
A Model-Driven Method for automatic
generation of Rule-based Web Applications

Joaqúın Cañadas1, José Palma2 and Samuel Túnez1

1 Dept. of Languages and Computation. University of Almeria. Spain
jjcanada@ual.es, stunez@ual.es

2 Dept. of Information and Communication Engineering. University of Murcia. Spain
jtpalma@um.es

Abstract. Rule languages and inference engines incorporate reasoning
capabilities in Web information systems. In this paper, a Model-Driven
Development (MDD) approach for automatic code generation of rule-
based Web applications is proposed. A rule-based model specifying do-
main expert knowledge and business logic through production rules (if-
condition-then-action) becomes the source model for the development
approach. Demonstrating our proposal, a tool supports the creation of
rule models and the automatic execution of model-to-model and model-
to-code transformations. As a result, a rich, functional, rule-based Web
architecture is generated, based on the Model-View-Controller architec-
tural pattern and the JavaServer Faces technology, and integrating a Jess
rule engine to perform inference tasks.

Key words: Model-Driven Development, Web Applications, Rule-based
systems

1 Introduction

The design of rule languages and inference engines to provide Web information
systems with reasoning capabilities is an important Semantic Web research topic
[1] in which production rules (if-condition-then-action) play a leading role, since
they enable a declarative representation of domain expert knowledge and busi-
ness logic. Rule engines deal with rule bases and execute inference methods for
firing the right rules in order to deduce information and conclude new results
[2].

This paper addresses the development of rule-based systems embedded in
Web applications to provide Web systems with inference capabilities, applying a
model-driven approach to automate the development process of rule-based Web
applications.

The terms Model-Driven Architecture (MDA) [3] and Model-Driven Devel-
opment (MDD) [4] refer an approach of software development that uses models
as first class entities, enabling the definition and automatic execution of trans-
formations between models and from models to code. The creation of metamod-
els for specifying modeling languages is a basic task in MDA/MDD. Also the



specification of transformations between models, called model-to-model (M2M)
transformations, and from model to code, called model-to-text (M2T) transfor-
mations. The main advantage of this approach of software development is that
MDD tools enable these transformations to be specified and executed automat-
ically, using supporting languages and tools for MDA/MDD. This development
approach is currently being applied to many domains in software development,
such as embedded systems, Web engineering, Ontology Engineering, and more.
However it has some limitations because it is relatively new, supporting tools
for MDD are not mature enough, and it introduces some rigidity since writing
models is not as flexible and expressive as writing source code.

In this work Conceptual Modeling Language (CML) [5] is used as rule mod-
eling formalism, a language for knowledge representation defined by the Com-
monKADS methodology [6]. It enables the specification of the domain ontology
and a set of production rules which are bound to ontology concepts. Models
written in this formalism are independent of any implementation technology,
and therefore, can be used as the source model in a model-driven approach.

To put our proposal into practice, a supporting tool developed using several
tools provided by the Eclipse Modeling Project3 applies a model-driven approach
to rule models and automatically generates the implementation of a functional
rule-based Web application. The resulting Web architecture is based on the
Model-View-Controller (MVC) architectural pattern and the JavaServer Faces
(JSF) framework [7], and incorporates rich JBoss Richfaces components [8] to
enhance the user interface with AJAX (Asynchronous JavaScript And XML)
capabilities. The Jess rule engine [9] is embedded in the Web architecture to
provide inference features. The functionality of the rule-based Web application
is predefined to create, read, update and delete instances (CRUD). In contrast
to current tools for automatic generation of CRUD systems that perform those
functions on relational databases, the contribution of our approach is that CRUD
operations are executed on the Jess rule engine working memory, enabling the
inference mechanism to execute a forward-chaining inference mechanism to drive
the reasoning process.

The proposed approach materializes InSCo [10], a methodology which in-
tertwines knowledge engineering and software engineering approaches in hybrid
intelligent information systems development.

This paper is organized as follows: Section 2 introduces rule-based systems
and rule modeling languages for the Web. Next, the rule-based modeling ap-
proach for specifying the Web applications proposed is described in section 3.
After that, the model-driven method for rule-based Web application develop-
ment is detailed in Section 4. The MDD support tool is presented in Section 5.
Section 6 describes related work, and finally main conclusions and future work
are summarized.

