
5th Workshop on

Knowledge Engineering

and Software Engineering (KESE2009)

at the 32nd German Conference on Artificial Intelligence

September 15, 2009, Paderborn, Germany

Joachim Baumeister and Grzegorz J. Nalepa (Editors)

Technical Report No. 461, Würzburg University, Würzburg, Germany, 2009

The KESE Workshop Series is available online: https://ai.ia.agh.edu.pl/wiki/kese:start

Preface

Joachim Baumeister and Grzegorz J. Nalepa

Intelligent Systems (Informatik 6)
University of Würzburg

Würzburg, Germany
joba@uni-wuerzburg.de

—
AGH University of Science and Technology

Kraków, Poland
gjn@agh.edu.pl

Intelligent systems have been successfully developed in various domains based
on techniques and tools from the fields of knowledge engineering and software
engineering. Thus, declarative software engineering techniques have been estab-
lished in many areas, such as knowledge systems, logic programming, constraint
programming, and lately in the context of the Semantic Web and business rules.

The fifth workshop on Knowledge Engineering and Software Engineering
(KESE 2009) was held at the KI-2009 in Paderborn, Germany, and brought
together researchers and practitioners from both fields of software engineering
and artificial intelligence. The intention was to give ample space for exchanging
latest research results as well as knowledge about practical experience. Topics of
interest includes but were not limited to:

– Knowledge and software engineering for the Semantic Web
– Ontologies in practical knowledge and software engineering
– Business rules design and management
– Knowledge representation, reasoning and management
– Practical knowledge representation and discovery techniques

in software engineering
– Agent-oriented software engineering
– Database and knowledge base management in AI systems
– Evaluation and verification of intelligent systems
– Practical tools for intelligent systems
– Process models in AI applications
– Declarative, logic-based approaches
– Constraint programming approaches

This year, we mainly received contributions focussing on the ”intelligent
web”: Pascalau and Giurca introduce a rule engine for web browsers, that is
capable to handle DOM (Document Object Model) events within the browser.
Cañadas et al. describe an approach for the automatic generation of rule-based
web applications, that is based on ideas of the Model Driven Development
(MDD). Nalepa and Furmańska propose an ontology that maps the design pro-
cess of an intelligent application and thus promises efficient development. Reu-
telshoefer et al. show, how multimodal knowledge appears in knowledge engineer-
ing projects and show how such knowledge can be refactored within a Semantic

Wiki. The intelligibility of medical ontological terms is discussed and evaluated
by Forcher et al. This year we also encouraged to submit tool presentations, i.e.,
system descriptions that clearly show the interaction between knowledge engi-
neering and software engineering research and practice. At the workshop, two
presentations about current tools were given: Kaczor and Nalepa introduced
the toolset HaDEs, i.e., the design environment of the HeKatE methodology.
Pascalau and Giurca show-cased the JavaScript rule engine JSON Rules.

The organizers would like to thank all who contributed to the success of the
workshop. We thank all authors for submitting papers to the workshop, and we
thank the members of the program committee as well as the external reviewers
for reviewing and collaboratively discussing the submissions. For the submission
and reviewing process we used the EasyChair system, for which the organizers
would like to thank Andrei Voronkov, the developer of the system. Last but
not least, we would like to thank Klaus-Dieter Althoff (U. Hildesheim) as the
workshop chair and Bärbel Mertsching (U. Paderborn) as the KI09 conference
chair for their efforts and support.

Joachim Baumeister
Grzegorz J. Nalepa

Workshop Organization

The 5th Workshop on Knowledge Engineering and Software Engineering
(KESE2009)

was held as a one-day event at the
32nd German Conference on Artificial Intelligence (KI2009)

on September 15, 2009 in Paderborn, Germany.

Workshop Chairs and Organizers

Joachim Baumeister, University Würzburg, Germany
Grzegorz J. Nalepa, AGH UST, Kraków, Poland

Programme Committee

Klaus-Dieter Althoff, University Hildesheim, Germany
Stamatia Bibi, Aristotle University of Thessaloniki, Greece
Joaquin Cañadas, University of Almeŕıa, Spain
Uli Geske, FhG FIRST, Berlin, Germany
Adrian Giurca, BTU Cottbus, Germany
Rainer Knauf, TU Ilmenau, Germany
Frank Puppe, University Würzburg, Germany
Dietmar Seipel, University Würzburg, Germany
Ioannis Stamelos, Aristotle University of Thessaloniki, Greece
Gerhard Weiss, SCCH, Austria

External Reviewers

Jochen Reutelshoefer, University Würzburg, Germany

Table of Contents

Regular Papers.

