
Service Operation Impedance and its role in projecting

some key features in Service Contracts

Sid Kargupta
1
 and Sue Black

2

1 EMC Consulting, EMC, Southwark Bridge Road, London SE1 9EU, UK

sid.kargupta@emc.com
2 Dept. Of Information & Software Systems, University of Westminster, Middx HA1 3TP,

s.e.black@wmin.ac.uk

Abstract: This paper introduces the notion of implicit Operation Impedance (I)

and Operation Potential (V) in Service Provider-Consumer contracts. ‘I’ is the

runtime composite resultant of all the activity delays of the components

supporting the Service Operation. This work establishes that ‘I’, which impacts

the overall Operation Performance (P), is influenced by the underlying

application components’ activities in distinct patterns. A high-level runtime

abstract model is empirically deduced between ‘I’, ‘V’ and ‘P’ by applying

established mathematical techniques. Model based indicative values of some

features are computed against variability of the operation’s components.

Lookup datasets against different system configurations are created to associate

these computed values to the actual empirical values of other features.

Established mathematical techniques applied with appropriate regression types

to enable trend extrapolation/interpolation. The datasets/patterns affirmed

effectiveness of the ‘I’ based model as a means of decoupled, bidirectional i.e.

top-down and bottom-up impact assessment of modifications to the operation’s

underlying application components on ‘P’ (‘V’ constant) or ‘V’ (‘P’ constant)

without repetitive full scale external performance/benchmark testing. This also

enables fine tuning of application components to retrofit prescribed Quality of

Service (QoS). The paper briefly mentions a Matrix Transpose/Inverse

technique for future assessment of multiple component changes simultaneously.

1 Introduction

Service Operations of a Service Provider are catered by underlying application

components laid on top of system components. For every Service Operation, the

activities of these components cumulatively create the composite impedance ‘I’

implicit to that operation, which eventually impacts the operation’s Performance ‘P’.

The application components are often modified due to changes in business

requirements while the underlying system remains the same. Extending on the

fundamentals of previous work [1], this research explores one level of abstraction

from system resources to application components and verifies a higher level pattern

based projection of certain non-functional features of a Service Operation for

modifications to the supporting application components. Pure functional models do

not capture quantitative information about resource consumption behavior [1]. So, the

Service Operation’s application components are decomposed into atomic activities or

Delay Points like in-memory Data Processing, File I/O, Database Interaction, XML

processing etc., which interface with the system resources (both Queue and Delay)

and contribute to the overall Service Operation Impedance ‘I’. The paper tries to

establish that the total delay (or Impedance) for each type of Delay Point across all

the supporting application components influence ‘I’ and hence ‘P’ and ‘V’ in a

distinct pattern i.e.

I = f(∑IDLPi) [i=1 to n]

where IDLP1 is the Impedance by a particular Delay Point of Component1. Atomicity of

Delay Points is very important as Delay Point types determine their nature of system

resource usage, which then manifests as the Delay Point impact pattern. Delay Points

should not overlap. ‘I’ acts as a connector between the Service Operation’s internal

application Delay Points and external non-functional features. This research focuses

on variations to application components/Delay Points instead of inbound workload.

Operation Potential (V) is the differential between the maximum request load the

Service Operation can cater to maintaining QoS (aka Service Operation’s “stress

point”) and the Service Operation’s contractual request load. Operation Performance

(P) is the measure of Service Operation’s performance under a given load. The less

the response time, the more is ‘P’. So, ‘P’ is computed as the reciprocal of the

Average Response Time (ART) of the Service Operation. Operation Impedance (I) is

the runtime composite delay introduced by the different Delay Points across all the

components supporting the Service Operation. Network latencies (inter-component

and Provider-Consumer) contribute to ‘I’ as well.