3 http://www.eclipse.org/modeling/



2 Overview of Rule-based systems and rule modeling

Rule-based systems originated in Artificial Intelligence, as the kind of expert or
knowledge-based system that use rules as knowledge representation formalism. In
this kind of software system, the human expert’s knowledge applied for solving a
complex task such as diagnosis, monitoring, assessment, and so on, is represented
as a set of declarative production rules. Rule engines are able to interpret the
rules, and reason using some inference method to come to a conclusion as the
human expert would do [11, 12].

In general, a rule-based system consists of a set of production rules, a work-
ing memory and an inference engine. The rules encode domain knowledge and
business logic as condition-action pairs. The working memory initially represents
the system input, but the actions that occur when rules are fired can cause the
state of the working memory to change. The inference engine runs a reasoning
method to fire rules, typically forward and backward chaining mechanisms. The
execution of the action part of a rule involves inferring new data.

More recently, the software engineering community has also focused on rules
as a proper formalism for representing business logic in software systems. Today
these two points of view have merged, favoring the widespread adoption of rule-
based systems and business rules in the implementation of complex decision-
making processes [13].

Rule formalisms are an active area of research addressing the development
rule languages and inference engines to add reasoning to complex information
systems. The Object Management Group (OMG) proposed the Ontology Def-
inition MetaModel [14] and Production Rule Representation [15] as standard
metamodels for introducing both technologies in the context of MDA/MDD.
Relevant initiatives to standardize and exchange rules are the Rule Markup
Initiative (RuleML) [16], the Semantic Web Rule Language (SWRL) [17], the
REWERSE Rule Markup Language (R2ML) [18], and the Rule Interchange For-
mat (RIF) [19].

We use CML as the rule-modeling language because, although it is currently
not one of the most common options for rule modeling, it has several features
desirable for production-rule formalisms. It enables unified representation of on-
tologies and rules, in which rules and ontology are naturally related. It meets
the requirements of rule representation formalisms, such as modeling rule an-
tecedent, rule consequent, named rules, and rulesets, binding rules to ontology
concepts, and so on. And finally, it is simpler and easier to use than other for-
malisms, although this may mean less expressiveness in certain situations.

3 Modeling Rule-based Web applications

The proposed model-driven approach for rule-based Web application develop-
ment focuses on introducing rule modeling in the specification of Web applica-
tions. However, other modeling concerns related to Web design features must
be also considered, powering the automatic code generation process. The CML



model describing the ontology and rule model is presented at a conceptual level,
whereas interaction and presentation features are specified at a Web design level.

3.1 Conceptual rule-based modeling

The CML formalism for knowledge modeling entails the specification of simpli-
fied domain ontologies and production rules. A CML (domain knowledge) model
is basically composed of two elements, domain schemas and knowledge bases.
Domain concepts, binary relationships, rule types and value types (enumerated
literals) are modeled in a domain schema. A knowledge base is composed of
instances of concepts, instances of relationships called tuples, and instances of
rules. Figure 1 shows the domain knowledge model components.

Knowledge

Model

Domain

Knowledge

Domain

Schema

Concepts

Rule Types

Binary Relations

Value Types

Instances of Concepts

Instances of Rules

Tuples

Knowledge

Base

Fig. 1. Domain Knowledge structure

CML was originally defined as a textual notation by means of an abstract
grammar described in EBNF (Extended Backus-Naur Form). To use CML in the
context of MDD, we have specified a metamodel for CML. The main difference
between this formalism and other conceptual modeling approaches in software
engineering, such as UML class diagrams, is its ability to model production rules
with rule type and the rule instance constructors. A rule type describes the
structure of a set of rules through the specification of the ontology types bound
to the rule antecedent and consequent. Rule types are particularized into rule
instances which represent specific, logical dependencies between rule antecedent
and consequent concept attributes.

3.2 Web design modeling

CML models are enriched with interaction and presentation characteristics to
specify rule-based Web applications design features.

Interaction features enable the specification of user interactivity through a set
of properties associated to CML constructors. The following properties dealing
with attribute management will illustrate some interaction characteristics:

– isDerived. This property is set to true when the attribute value is inferred
by the rule engine, so it cannot be edited by the user.