A Lightweight Architecture of an ECA Rule Engine for Web Browsers . . . 1
Emilian Pascalau, Adrian Giurca

A Model-Driven Method for automatic generation of Rule-based Web
Applications . 13

Joaqúın Cañadas, José Palma, Samuel Túnez

Design Process Ontology - Approach Proposal . 25
Grzegorz J. Nalepa, Weronika T. Furmańska

A Data Structure for the Refactoring of Multimodal Knowledge 33
Jochen Reutelshoefer, Joachim Baumeister, Frank Puppe

Evaluating the Intelligibility of Medical Ontological Terms 46
Björn Forcher, Thomas Roth-Berghofer, Kinga Schumacher

Tool Presentations.

HaDEs - Presentation of the HeKatE Design Environment 57
Krzysztof Kaczor, Grzegorz J. Nalepa

JSON Rules - The JavaScript Rule Engine . 63
Emilian Pascalau, Adrian Giurca

A Lightweight Architecture of an ECA Rule
Engine for Web Browsers

Emilian Pascalau1 and Adrian Giurca2

1Hasso Plattner Institute, Germany,
emilian.pascalau@hpi.uni-potsdam.de

2Brandenburg University of Technology, Germany,
giurca@tu-cottbus.de

Abstract. There is a large literature concerning rule engines (forward
chaining or backward chaining). During the last thirty years there were
various proposals such as RETE, TREAT and the derived Gator algo-
rithm. Significantly, RETE was embedded into various expert systems
such as Clips and its successor Jess, and Drools including in a number of
commercial rule engines and was extended various times including with
support for ECA rules. However, none of them is able to directly process
DOM Events. The goal of this paper is to present the architecture of a
forward chaining Event-Condition-Action (ECA) rule engine capable to
handle Document-Object-Model Events. This architecture is instantiated
into a JavaScript-based rule engine working with JSON rules.

1 Motivation

There is a large literature concerning rule engines (forward chaining or backward
chaining). During the last thirty years there were various proposals such as
RETE [6], TREAT [15] and the Gator algorithm [13] which is derived from the
other two. Significantly, RETE was embedded into various expert systems such
as Clips and its successor Jess[7], and Drools [18]. RETE [6] was extended various
times including with support for ECA rules [5].

However, none of them is able to directly process DOM Events. The goal
of this paper is to present the architecture of a forward chaining ECA rule
engine capable to handle Document-Object-Model Events. This architecture is
instantiated into a JavaScript-based rule engine working with JSON rules [10].

The main goals this design should address are:

– to move the reasoning process to the client-side resulting in reduced network
traffic and faster response;

– to handle complex business workflows;
– information can be fetched and displayed in anticipation of the user response;
– pages can be incrementally updated in response to the user input, including

the usage of cached data;
– to offer support for intelligent user interfaces;
– enable users to collaborate and share information on the WWW through

real-time communication channels (rule sharing and interchange);

1

Complex event processing (CEP), is a methodology of processing events tak-
ing into consideration processing multiple events with the goal of identifying
the meaningful events within a specific time-frame or event cloud. CEP employs
techniques such as detection of complex patterns, event correlation, event ab-
straction, event hierarchies, and relationships between events such as causality,
membership, and timing, and event-driven processes. A number of projects were
developed in the last ten years on these issues. However, there is one event on-
tology which offers large opportunities to be exploited in the context of actual
technologies such as Asynchronous JavaScript and XML (AJAX) [8] allowing the
development of intelligent Rich Internet Applications (RIAs) i.e. web applica-
tions that typically run in a web browser, and do not require software installation
([1]) - The Document Object Model Events (DOM Events). This event ontology1

provides a large amount of events types designed with two main goals: (1) the
design of an event system allowing registration of event listeners and describing
event flow through a tree structure (the DOM), and (2) defining standard mod-
ules of events for user interface control and notifications of document mutation,
including defined contextual information for each of these event modules.

This ontology is already implemented into browsers giving extremely pow-
erful capabilities to RIAs which use it. Nowadays, several Web 2.0 applications
use heavily AJAX in order to provide desktop-like behavior to the user. The
number of RIAs is increasing because of the broad bandwidth of today’s In-
ternet connections, as well as the availability of powerful and cheap personal
computers. However, traditional ways of programming Internet applications no
longer meet the demands of intelligent (rule-enabled) RIAs. For example a highly
responsive Web 2.0 application such as Google Mail, can be much easily person-
alized/customized using rules towards a declarative description of its behavior.

Implementing intelligent RIAs require reasoning possibilities inside the
browser. In addition, using Event-Condition-Action (ECA) Rules to represent
knowledge unveils the opportunity to design and run rule-based applications in
the browser.

2 The Architecture of an ECA Rule Engine for Web
Browsers

2.1 The Components View

As depicted in Figure 1, the complete system comprises the Event Manager,
Rule Repository, Inference Engine and Working Memory.

