JSON Rules - The JavaScript Rule Engine

Emilian Pascalau! and Adrian Giurca?

'Hasso Plattner Institute, Germany,
emilian.pascalau@hpi.uni-potsdam.de
2Brandenburg University of Technology, Germany,
giurca@tu-cottbus.de

Abstract. TOOL PRESENTATION: There is a considerable browser
potential in being able to easily wire together different services into new
functionality. Usually, developers use JavaScript or related technologies
to do browser programming. This short paper presents, JSON Rules, a
JavaScript rule engine running Event-Condition-Action rules triggered
by Document-Object-Model Events.

1 Introduction

The Rule Engine implementing the JSON Rules [I] language was designed to
fulfill at least the following requirements:

— create and execute rules in a Web browser

support for ECA and PR rules

— forward chaining rule engine, influenced by the RETE algorithm;
— process atomic event-facts;

the Working Memory contains beside regular facts, event facts.

The main goal of the rule engine is to empower users with the client side abili-
ties to model/execute web scenarios/applications/mashups by means of business
rules (See [I] and [2]). Particularly intelligent UI scenarios are in the main stream
of interest.

For a better understanding of the context we consider the following situation:
We are looking for a job using the Monster Job Search Service. Once the job is
obtained the location is shown on Google Maps.

2 The JSON Rules language

The language was initially introduced in [I]. JSON notation combined with
JavaScript function calls offers large capabilities to express various kinds of rules.
Recall that we deal both with production rules and with Event-Condition-Action
(ECA) rules i.e. rules of the form

RuleID: ON EventExpression IF Cl && ... &% Cn DO [Al, ..., Am]

where the event part is optional and denotes an event expression matching the
triggering events of the rule; C1, ... Cn are boolean conditions using a Drools
like syntax and [A1, ... Am] is a sequence of actions.

2.1 Ontology of events - DOM events

The JSON event expression is related to the Event interface specification in
DOM Level 3 EventsEI7 therefore the properties of this expression have the same
meaning as in the Event specification. At runtime these properties of this ex-
pression are matched against the incoming DOM events and their values can be
processed in the rule conditions and actions.

Ezample 1 (ECA Rule).

{"id": "ruleil01",
"appliesTo": ["http://mail.yahoo.com/"],
"eventExpression": {"type": "click",
"target": "$X"
},
"condition": [
"$X :HTMLAnchorElement ($hrefVal :href)",
"new RegExp(/showMessage\7fid=Inbox/).test($hrefval)"
1,
"actions": ["append ($X.textContent)"]

3 The Engine

There is an important difference between the actual rule engines and the
JavaScript Rule Engine implementing the JSON Rules language for at least two
reasons: events facts are not static facts that require usual operation such as:
delete, update on the Working Memory but they are dynamic facts. They are
dynamically consumed based on the appearance time. Second the whole engine is
a live system: it is reactive because reacts based on events and it is proactive
for by itself produces events.
The project is hosted on Google Code platforrrﬂ

3.1 How you can use the engine

The engine is programmed in JavaScript and can be used as any JavaScript
framework. Basically, the lifetime of the rule engine is in the scope of the lifetime
of the current DOM inside the browser. Simple steps to make it run are:

1. Load the engine in your page:

<script type="text/javascript"
src="http://www.domain.com/jsonRulesEngine_Version.js">
</script>

http://www.w3.org/TR/DOM-Level-3-Events/
2 http://jsonrules.googlecode. com

http://www.w3.org/TR/DOM-Level-3-Events/
http://jsonrules.googlecode.com

2. Create an instance of the engine:
var jsonRulesEngine=new org.jsonrules.JSONRulesMainSystem() ;

3. Run the engine by calling run() with the URI of location of the repository
as input parameter:

jsonRulesEngine.run("http://www.domain.com/rulesRepo.txt");

When the engine and the rulesets are available, the main things that happen
are:

When an event is raised, the EventManager catches that event. Then the
EventManager checks the ActionProcessor state.

If the ActionProcessor is running, then the EventManager stores the event
in the queue of events that the InferenceEngine must later on process.
However if the ActionProcessor is idle then the EventManager sends a mes-
sage to the InferenceEngine containing the queue of events that must be
processed. The InferenceEngine responds back to the EventManager, and
informs it that it has received /consumed the queue such that the EventManager
can reset its own queue.

Events are processed one by one. For each event rules triggered by that
event will be matched against the WorkingMemory. The action of each ex-
ecutable rule is added to the list of executable actions (to be processed by
the ActionProcessor) according with possible priority of rules.

— The list of executable actions it is send to the ActionProcessor, to execute
them. Any JavaScript functions can be called in the rule actions’ part.

4 Conclusions

This paper describes shortly the general ideas behind an ECA rule-based and
forward chaining engine for browsers.

References

1. Adrian Giurca and Emilian Pascalau. JSON Rules. In Proceedings of the Proceedings
of 4th Knowledge Engineering and Software Engineering, KESE 2008, volume 425,
pages 7-18. CEUR Workshop Proceedings, 2008.

2. Emilian Pascalau and Adrian Giurca. A Rule-Based Approach of Creating and
Executing Mashups. In Proceedings of the 9th IFIP Conference on e-Business, e-
Services, and e-Society (ISE 2009), LNCS. Springer, 2009. forthcoming.

	JSON Rules - The JavaScript Rule Engine
	Emilian Pascalau and Adrian Giurca