– notifiesTo and isNotifiedBy : These properties are used to indicate what at-
tributes must be refreshed by the re-rendered AJAX facility in a user event,
for example a mouse click or a change in the attribute value.

Conceptual Model Web form page

notifiesTo

reRender

M
D

D
C

o
d

e
G

e
n

e
r a

ti o
n

event=”onchanged”

Visit

codeVisit : Symbol

month : Month

date : Date

finished : Boolean

Visit_to_PlotOfLand

Visit

visits [*] : Visit

plot : PlotOfLand

possibleStages [*] : PhenologicalStage

phenology : PhenologicalStage

Rule Instance : Phenology-abstraction

visit.month = January

visit_to_plotOfLand.possibleStages = (A,B1,B2)

Visit

Date

Finished

Plot [PlotOfLand]

Phenology
PossibleStages

A - Dormant bud

B1 - Bud swell

B2 - Wooly bud

Fig. 2. Modeling interaction with NotifiesTo property

Figure 2 shows an example of how the interaction between two attributes
defined in the conceptual model is specified using the isDerived and notifiesTo
properties, showing how they affect Web forms for editing instances. The exam-
ple is taken from SAVIA, a decision-support system for pest control in green-
house crops and grapes that is being developed by applying rule-based mod-
eling and the proposed model-driven approach for rule-based Web system de-
velopment. The left side of Figure 2 shows a selection of SAVIA conceptual
rule model elements. In particular, a concept called Visit, a relationship called
Visit to PlotOfLand, and an example of rule instance belonging to the group
of rules that specify the possible phenological stages of the crop depending on
the date of the visit. The concrete rule instance is: ”if the month of the Visit
is January then the possibleStages are (A, B1, B2)”. Focusing on interaction
specification, the possibleStages attribute is derived since it is inferred by the
rule engine when it fires rules such as the one above. And the attribute date of
visit notifies possibleStages, making that when the event onChange happens in
the Web form date field, then an action makes the rule engine run and the list of
possibleStages is re-rendered, updating the list with the new values determined
by the rule engine.

Presentation features specify the conceptual model element’s visibility prop-
erties, enabling user interface customization. For example, this makes it possible
to select what concepts will appear in the application menu, and what attributes
are included as columns of tables showing all instances of a concept type.



4 MDD for Rule-based Web applications

4.1 General perspective

Figure 3 shows the proposed MDD schema for rule-based Web applications,
which is divided into two processes. The first one (the bottom flow in Fig. 3)
generates the implementation of the rule base in a rule implementation technol-
ogy, and the second one (the top flow in Figure 3) produces the code for the
Web architecture.

The development process starts with the specification of a conceptual rule
model which defines the domain ontology and the set of rules using an platform-
independent formalism such as CML. Application of the model-driven approach
produces two different results. One one hand, ontology and rules are transformed
into Jess, which supports the development and deployment of rule-based systems
tightly coupled to Java applications. As a result, a Jess rule base, a text file
containing the set of rules converted to Jess syntax, is generated.

Furthermore, a Web-based architecture is generated from the CML model
extended with the interaction and presentation features. Web application code
is based on the MVC architectural pattern and the JavaServer Faces (JSF)
framework, producing a set of JavaBeans classes and JSP (Java Server Pages).

Jess Rule
model

Jess rule base

CML Model

Java and JSF
Web model

Java
JSF

classes
pages

P
I
M

latform
ndependent
odel

P
S
M

latform
pecific
odels

Code

integration

Web Rule-based
application

M2M
Transformations

M2T
Transformations

Interaction &
Presentation

Fig. 3. MDD schema for Rule-based Web system generation

Although the two MDD processes are executed independently of each other,
the final result must integrate the rule base into the Web application. This is
done by the appropriate method calls to the Jess API (Application Programming
Interface) in the Java code generated, entailing integration of the rule engine into
the Web application.

The rule-based Web application generated benefits of having the decision
logic externalized from core application code, since uncoupling the rules from the
source code increases scalability and maintainability of rule-based applications
[20]. Our approach makes it possible for the two MDD processes to be executed
separately, and therefore, any change in the rule model affecting only to rule logic
(rule instances) but without affecting to the structure of information (concepts,
relationships, and so on) can be translated to a new rule base without having
to modify or regenerate anything else in the Web architecture. This approach
makes Web applications easier to maintain and evolve.