The main design goal of this architecture was to comply with the principles
of Software as a Service (SaaS) architectures [4]. Therefore, the main capabilities
considered in this design were:

– Distributed Architecture - all these components can act in different network
locations.

1 http://www.w3.org/TR/DOM-Level-3-Events/

2

http://www.w3.org/TR/DOM-Level-3-Events/

InferenceEngine

EventManager

WorkingMemory

RulesRepository

Fig. 1. Components View

– Event-driven architecture - We emphasize that both human agents and soft-
ware agents interact with this architecture by creating events i.e. the reason-
ing is event driven. Moreover, the architecture instantiation gets translated
into a full event driven engine.

This architecture is a live system i.e. an event-based system that is reactive
and proactive. It is reactive because it reacts based on the events it receives.
It is proactive because by itself generates events, that can be consumed also by
other entities being part of the whole system.

2.2 The Working Memory

In the database community the main goal of designing ECA engines was to pro-
vide generic functionality independent from the actual languages and semantics
of event detection, queries, and actions (see for example, [3] and [19]). However,
two main issues make the difference: (a) in the case of an ECA architecture the
Working Memory besides the usual standard facts it contains also event-facts
and (b) the distinction between facts and event-facts is that the last ones are
immediately consumed while traditionally facts are kept until specific deleting
actions are performed.

2.3 The Event Manager

During the last years there is an intense work either on defining design patterns
for complex event processing [17] or theoretical work on how Event-Condition-
Action rules can be combined with event algebras for specification of the event
part [2].

Our goal is to provide a light Event Manager capable to process faster simple
events without duration. Particularly, this architecture must handle DOM Level
3 Events. However, the extension points in the Event Manager make possible
future extensions for complex events processing if we will be able to provide
motivating use cases.

Basically the Event Manager (depicted in Figure 2) has an event vocabulary
and listen for events. Its main activity is to create an event queue to be processed
by the inference engine.

3

listenForWMEvents

addEventToQueue

consumeActionProcessorEvents

eventsQueue

resetEventQueue

ActionProcessor
events

To InferenceEngine

WM events

Inference
Engine

Consumed
events

Fig. 2. EventManager

The Event Manager keeps on catching Working Memory (WM) event-facts
and stores them in an event queue. In addition, it listens for two internal Action
Processor messages:

– busy - The Event Manager keeps on catching WM events and storing them
in the working queue of events.

– idle - The Action Processor informs that it is not working right now. The
Event Manager pro-actively takes control and send its own message to the
Inference Engine with the actual working queue of events. Each time an
event is caught by the Event Manager it tries to find out about the state of
the Action Processor. If there is no new message from the Action Processor it
keeps going on based on its actual knowledge of the Action Processor state.
It changes its knowledge when it receives a new message from the Action
Processor.

Finally, the manager handles the inference engine consumed events. Our
model looks for mandatory handling of engine consumed events as the default
mechanism to achieve the event consumption. Therefore if there are events which
are not processed/consumed by the inference engine they are kept by the man-
ager on its lifetime or until they are consumed by rules.

2.4 The Inference Engine

Our goal were not to use RETE and its variants (although influences exist)
but to build a lightweight engine. Our goals were not to embed strong efficient
execution algorithms rather to offer a simple, extensible and fast rule execution
engine. All these design goals were coming from our main goal: running rules in
the Web browser.

4

receiveEventsQueue

extractEvent
extractRule

addAction
yes

noRules

noMoreEvents
sendActions

match

Consumed Events

EventManager
events queue

action queue

Fig. 3. InferenceEngine

The basic activities inside the Inference Engine (see the Figure 3) are to con-
sume events (from the events queue delivered by the Event Manager) match rule
conditions (match) and deliver action queue to the Action Processor (sendActions).
Despite other architectures where the actions are consumed inside the inference
engine, we decided for a separate component since the Action Processor is not
just a blind action executor but is able to perform various consistency checks
after it has received its queue of actions. The rules intended to be handled by
this architecture are JSON Rules [10] (see 1 for a small rule example) which
provide priorities for handling rule order execution. Our engine does not provide
any conflict resolution mechanism i.e. does not handle any specificity, recency or
refractoriness principles, but it can be extended to support such mechanisms. Fi-
nally the engine has no formal semantics such as other expert systems paradigms
[14]. The syntax of a JSON rule is similar to JSON notation.

Example 1 (JSON Rule example).