2 Problem Statement and Motivation

Significant research has been performed towards measuring and predicting

throughput, response time and congestion using queuing network principles. Ways to

model, analyze and plan for web performance problems have been illustrated in

details [1]. High performance website design techniques involving redundant

hardware, load balancing, web server acceleration and efficient management of

dynamic data [2] have been discussed. Methods are devised for dynamic selection of

services based on user specified preferences and to predict performance of component

based services depending on the underlying technology platforms [3, 4]. In [5, 6],

different methods of generating performance models and prediction have been

discussed. An assembler tool and a methodology to automatically generate

performance models for component based systems have been explored. A

performance prediction approach comprising of gathering empirical performance

results on COTS middleware infrastructure, a reasoning framework for understanding

architectural trade-offs and relationships to technology features and predictive

mathematical models to describe application behavior on the middleware technology

has been investigated. Different model-based software performance prediction

approaches have been classified and evaluated in [7]. Queuing network based

methodologies, Architectural Pattern based methodologies, software performance

analysis through UML descriptions and other approaches have been discussed.

Further research [8, 9, 10] has explored various methods of component based

performance evaluation with top-down approach focusing on inbound workload,

profiling, software containers, UMLs and transactions. However, often application

developers find it convenient to analyze application level outputs than system

resource or service level diagnostics, for which other human resources are required.

Hence, it will be helpful to explore generic, application level, bottom-up methods to

assess during development the impact of application component modifications at

Delay Point granularity on other non-functional features. The notion of ‘I’ to facilitate

the above through visual patterns remains unexplored. A high level abstract runtime

model for ‘V’, ‘P’, ‘I’ and Delay Points related to Service Operations remains to be

discussed. Typically, we still have to recourse to performance/benchmark testing of

the whole system for impact analysis of application component modifications.

3 Aims and Objectives

This research aims to achieve the following objectives:

1) For Service Operations, empirically deduce a high level abstract runtime model for

Service Operation Potential ‘V’, Service Operation Performance ‘P’ and overall

Service Operation Impedance ‘I’.

2) Decompose the application components supporting the Service Operation into

atomic Delay Points.

3) Compute model based indicative values of Service Operation Impedance and

extract its distinct variation patterns against variability of actual component Delay

Point impedances and other non-functional features. Use Least Square Fitting (LSF)

and appropriate regression types to derive pattern lines to enable bottom-up and top-

down projections of the non-functional features related to service load and

performance.

4 Proposed Methodology

To increase precision of the model and standardize request resource requirements,

partitioning of the request load is achieved by constraining the model and method to

Service Operation level. Different Service Operations from the same Provider may

have different resource requirements.

4.1 Deducing the high level, abstract runtime model for V, I and P

A Service Framework comprising of Web Services, Servlets, RMI Server, Socket

Server, a multi-threaded Web Service Client etc. was created to simulate a Service

Contract with provision to vary the various component Delay Points. Tests were run

by gradually increasing the request load to the Service Operation. Assuming a stress

point for the Service Operation, we observed a typical finite queue system curve [1]

for ‘V’ versus ‘P’. Accepting approximation error, for simplifying the model,

Piecewise Linear model is applied to divide ‘V’ values into 3 bands, each with a

linear regression (affine form) as the best fit for ‘P’. Direct proportionality between

‘P’ and ‘V’ considered for each ‘V’ band:

P = IV + c where I is the constant of proportionality with I and c band specific

At a given time T1, for requests to the same Service Operation, the request/process

type, system configuration, resource requirements and contract load condition will be

ideally the same. Today, services are run on multi-core, multi CPU servers. So, for

simplicity, we assumed Multi-Processor Single Class Queuing Network (open or

closed) model approximation [1]. With m resources and D service demand at each

resource, the service demand at the single resource queue will be D/m and for the

delay resource will be D(m-1)/m. Under light load, the Residence time (Ri’) is D

(proven) and under heavier load, it will be dominated by the single resource queue:

Ri’ = ViWi + Di

where Vi is the average no. of visits, Wi is the average waiting time and Di is the

service demand for a request at queue i. As the requests are to the same Service

Operation, applying all the above constraints, Di and Vi will ideally be same for all

requests. As we used the ART of responses in test runs, the variability of Wi is

averaged out. Considering all the above, Ri’ is assumed consistent for all requests at

queue i. The experiments had co-located components with local calls between them.