4.2 MDD of Jess rules

The first transformation of Jess rules in MDD involves the CML source model
being translated into a platform-specific model based on a Jess rules metamodel,
using an M2M transformation. The metamodel proposed for Jess rules (Figure
4) is an extended version of a simple rule metamodel for rule-based systems
described in [21].

RFactSlot

- slotName : String
- slotValueRange : String
- slotCardinality : RSlotCardinality
- slotType : String

RDefFact

- factName : String
RFunctionType

- system
- userdefined

<<enumeration>>

RRuleType

- constraint
- initialization

<<enumeration>>

RSlotCardinality

- slot
- multislot

<<enumeration>>

RFunction

- functionName : String
- parameters [0..] : String
- returnValue : String
- functionType : RFunctionType

RDefFacts

- defName : String
- documentation : String

0..*+facts 0..*

RVariable

- varName : String

RModule

- moduleName : String
- rulemetamodel : String
- outputFilePath : String

1

0..*

+funInModule

1

+functions

0..*

{ordered}

1

0..*

1

+defFacts 0..*

RCondElem

- ceName : RCondElemEnum

0..*
*

1
+childCE

0..*
*

1

RFactTemplate

- factName : String

0..1

+extends

0..1

1

0..*

+owner

1

+Slot

0..*

{ordered}

0..*

+inModule

+factTemplates

0..*

RRule

- ruleName : String
- ruleType : RRuleType
- description : String
- Salience : Integer

0..* 0..*0..*

+actions

0..*

{ordered}
1

0..1

1

+condition

0..1

1

0..*

1

+rules
0..*

RSlotMatchExp

- slotName : String
- matchExp : String

0..*

+factTemplate

0..*

RPattern

1

0..*

1

+ceMatchPattern0..*

0..*

+factTemplate

0..*

1

0..*

1

+ceMatchPattern

0..*

1

0..*

1

+slotMatchExp
0..*

RQuery

- queryName : String
- documentation : String
- quetyType : RQueryType

0..*

+variables

0..*
{ordered}

0..* +queries0..*

0..*

+ceMatchPattern

0..* {ordered}

RQueryType

- allFacts
- aFactByKey

<<enumeration>>

RDefSlot

- slotName : String
- slotcardinality : RSlotCardinality

0..*+slots 0..*

RDefSlotValue

- value : String
1..*

+slotValue

1..*

Fig. 4. Jess Rules Metamodel

In the Jess rules metamodel, a metaclass is defined for each Jess language
element. The root element of a Jess rule model is RModule. A module contains
fact templates, rules, functions, facts and queries. The RFactTemplate metaclass
models fact templates, the Jess constructor for storing information.

RRule enables the representation of rules. A rule has a ruleName, a property
called salience that determines the order in which applicable rules are fired by
the rule engine, a containment reference condition representing the rule’s con-
dition part (antecedent), and a reference called actions representing the rule’s
action part (consequent). RPattern and RSlotMatchExp metaclasses define pat-
tern matching expressions in rule conditions. Actions are function calls that
assert new facts, or retract or modify existing facts.

Facts are defined by the RDefFacts metaclass. Facts are acquired from in-
stances of concepts in the CML source model. Finally, RQuery models queries
to consult the working memory at runtime.



The mapping from CML rule-based models to Jess rule models is designed
by a M2M transformation which maps each CML metamodel constructor to
one or several Jess Rule metamodel elements. The Jess rule model generated by
the M2M transformation is the source model for a M2T transformation which
automatically generates the Jess rule base source code, producing a Jess file
(.clp) with a code for every element included in the Jess rule model. The M2T
transformation is designed using JET, as described later in this paper.

4.3 MDD of JSF Web architecture

A second MDD process is applied (see Figure 3) to generate a Web architecture
that integrates rules into a Web application. In this process, Jess rules can be
integrated into the Web application, since both the Jess rule base and the Web
architecture are generated from the same CML model.

Figure 5 shows the proposed target architecture for rule-based Web appli-
cations, based on the MVC architecture pattern, the JSF framework and rich
AJAX JBoss Richfaces components.