{"id": "rule101",
"appliesTo": ["http://mail.yahoo.com/"],
"eventExpression": {"type": "click",

"target": "$X"
},

"condition": [
"$X:HTMLAnchorElement($hrefVal:href)",
"new RegExp(/showMessage\?fid=Inbox/).test($hrefVal)"

],
"actions":["append($X.textContent)"]

}

2.5 The Rules Repository

As we already know, the purpose of business rules repositories is to support the
business rule information needs of all the rule owners in a business rules-based

5

approach in the initial development of systems and their lifetime enhancement.
Specifically, the purpose of a business rules repository is to provide: (a) Support
for the rule-related requirements of all business, (b) Query and reporting capabil-
ity for impact analysis, traceability and business rule reuse including web-based
publication and (c) Security for the integrity of business rule and rule-related
information.

Parts of our previous work (see for example, [16]) introduced the architecture
of such a registry. Basically, inside this architecture, the Rules Repository is
responsible to handle loading and deploying of rule sets.

3 JSON Rules - Architecture Instantiation

We introduce the instantiation of our architecture in the JSON Rules context.
Recall from [10] that JSON Rules where introduced and defined to tackle a
particular environment which is the Web Browser. While the first part of this
work addresses the architectural issues from the Platform-Independent Model
(PIM) [12], [9] perspective, this part addresses it from the Platform-specific
Model (PSM) perspective.

According to the reference architecture for Web Browsers introduced in [11]
the system introduced here finds itself as part of the Rendering Engine. In the
general perspective the JSON Rules engine will come as part of the accessed
resource.

In the case of the Mozilla 2 browser’s architecture [11] the system might be
either part of the Rendering Engine or part of the UI Toolkit (XPFE3 - Mozilla’s
cross-platform front end) if the system is packed as a browser add-on. The second
approach gives greater flexibility since the UI of Mozilla browsers is XML based
and as such uses an extended version of the rendering engine used to display the
content of a specified resource. Based on this the JSON Rules engine introduced
here seams quite feasible to be used to change also the UI and behavior of the
browser itself.

The general components view depicted in Figure 1 gets instantiated in the
JSON Rules context as depicted in Figure 4.

Depicted in Figure 4 are the main packages of the JSON Rules engine. While
the engine and repository packages are self explanatory to some extent lang
package contains all the JSON Rules language entities. The utils package con-
tains entities dealing with different aspects such as: JSON parsing, or object
introspection and so on. The io package provides the necessary entities man-
aging IO operations. The engine package contains the following sub-packages:
eventmanager, actionprocessor, and matcher. The general flow of the whole
system is described in the Figure 5 (initially introduced in [10]).

6

engine

lang

repository

util

io

uses

uses uses

uses

uses

Fig. 4. Rule Engine - Packages

WorkingMemory
EventManager

RuleRepositoryInferenceEngine

Rule Loading

ListenForEvents

RulesLoaded

FireEvents

InformOfEventsComputePossibleRulesToFire

ChangeWorkingMemoryFireRules

Fig. 5. The Rule Engine State Diagram

3.1 Main System

The MainSystem (Figure 6) is the interface through which the inference engine
is accessed. As seen in the Figure 6 the only mandatory input is an Uniform
Resource Identifier (URI) pointing towards a rule repository, from where rules
will be loaded.

2 http://www.mozilla.com/
3 http://www.mozilla.org/xpfe/

7

http://www.mozilla.com/
http://www.mozilla.org/xpfe/

M
ai

nS
ys

te
m

run

repositoryURI

Fig. 6. MainSystem

Although not concretely depicted here through this interface a user could also
specify other settings such as different event type for which the event manager
should listen for.

Having specified a repository location the MainSystem performs the run ac-
tivity.

The lifetime of the rule engine is in the scope of the lifetime of the current
DOM inside the browser. Using the engine is simple. Firstly one must load the
engine e.g. this

<script type="text/javascript"
src="http://www.domain.com/jsonRulesEngine_Version.js">

</script>.

Secondly one must create an instance of the engine, for example:

var jsonRulesEngine=new org.jsonrules.JSONRulesMainSystem();

Having the engine instantiated, it is now possible to run it by calling run() with
the URI of location of the repository as input parameter:

jsonRulesEngine.run("http://www.domain.com/rulesRepo.txt");

In a basic application the main steps that happen are:

– When an event is raised, the EventManager catches that event. Then the
EventManager checks the ActionProcessor’s state.

– If the ActionProcessor is running, then EventManager stores the event in
the queue of events that the InferenceEngine must later on process.

– However if the ActionProcessor is idle then the EventManager sends a mes-
sage to the InferenceEngine containing the queue of events that must be
processed. The InferenceEngine responds back to the EventManager, and
informs it that it has received/consumed the queue such that the EventManager
can reset its own queue.

8

– Events are processed one by one. For each event rules triggered by that
event will be matched against the WorkingMemory. The action of each ex-
ecutable rule is added to the list of executable actions (to be processed by
the ActionProcessor) according with possible priority of rules.