Also, only formal Service Contracts are in scope with dedicated, controlled network

traffic and not any random service access over public network. Hence, at runtime, no

unpredictable fluctuation of network bandwidth or latency is assumed. Average

resource usage effect of other Service Operations on requests of the tested Service

Operation is assumed. With all the above constraints, we assumed consistency of

overall impedance for processing requests to the same Service Operation at T1 for a

‘V’ band and mapped the runtime Operation Impedance to the proportionality

constant ‘I’.

4.2 Pattern Extraction and Validation for Data Processing Delay Points

Some illustrative components are created with Data Processing, File I/O, XML

Processing and other Delay Points. Keeping the rest of the configuration constant (‘V’

kept positive), the Data Processing Delay Point intensities of the components were

incrementally varied. Empirical data for actual overall ‘P’, computed indicative

values of overall ‘I’ (say ‘IO’) based on the model:

P = IV + c

for the relevant ‘V’ band, the actual average Data Processing Delay Point impedance

(IDP) and the Data Processing Impedance Factor (IFDP = IO/IDP) was recorded. The

following data models ‘IDP’ versus ‘IO’, ‘IDP’ versus ‘IFDP’ and ‘IO’ versus ‘P’ showed

distinct trends in variation, which were consistent but not purely linear. Accepting

approximation error, for simplicity, LSF for Linear, Exponential, Polynomial and

Power regression types and Piecewise Linear models were verified. For ‘IDP’(xi)

versus ‘IO’(yi), pattern line with Polynomial regression of 3
rd

 order was the best fit:

yi = 2E+07xi
3
 - 250431xi

2
 + 3008.6xi + 8.7436

For ‘IO’(xi) versus ‘P’(yi) and ‘IDP’(xi) versus ‘IFDP’(yi) pattern line with Power

regression was best fit:

yi = f(xi) = Axi
B
 where B = b, A = e

a
, a and b are LSF coefficients

Similar types of distinct patterns i.e. Polynomial regression of 3
rd

 order as best fit for

‘IFIO’(xi) versus ‘IO’(yi) and Power regressions for ‘IO’(xi) versus ‘P’(yi) etc. are

extracted for all the above non-functional features by varying the File I/O Delay

Points. Although the types are similar, the functions had different values from the

Data Processing Delay Point patterns. For example, for ‘IFIO’(xi) versus ‘IO’(yi), the

best fit pattern line with Polynomial regression of 3
rd

 order had the regression

function:

yi = 27.807xi
3
 - 77.133xi

2
 + 296.92xi + 7.737

Tests are performed to validate the extracted patterns. Results affirmed (with some

approximation errors) the distinct underlying patterns of variations in ‘IO’ due to

changes in application components/Delay Points under a given load. From a projected

value of ‘IFDP’ corresponding to a given actual ‘IDP’, we could also project ‘IO’:

IO = IFDP x IDP + e

where ‘e’ is the error factor. Figures1, 2 and 3 present the empirical graphs of ‘IDP’

versus ‘IO’, ‘IO’ versus ‘P’ and ‘IDP’ versus ‘IFDP’. Pattern validation is highlighted.

Fig. 1: Empirical Data Graph for IDP vs IO for varying Data Processing

Fig. 2: Empirical Data Graph for IO vs P for varying Data Processing

Fig. 3: Empirical Data Graph for IDP vs IFDP for varying Data Processing

Figures 4and 5 present the empirical graphs of ‘IFIO’ versus ‘IO’, ‘IO’ versus ‘P’ for

File I/O processing variations. Pattern validation is highlighted.