Web Browser Apache Tomcat
Application Server

Jess rule engine

JavaEE Platform

JSF
+ 

RichFaces Jess facts

Jess 
rule base

Fig. 5. Rule-based Web application architecture

The integrated rule engine manages the Jess rule base and the text file con-
taining persistent facts. The Web application enables the user to perform four
basic predetermined functions, create new instances, read the current list of in-
stances, update and delete instances. That CRUD operations are executed on
the Jess rule engine working memory, enabling the inference mechanism to fire
appropriate rules when necessary. The rule engine executes a forward-chaining
inference mechanism to drive the reasoning process, firing the rules with condi-
tions evaluated as true, and executing their actions to infer new information or
modify existing one.

A metamodel for the JSF Web architecture was designed. In the M2M and
M2T transformations from a CML model to a JSF model and finally to code,
each concept is mapped to several elements, a JavaBean class, a JSF page for
instance creation and edition, a JSF page for listing all instances of that concept
type, and a managed bean to be included in the configuration file. Interaction
and presentation features are taken into account at this level in model-driven
processes.



As a result, the use of both rules and AJAX technology improves the cre-
ation and edition of instances in the Web application. Since Web forms are
implemented with AJAX RichFaces components, each single form value can be
validated and submitted individually as it is entered. This facility entails the
rule engine firing suitable rules and inferring new information that drives the
instance creation or edition, for example, updating choice-field values.

5 Tool Support: InSCo-Gen

Our rule-based Web application model-driven development approach is demon-
strated by our proof-of-the-concept, the InSCo-Gen tool. InSCo-Gen was de-
veloped using MDD tools provided by the Eclipse Modeling Project. Models
and metamodels were defined using the Eclipse Modeling Framework (EMF4),
including three metamodels, the CML metamodel for conceptual models, the
Jess Rule metamodel used for representing Jess platform-specific models, and
the JSF metamodel used by Web-based specific models.

Conceptual models conforming to the CML metamodel are created using
the built-in reflective EMF editor. In order to improve model specification, the
reflective editor is customized using Exeed (EXtended Emf EDitor) [22], a plugin
which can modify editor default icons and labels, adding Exeed annotations to
the metamodel. A screenshot with a model created with this editor is shown in
Figure 2.

Modeling certain aspects of Web design, such as interaction and presentation,
is implemented in different ways. Whereas interaction features are added to
the conceptual CML metamodel through metaclass properties, presentation is
defined by a set of XML configuration files, which can be edited by the developer
before generating the Web application code.

Two M2M transformations are designed with Atlas Transformation Language
(ATL5). The first one maps a CML model to a Jess platform-specific model. The
second one transforms a CML model into a JSF-specific model.

The outputs of both ATL transformations are the inputs of two M2T transfor-
mations implemented with Java Emitter Templates (JET6). As a result, InSCo-
Gen automatically produces the Web application code, on one hand, source text
files with Jess rules and facts, and on the other, the Web application components,
the faces-config.xml and web.xml configuration files, the Java Beans for model
classes, and a Jess-Engine Bean which uses the Jess Java API (Application Pro-
gramming Interface) to integrate the rule engine into the architecture. Moreover,
a set of JSP/JSF web pages are generated for the user interface. These pages are
based on the RichFaces library [8], an open source framework that adds AJAX
capability to JSF applications.

4 http://www.eclipse.org/modeling/emf/
5 http://www.eclipse.org/m2m/atl/
6 http://www.eclipse.org/modeling/m2t/?project=jet



6 Related Work

Our proposal uses the CML rule and ontology modeling formalism as the MDD
source model. To put CML into the MDD framework, we defined a metamodel
for CML. The definition of a UML Profile for the specification of CML knowledge
models is addressed in [23] where the authors also discusses the possible mapping
of the profile elements to a Jess platform specific model.

Some previous work has proposed the generation of Jess rules from ontology
and rule models, such as OWL (Ontology Web Language) [24] and SWRL (Se-
mantic Web Rule Language) [25]. These proposals focus on Jess code generation
without applying a genuine MDD/MDA approach. But the most important dif-
ference between the proposal presented in this paper and those publications is
that they do not integrate Jess into a functional Web application, so the Jess
rule base generated must be run in a development tool using a shell, such as the
Protege JessTab [26].

