. Formally, let FDq →:  be the query under test, where D  is the 

set of all possible inputs (XML documents), and F is the set of all possible outputs 

(XML document fragments). Then, q  is a black-box query program under test that 

takes an XML document DI ∈  and produces the actual output FIq ∈)( .  

With this abstraction, we propose the use of a partial oracle to test the query 

programs according to a specification composed by the following two elements:  

─ Behavioural requirements, which establish a specification about the correct 

behaviour of a determined target query program under test. This specification is 

loose, which means that it need not be complete, and 

─ Oracle constraints, which define invariant properties of the expected outputs that 

must be satisfied by every correct query program. Each oracle constraint is 

intended to check the presence a known type of fault. 

Since behavioural requirements depend on the target program, the tester must 

provide them manually. In contrast, oracle constraints are invariant; thus, they could 

be embedded in the partial oracle internals and their evaluation could be automated. 

Fig. 1 shows the structure of the oracle and its integration in the testing 

environment. As it can be seen, the oracle receives as input the behavioural 

requirements, as well as the test input and the actual output of the test, and yields a 

“Pass” or “Fail” response as a result of the oracle constraints evaluation. 

Because oracle constraints specify general properties of the expected outputs, prior 

to their evaluation, they are particularized to the target programs under test by means 

of the behavioural requirements. Whenever an oracle constraint is not satisfied given 

a set of behavioural requirements, it is understood that the partial oracle has detected a 

fault, in which case, the partial oracle should respond with a “Fail” message.  
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Fig. 1. Partial test oracle in the testing environment. 

 

In the paper in [6] we detail the partial oracle approach with a set of behavioural 

requirements and oracle constraints, including a case study. Some of the proposed 

behavioural requirements and oracle constraints are presented in the next sections. 

3.1 Behavioural requirements 

In order to ease the manual specification of the query program under test, 

behavioural requirements are loose, which means that they do not comprise a 

complete specification of the target program. However, the precision of the partial 

oracle will increase as the tester specifies these requirements closer to the complete 

specification. This provides flexibility to balance the relationship between the cost 

and the precision of the oracle.  

The behavioural requirements are given by the tuple 

S  = < sA , sD , st >, 

where: 

─ sA  is a set of XML nodes (XML elements or attributes) that are expected to be 

in the actual output of the target program, but are not included in the test input, 

─ sD is a set of XML nodes that are expected to be in the input, but not in the 

actual output. 

─ st is a relaxed specification-compliant query. It is defined as a function with the 

same domain and image as the query under test q . Then, the property 

)()( ItIq ss ⊆  must hold for the definition of st , where sq  denote the correct 

implementation of the query that meets the specification, also in the domain and 

image of q , and )(Iqs  is the expected output for the test input I . Note that 

sq  it is not available for the tester. In practice, st is expected to be a less 

expressive query than sq , and hence, it should be less error-prone and easier to 

specify. For example, suppose that we need to obtain the title of an XHTML 

Web page only if its body contains the string value "Contents". The 

specification-compliant query, sq would be represented with the XPath syntax 

as /html/head/title[../body = "Contents"]. Then, st could be 
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defined as the query /html/head/title, which always returns the title of 

the page, independently of the body contents. As seen, st should be simpler and 

easier to code than sq . 

The elements of the behavioural requirements tuple need not be defined as a 

complete specification. It is not required to specify every possible node in sA  or sD , 

and the query st  does not need to be as expressive as sq  in order to detect some 

types of errors. In the next section, the use of these behavioural requirements is 

shown. 

3.2 Oracle constraints 

Oracle constraints set necessary conditions for the correct behaviour of the queries 

under test. Since these constraints are intended to deal with operational aspects of the 

querying processes, they are domain-independent, and thus, can be embedded in the 

oracle (as shown in Fig. 1). Some of the oracle constraints we currently propose are 

presented and described below.  

─ ss AAIq =I)( . This constraint establishes that the XML nodes specified in 

the set sA  must be contained in the actual output, )(Iq . 

─ ØDIq s =I)( . The constraint establishes that the actual output must not 

contain nodes from sD . 

─ )()( ItIq s⊆ . It checks that the actual output is contained in the relaxed 

specification-compliant query. If this constraint is satisfied, it means that data 

selection faults (such as mistaken predicates or bad node references) were not 

detected in the query under test, q . 

Note that each constraint makes use of a different behavioural requirement from 

the tuple in Section 3.1, and every behavioural requirement could be defined with a 

custom precision by the tester. 

After a test execution, if any of the constraints does not hold for a given query 

program, then a fault has been detected, and the oracle could notify the cause of that 

fault with a human-readable message for the tester. 

4 Expected contributions and plan for future work 

The expected contribution of the research to Web Engineering consists on improving 

the quality of WebApps by means of testing XML queries. For this purpose, we focus 

on an approach to a test oracle whose main characteristics are outlined below: 

1. Allows the tester to balance the cost and the effectiveness of the oracle. The tester 

can provide a loose specification (behavioural requirements) of the program under 

test, instead of giving a complete specification, which would be more costly and 

complex. 

2. The proposed oracle is highly automatable. The mechanism of the oracle depends 

on the rules defined by oracle constraints whose evaluation could be automated. 
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At this moment, the proposed oracle can detect a relatively small set of faults. For 

future work, we plan to add/modify behavioural requirements and oracle constraints 

(as shown in the example in Section 3) to enhance the fault detection capabilities of 

the oracle. It is also necessary to define a systematic method for the evaluation of 

oracle constraints as this will result in the automation of the oracle. Besides, the 

oracle proposal should be validated to prove its effectiveness. We are planning to do 

the validation by using experimental techniques such as mutation, and by providing 

real/industrial case studies. 
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