Fig. 4: Empirical Data Graph for IFIO vs IO for varying File I/O

Fig. 5: Empirical Data Graph for IO vs P for varying File I/O

4.3 Plan for Further Work

For precision, Delay Point atomicity needs to be increased e.g. file type specific File

I/O Delay Point. Model calibration needs to be verified. More Delay Points need to be

tested e.g. database interaction/contention has not been verified yet. Delay Points

were varied one type at a time but real world component modifications will be more

complex with multiple Delay Point types modified simultaneously. For this, a method

involving Matrix Transpose and Inverse technique can be adopted for both linear and

polynomial relations. Different combinations of Delay Point variations and

corresponding ‘IO’ can be recorded in Matrices. Atomic Delay Points may be treated

as independent variables. We can find out the best fit Delay Point Impedance

coefficient vector X:

X = (A
T
A)

-1
A

T
B

where A is the matrix containing rows of Delay Point Impedances IDP, IFIO etc. from

different test runs and B is the single column matrix of ‘IO’ for each row in A. X will

facilitate ‘IO’ projection for any arbitrary combination of Delay Point Impedances.

Minimizing components system resource sharing by spreading the service framework

would be good. All of these should enhance overall method precision.

5 Main Contribution to Web Engineering

The model will facilitate simple, generic, pattern based means for bidirectional i.e.

top-down and bottom-up projections (with some error factors) of ‘P’, ‘V’, ‘I’ and

application Delay Point impedances. It will guide fine tuning of the application

components at Delay Point levels to retrofit new ‘V’, ‘P’ or both requirements.

Importantly, we believe this method will allow upfront impact analysis of application

component changes during development by the developers themselves without the

need of additional testing/system admin resources or much external tool overhead.

This should help address the typical resourcing issues faced during service component

enhancements and provide potential for time, resource and cost savings. Also,

repetitive performance or benchmark (e.g. TPC-C, TPC-App) testing of the whole

system will not be required. It will be required initially during pattern creation

through application component’s Delay Point variation simulation. Thereafter, during

future modifications, the developers will need to record the total delay of the modified

Delay Point types across the Service Operation components while system testing with

some load and plot the data on the patterns for the applicable ‘V’ band. We wouldn’t

need software monitors and hence overcome their inherent overhead and OS

dependency shortcomings [1].

References

1. Daniel A. Menasce, Virgilio A. F. Almeida: Capacity Planning for Web Services. Metrics,

Models and Methods. Prentice Hall PTR, Upper Saddle River, NJ 07458 (2002)

2. Arun Iyengar, Jim Challenger, Daniel Dias and Paul Dantzig: High Performance Web Site

Design Techniques. Web Design, IEEE Internet Computing, March-April (2000)

3. D. Ardagna and B. Pernici, Adaptive Service Composition in Flexible Processes, IEEE

Transactions on Software Engineering, Vol. 33, No.6, June (2007)

4. Yan Liu, Alan Fekete and Ian Gorton, Design-Level Performance Prediction of Component-

Based Applications, IEEE Transactions on Software Engineering, Vol.31, No.11 (2005)

5. Xiuping Wu, David McMullan and Murray Woodside, Component Based Performance

Prediction, Proceedings of the 6th ICSE Workshop on Component-Based Software

Engineering: Automated Reasoning and Prediction (2003)

6. Shiping Chen, Ian Gorton, Anna Liu and Yan Liu, Performance Prediction of COTS

Component-based Enterprise Applications, Journal of Systems and Software, Vol 74, Issue

1, Pages 35-43 (2005)

7. Simonetta Balsamo, Antinisca Di Marco, Paola Inverardi and Marta Simeoni, Model-Based

Performance Prediction in Software Development: A Survey, IEEE Transactions on

Software Engineering, Vol.30, No.5 (2004)

8. Connie U. Smith and Lloyd G. Williams, Performance Engineering Evaluation of Object-

Oriented Systems with SPE.ED, Computer Performance Evaluation: Modelling Techniques

and Tools, No.1245,Springer-Verlag, Berlin (1997)

9. Christopher Stewart and Kai Shen, Performance Modeling and System Management for

Multi-component Online Services, Proceedings of the 2nd Symposium on Networked

Systems Design and Implementation, May2-4, Boston, MA, USA (2005)

10. K.S. Jasmine and R. Vasantha, Design Based Performance Prediction of Component Based

Software Products, Proceedings of the World Academy of Science, Engineering and

Technology, Vol 24, ISSN 1307-6884, October (2007)