– The list of executable actions it is send to the ActionProcessor, to execute
them.

3.2 Working Memory

As already introduced in [10] the WorkingMemory consists of the loaded DOM
for the current active resource. Recall that by resource we mean the content
which a browser loads in the form of a DOM representation from a specified
URI. WorkingMemory facts are based on the DOM content. Moreover, in the
context of our architecture, WorkingMemory is driven by events and contains
event-facts. This type of behavior is imposed by the event-based nature of the
DOM.

3.3 Event Manager

In addition to DOM Level 3 Events, the DOM specification provides the neces-
sary interfaces through which an user-defined event can be created. However, in
general, DOM events are simple events even though users could create their own
events. There is also the possibility to use and define complex events by means
of user defined APIs such as Yahoo YUI4, Dojo toolkit5 etc. To deal with such
user defined APIs the EventManager uses the concept of adapter. An adapter
can be written for each API and in this way events defined using those APIs
could also be tackled by the EventManager.

Another significant aspect of the browser based instantiation is that the whole
flow is by nature sequential. Actual browsers’ JavaScript engines are sequential,
and because of this, so is the whole engine introduced here. However in the
eventuality of a browser with capabilities to run parallel JavaScript tasks then
the general architecture could be instantiated following the ability to run parallel
tasks.

3.4 Inference Engine

Figure 7 depicts the interaction between the MainSystem and the InferenceEngine.
The InferenceEngine receives a page object form the MainSystem. Its subcom-
ponents (EventManager, ActionProcessor, Matcher) are also instantiated and
in this manner the system becomes alive by listening and throwing events.

3.5 Rule Repository

While a more detailed perspective on rule repositories has been already intro-
duced in [16] here we use a simplified version of that. Rules defined in the repos-
4 http://developer.yahoo.com/yui/
5 http://www.dojotoolkit.org/

9

http://developer.yahoo.com/yui/
http://www.dojotoolkit.org/

M
ai

nS
ys

te
m

In
fe

re
nc

eE
ng

in
e

run

instantiateInferenceEngine

page

page

Fig. 7. System-InferenceEngine

M
ai

nS
ys

te
m

R
ul

eR
ep

os
ito

ry

repositoryURI

run

instantiateRepository

loadRules

getRulesForURL

W
or

ki
ng

M
em

or
y

getURL

giveURL

page

URL

getRulesForURL

URL ruleSet

listenForEvents

Fig. 8. RuleRepository

10

itory refer to a specific URI. This means that a specific rule can be used in the
context of a specific resource. Rules referring to the same URI are grouped in
rule sets.

Figure 8 depicts the interaction between the MainSystem and the
RuleRepository. Basically, the MainSystem triggers a RuleRepository instance.
The repository loads the rules from the repositoryURI specified location. Read-
ers may notice that the repository might contain rules that do not refer to the
current active resource. As such the MainSystem requests the URI of the cur-
rent resource from the WorkingMemory. Based on that URI it requests from the
repository the rule set referring to the current resource. Finally, based on this
information (i.e. the URI of the current resource and the rule set associated) the
MainSystem creates a Page object which will be used by the InferenceEngine.

4 Conclusion

This paper describes the general architecture of an ECA rule-based and forward
chaining engine for web browsers. The design of such an engine derives from the
goal to perform intelligent RIAs. The instantiation of the architecture results
in a JavaScript-based ECA rule engine capable to load and execute ECA rule
sets in the browser. This way we achieve a main goal: Implementing intelligent
RIAs require reasoning possibilities inside the browser. The next steps related to
this research are: (1) to investigate the capabilities of this engine to handle rule-
based mashups on the Web and (2) to analyze scalability of the engine against
the main browsers.

References

1. Jeremy Allaire. Macromedia Flash MXA next-generation rich client. http://www.
adobe.com/devnet/flash/whitepapers/richclient.pdf, March 2002.

2. Erik Behrends, Oliver Fritzen, Wolfgang May, and Franz Schenk. Embedding
Event Algebras and Process for ECA Rules for the Semantic Web. Fundamenta
Informaticae, 82(3):237–263, 2008.

3. Erik Behrends, Oliver Fritzen, Wolfgang May, and Daniel Schubert. An ECA
Engine for Deploying Heterogeneous Component Languages in the Semantic Web.
In Current Trends in Database Technology - EDBT Worshops, pages 887–898, 2006.