An MDD approach to Web Applications based on MVC and JavaServer
Faces is described in [27]. Existing Web Engineering methods, such as UWE
[28], WebML [29] and WebDSL [30], approach the design and development of
Web applications addressing such concerns as structure, presentation, naviga-
tion. However, they do not consider rule modeling in Web application develop-
ment. Our proposal focus on introducing rule modeling in this context, and we
do not consider other concerns of Web application modeling such as navigation
model, since we simplify the functionality to CRUD operations and, therefore,
types and navigation links are fixed and preset.

Regarding MDD of Web applications integrating rules, [31] describes MDD
principles for rule-based Web services modeling using R2ML, and proposes an
MDD approach for generating Web services from rule models. Whereas this
proposal focuses on a Web services architecture, our work is based on a MVC
architecture using the JSF framework.

7 Conclusions and future work

In this paper, rule-based and model-driven techniques are intertwined for the
development of rule-based Web applications. The main contribution of our work
is to enrich the specification of Web applications with a rule modeling formalism,
introducing a new concern in Model-Driven Web Engineering. A model-driven
approach for generating Web implementation enhanced with inference features
is described and demonstrated by an MDD tool.

The resulting rule-based Web architecture implements the MVC architectural
pattern using the JavaServer Faces framework, and incorporates rich JBoss Rich-
faces components to enhance the user interface with AJAX capabilities. The Jess
rule engine is embedded in the Web application to provide inference capabilities.
Our proposal does not include a navigation model, since application functionality
is predetermined by CRUD functions.

Due to the declarative nature of rules, the decision logic is externalized from
core application code producing Web applications easier to maintain and evolve.



The approach is being evaluated through its use in the development of a Web
decision-support system for pest control in agriculture, which makes recommen-
dations to growers and technicians about the necessity of treating a specific pest
or disease in grapes.

As future work, it is planned to use other ontology and rule modeling lan-
guages such as OWL and SWRL as source models for the model-driven ap-
proach, and define interoperability modules with other rule formalisms. Differ-
ent rule platforms, such as JBoss Rules [32], will be also considered as a target
rule technology. The Web application generated, which is aimed at enriching
the architecture with database facilities, will be improved to provide a complete
persistence layer.

Acknowledgments. This work was supported by the Spanish Ministry of Ed-
ucation and Science under the project TIN2004-05694, and by the Junta de
Andalucia (Andalusian Regional Govt.) project P06-TIC-02411.

References

1. Eiter, T., Ianni, G., Krennwallner, T., Polleres, A.: Rules and ontologies for the
semantic web. In Baroglio, C., Bonatti, P.A., Maluszynski, J., Marchiori, M.,
Polleres, A., Schaffert, S., eds.: Reasoning Web. Volume 5224 of Lecture Notes in
Computer Science., Springer (2008) 1–53

2. Brachman, R.J., Levesque, H.J.: Knowledge representation and reasoning. Morgan
Kaufmann, San Francisco (2004)

3. Object Management Group: MDA Guide Version 1.0.1. OMG document:
omg/2003-06-01 (2003)

4. Mellor, S., Clark, A., Futagami, T.: Model-Driven Development - Guest editors
introduction. IEEE Software 20(5) (Sep-Oct 2003) 14–18

5. Anjewierden, A.: CML2. Technical Report 11, University of Amsterdam (1997)
URL: http://www.swi.psy.uva.nl/projects/kads22/#cml2.

6. Schreiber, G., Akkermans, H., Anjewierden, A., de Hoog, R., Shadbolt, N.,
de Velde, W.V., Wielinga, B.: Knowledge Engineering and Management: The
CommonKADS Methodology. The MIT Press, Cambridge (2000)

7. Sun Microsystems: JavaServer Faces http://java.sun.com/javaee/javaserverfaces/.
8. JBoss: RichFaces (2007) http://www.jboss.org/jbossrichfaces/.
9. Friedman-Hill, E.: Jess in Action: Java Rule-Based Systems. Manning Publications

(2003)
10. del Águila, I.M., Cañadas, J., Palma, J., Túnez, S.: Towards a methodology for

hybrid systems software development. In: Proceedings of the Int. Conference on
Software Engineering and Knowledge Engineering (SEKE). (2006) 188–193

11. Durkin, J.: Expert Systems: Catalog of Applications. Akron (Ohio), Intelligent
Computer Systems Inc. (1993)

12. Russell, S.J., Norvig, P.: Artificial intelligence: a modern approach. Prentice-Hall,
Inc., Upper Saddle River, NJ, USA (1995)

13. Object Management Group: Semantics of Business Vocabulary and Business Rules
(SBVR). http://www.omg.org/spec/SBVR/1.0 (2008)

14. Object Management Group: Ontology Definition Metamodel RFP (2003) Avail-
able: http://www.omg.org/cgi-bin/doc?ad/2003-03-40.