4. Keith Bennett, Paul Layzell, David Budgen, Pearl Brereton, Linda Macaulay,
and Malcolm Munro. Service-Based Software: The Future for Flexible Soft-
ware. In Proceedings of the Seventh Asia-Pacific Software Engineering Confer-
ence (APSEC2000), pages 214 – 221. IEEE Computer Society, 2000. http:

//www.bds.ie/Pdf/ServiceOriented1.pdf.
5. Bruno Berstel. Extending the RETE Algorithm for Event Management. In TIME,

pages 49–51, 2002.
6. Charles Forgy. Rete – A Fast Algorithm for the Many Pattern / Many Object

Pattern Match Problem. Artificial Intelligence, 19:17–37, 1982.
7. E. Friedman-Hill. Jess The Rule Engine for the Java Platform. http://www.

jessrules.com/jess/docs/Jess71p2.pdf, November 2008.

11

http://www.adobe.com/devnet/flash/whitepapers/richclient.pdf
http://www.adobe.com/devnet/flash/whitepapers/richclient.pdf
http://www.bds.ie/Pdf/ServiceOriented1.pdf
http://www.bds.ie/Pdf/ServiceOriented1.pdf
http://www.jessrules.com/jess/docs/Jess71p2.pdf
http://www.jessrules.com/jess/docs/Jess71p2.pdf

8. Jesse James Garrett. Ajax: A new approach to web applications. http://www.

adaptivepath.com/ideas/essays/archives/000385.php, February 2005.
9. Dragan Gasevic, Dragan Djuric, and Vladan Devedzic. Model Driven Architecture

and Ontology Development. Springer Verlag, 2006.
10. A. Giurca and E. Pascalau. JSON Rules. In Proceedings of the Proceedings of 4th

Knowledge Engineering and Software Engineering, KESE 2008, volume 425, pages
7–18. CEUR Workshop Proceedings, 2008.

11. Alan Grosskurth and Michael W. Godfrey. A Reference architecture for web
browsers. In Proceedings of the 21st IEEE international conference on software
maintenance (ICSM’05), page 661664. IEEE Computer Society, 2005. http:

//grosskurth.ca/papers/browser-archevol-20060619.pdf.
12. Object Management Group. MDA Guide Version 1.0.1. http://www.omg.org/

docs/omg/03-06-01.pdf, 2003.
13. E. Hanson and M. Hasan. Gator: An optimized discrimination network for active

database rule condition testing. Technical report, 1993.
14. Antoni Ligeza. Logical Foundations for Rule-Based Systems, volume 11 of Studies

in Computational Intelligence. Springer Verlag, 2nd edition edition, 2006.
15. D. Miranker. Treat: A better match algorithm for AI production systems. In

Proceedings of the AAAI’87 Conference, 1987.
16. Emilian Pascalau and Adrian Giurca. Towards enabling SaaS for Business Rules. In

Business Process, Services Computing and Intelligent Service, pages 207–222, 2009.
http://bpt.hpi.uni-potsdam.de/pub/Public/EmilianPascalau/ism2009.pdf.

17. Adrian Paschke. Design Patterns for Complex Event Processing. CoRR,
abs/0806.1100, 2008.

18. Mark Proctor, Michael Neale, Michael Frandsen, Sam Griffith Jr., Edson Tirelli,
Fernando Meyer, and Kris Verlaenen. Drools 4.0.7. http://downloads.jboss.

com/drools/docs/4.0.7.19894.GA/html_single/index.html.
19. Marco Seiriö and Mikael Berndtsson. Design and Implementation of an ECA Rule

Markup Language. In RuleML, pages 98–112, 2005.

12

http://www.adaptivepath.com/ideas/essays/archives/000385.php
http://www.adaptivepath.com/ideas/essays/archives/000385.php
http://grosskurth.ca/papers/browser-archevol-20060619.pdf
http://grosskurth.ca/papers/browser-archevol-20060619.pdf
http://www.omg.org/docs/omg/03-06-01.pdf
http://www.omg.org/docs/omg/03-06-01.pdf
http://bpt.hpi.uni-potsdam.de/pub/Public/EmilianPascalau/ism2009.pdf
http://downloads.jboss.com/drools/docs/4.0.7.19894.GA/html_single/index.html
http://downloads.jboss.com/drools/docs/4.0.7.19894.GA/html_single/index.html

A Model-Driven Method for automatic
generation of Rule-based Web Applications

Joaqúın Cañadas1, José Palma2 and Samuel Túnez1

1 Dept. of Languages and Computation. University of Almeria. Spain
jjcanada@ual.es, stunez@ual.es

2 Dept. of Information and Communication Engineering. University of Murcia. Spain
jtpalma@um.es

Abstract. Rule languages and inference engines incorporate reasoning
capabilities in Web information systems. In this paper, a Model-Driven
Development (MDD) approach for automatic code generation of rule-
based Web applications is proposed. A rule-based model specifying do-
main expert knowledge and business logic through production rules (if-
condition-then-action) becomes the source model for the development
approach. Demonstrating our proposal, a tool supports the creation of
rule models and the automatic execution of model-to-model and model-
to-code transformations. As a result, a rich, functional, rule-based Web
architecture is generated, based on the Model-View-Controller architec-
tural pattern and the JavaServer Faces technology, and integrating a Jess
rule engine to perform inference tasks.

Key words: Model-Driven Development, Web Applications, Rule-based
systems

1 Introduction

The design of rule languages and inference engines to provide Web information
systems with reasoning capabilities is an important Semantic Web research topic
[1] in which production rules (if-condition-then-action) play a leading role, since
they enable a declarative representation of domain expert knowledge and busi-
ness logic. Rule engines deal with rule bases and execute inference methods for
firing the right rules in order to deduce information and conclude new results
[2].

This paper addresses the development of rule-based systems embedded in
Web applications to provide Web systems with inference capabilities, applying a
model-driven approach to automate the development process of rule-based Web
applications.

The terms Model-Driven Architecture (MDA) [3] and Model-Driven Devel-
opment (MDD) [4] refer an approach of software development that uses models
as first class entities, enabling the definition and automatic execution of trans-
formations between models and from models to code. The creation of metamod-
els for specifying modeling languages is a basic task in MDA/MDD. Also the

13

specification of transformations between models, called model-to-model (M2M)
transformations, and from model to code, called model-to-text (M2T) transfor-
mations. The main advantage of this approach of software development is that
MDD tools enable these transformations to be specified and executed automat-
ically, using supporting languages and tools for MDA/MDD. This development
approach is currently being applied to many domains in software development,
such as embedded systems, Web engineering, Ontology Engineering, and more.
However it has some limitations because it is relatively new, supporting tools
for MDD are not mature enough, and it introduces some rigidity since writing
models is not as flexible and expressive as writing source code.

In this work Conceptual Modeling Language (CML) [5] is used as rule mod-
eling formalism, a language for knowledge representation defined by the Com-
monKADS methodology [6]. It enables the specification of the domain ontology
and a set of production rules which are bound to ontology concepts. Models
written in this formalism are independent of any implementation technology,
and therefore, can be used as the source model in a model-driven approach.

To put our proposal into practice, a supporting tool developed using several
tools provided by the Eclipse Modeling Project3 applies a model-driven approach
to rule models and automatically generates the implementation of a functional
rule-based Web application. The resulting Web architecture is based on the
Model-View-Controller (MVC) architectural pattern and the JavaServer Faces
(JSF) framework [7], and incorporates rich JBoss Richfaces components [8] to
enhance the user interface with AJAX (Asynchronous JavaScript And XML)
capabilities. The Jess rule engine [9] is embedded in the Web architecture to
provide inference features. The functionality of the rule-based Web application
is predefined to create, read, update and delete instances (CRUD). In contrast
to current tools for automatic generation of CRUD systems that perform those
functions on relational databases, the contribution of our approach is that CRUD
operations are executed on the Jess rule engine working memory, enabling the
inference mechanism to execute a forward-chaining inference mechanism to drive
the reasoning process.

The proposed approach materializes InSCo [10], a methodology which in-
tertwines knowledge engineering and software engineering approaches in hybrid
intelligent information systems development.

This paper is organized as follows: Section 2 introduces rule-based systems
and rule modeling languages for the Web. Next, the rule-based modeling ap-
proach for specifying the Web applications proposed is described in section 3.
After that, the model-driven method for rule-based Web application develop-
ment is detailed in Section 4. The MDD support tool is presented in Section 5.
Section 6 describes related work, and finally main conclusions and future work
are summarized.

3 http://www.eclipse.org/modeling/

14

2 Overview of Rule-based systems and rule modeling

Rule-based systems originated in Artificial Intelligence, as the kind of expert or
knowledge-based system that use rules as knowledge representation formalism. In
this kind of software system, the human expert’s knowledge applied for solving a
complex task such as diagnosis, monitoring, assessment, and so on, is represented
as a set of declarative production rules. Rule engines are able to interpret the
rules, and reason using some inference method to come to a conclusion as the
human expert would do [11, 12].

In general, a rule-based system consists of a set of production rules, a work-
ing memory and an inference engine. The rules encode domain knowledge and
business logic as condition-action pairs. The working memory initially represents
the system input, but the actions that occur when rules are fired can cause the
state of the working memory to change. The inference engine runs a reasoning
method to fire rules, typically forward and backward chaining mechanisms. The
execution of the action part of a rule involves inferring new data.

More recently, the software engineering community has also focused on rules
as a proper formalism for representing business logic in software systems. Today
these two points of view have merged, favoring the widespread adoption of rule-
based systems and business rules in the implementation of complex decision-
making processes [13].