15. Object Management Group: Production Rule Representation RFP (2003) Avail-
able: http://www.omg.org/cgi-bin/doc?br/2003-09-03.

16. RuleML: The Rule Markup Initiative (2001) URL: http://www.ruleml.org.
17. Horrocks, I., Patel-Schneider, P., Boley, H., Tabet, S., Grosof, B., Dean, M.: SWRL:

A Semantic Web Rule Language combining OWL and RuleML. W3C. Available
at www.w3.org/Submission/2004/SUBM-SWRL-20040521 (2004)

18. REWERSE Working Group I1: R2ML -The REWERSE I1 Rule Markup Language
(2006) URL: http://oxygen.informatik.tu-cottbus.de/rewerse-i1/?q=R2ML.

19. Rule Interchange Format Working Group: RIF Use Cases and Requirements. W3C
Working Draft (2006) URL: http://www.w3.org/TR/rif-ucr/.

20. Frankel, D., Hayes, P., Kendall, E., McGuinness, D.: The Model Driven Seman-
tic Web. In: 1st International Workshop on the Model-Driven Semantic Web
(MDSW2004), Monterey, California, USA. (2004)

21. Chaur G. Wu: Modeling Rule-Based Systems with EMF. Eclipse Corner Articles
http://www.eclipse.org/articles/ (2004)

22. Kolovos, D.S.: Exeed: EXtended Emf EDitor - User Manual.
http://www.eclipse.org/gmt/epsilon/doc/Exeed.pdf (2007)

23. Abdullah, M., Benest, I., Paige, R., Kimble, C.: Using unified modeling language
for conceptual modelling of Knowledge-Based systems. In: Conceptual Modeling -
ER 2007. (2007) 438–453

24. Mei, J., Bontas, E.P., Lin, Z.: OWL2Jess: A Transformational Implementation of
the OWL Semantics. Lecture Notes in Computer Science 3759 (2005) 599–608

25. OConnor, M., Knublauch, H., Tu, S., Grosof, B., Dean, M., Grosso, W., Musen,
M.: Supporting Rule System Interoperability on the Semantic Web with SWRL.
Lecture Notes in Computer Science 3759 (2005) 974–986

26. Eriksson, H.: Using JessTab to integrate Protege and Jess. Intelligent Systems,
IEEE 18(2) (2003) 43–50

27. Distante, D., Pedone, P., Rossi, G., Canfora, G.: Model-Driven development of web
applications with UWA, MVC and JavaServer faces. In: L. Baresi, P. Fraternali,
and G.-J. Houben (Eds.): ICWE 2007, LNCS. Volume 4607., Springer, Heidelberg
(2007) 457–472

28. Koch, N., Knapp, A., Zhang, G., Baumeister, H.: Uml based web engineering: An
approach based on standards. In: Web Engineering: Modelling and Implementing
Web applications. Human-Computer Interaction Series. Springer, Berlin (dec 2007)

29. Fraternali, P., Bongio, A., Brambilla, M., Comai, S., Matera, M.: Designing Data-
Intensive Web Applications. 1 edn. Morgan Kaufmann (December 2002)

30. Groenewegen, D.M., Hemel, Z., Kats, L.C., Visser, E.: WebDSL: a domain-specific
language for dynamic web applications. In: Companion to the 23rd ACM SIGPLAN
conference on Object-oriented programming systems languages and applications,
Nashville, TN, USA, ACM (2008) 779–780

31. Ribarić, M., Gašević, D., Milanović, M., Giurca, A., Lukichev, S., Wagner, G.:
Model-Driven engineering of rules for web services. In: Generative and Trans-
formational Techniques in Software Engineering II: International Summer School,
GTTSE 2007, Braga, Portugal, July 2-7, 2007. Revised Papers, Springer-Verlag
(2008) 377–395

32. JBoss: Drools documentation http://www.jboss.org/drools/documentation.html.