Rule formalisms are an active area of research addressing the development
rule languages and inference engines to add reasoning to complex information
systems. The Object Management Group (OMG) proposed the Ontology Def-
inition MetaModel [14] and Production Rule Representation [15] as standard
metamodels for introducing both technologies in the context of MDA/MDD.
Relevant initiatives to standardize and exchange rules are the Rule Markup
Initiative (RuleML) [16], the Semantic Web Rule Language (SWRL) [17], the
REWERSE Rule Markup Language (R2ML) [18], and the Rule Interchange For-
mat (RIF) [19].

We use CML as the rule-modeling language because, although it is currently
not one of the most common options for rule modeling, it has several features
desirable for production-rule formalisms. It enables unified representation of on-
tologies and rules, in which rules and ontology are naturally related. It meets
the requirements of rule representation formalisms, such as modeling rule an-
tecedent, rule consequent, named rules, and rulesets, binding rules to ontology
concepts, and so on. And finally, it is simpler and easier to use than other for-
malisms, although this may mean less expressiveness in certain situations.

3 Modeling Rule-based Web applications

The proposed model-driven approach for rule-based Web application develop-
ment focuses on introducing rule modeling in the specification of Web applica-
tions. However, other modeling concerns related to Web design features must
be also considered, powering the automatic code generation process. The CML

15

model describing the ontology and rule model is presented at a conceptual level,
whereas interaction and presentation features are specified at a Web design level.

3.1 Conceptual rule-based modeling

The CML formalism for knowledge modeling entails the specification of simpli-
fied domain ontologies and production rules. A CML (domain knowledge) model
is basically composed of two elements, domain schemas and knowledge bases.
Domain concepts, binary relationships, rule types and value types (enumerated
literals) are modeled in a domain schema. A knowledge base is composed of
instances of concepts, instances of relationships called tuples, and instances of
rules. Figure 1 shows the domain knowledge model components.

Knowledge

Model

Domain

Knowledge

Domain

Schema

Concepts

Rule Types

Binary Relations

Value Types

Instances of Concepts

Instances of Rules

Tuples

Knowledge

Base

Fig. 1. Domain Knowledge structure

CML was originally defined as a textual notation by means of an abstract
grammar described in EBNF (Extended Backus-Naur Form). To use CML in the
context of MDD, we have specified a metamodel for CML. The main difference
between this formalism and other conceptual modeling approaches in software
engineering, such as UML class diagrams, is its ability to model production rules
with rule type and the rule instance constructors. A rule type describes the
structure of a set of rules through the specification of the ontology types bound
to the rule antecedent and consequent. Rule types are particularized into rule
instances which represent specific, logical dependencies between rule antecedent
and consequent concept attributes.

3.2 Web design modeling

CML models are enriched with interaction and presentation characteristics to
specify rule-based Web applications design features.

Interaction features enable the specification of user interactivity through a set
of properties associated to CML constructors. The following properties dealing
with attribute management will illustrate some interaction characteristics:

– isDerived. This property is set to true when the attribute value is inferred
by the rule engine, so it cannot be edited by the user.

16

– notifiesTo and isNotifiedBy : These properties are used to indicate what at-
tributes must be refreshed by the re-rendered AJAX facility in a user event,
for example a mouse click or a change in the attribute value.

Conceptual Model Web form page

notifiesTo

reRender

M
D

D
C

o
d

e
G

e
n

e
r a

ti o
n

event=”onchanged”

Visit

codeVisit : Symbol

month : Month

date : Date

finished : Boolean

Visit_to_PlotOfLand

Visit

visits [*] : Visit

plot : PlotOfLand

possibleStages [*] : PhenologicalStage

phenology : PhenologicalStage

Rule Instance : Phenology-abstraction

visit.month = January

visit_to_plotOfLand.possibleStages = (A,B1,B2)

Visit

Date

Finished

Plot [PlotOfLand]

Phenology
PossibleStages

A - Dormant bud

B1 - Bud swell

B2 - Wooly bud

Fig. 2. Modeling interaction with NotifiesTo property

Figure 2 shows an example of how the interaction between two attributes
defined in the conceptual model is specified using the isDerived and notifiesTo
properties, showing how they affect Web forms for editing instances. The exam-
ple is taken from SAVIA, a decision-support system for pest control in green-
house crops and grapes that is being developed by applying rule-based mod-
eling and the proposed model-driven approach for rule-based Web system de-
velopment. The left side of Figure 2 shows a selection of SAVIA conceptual
rule model elements. In particular, a concept called Visit, a relationship called
Visit to PlotOfLand, and an example of rule instance belonging to the group
of rules that specify the possible phenological stages of the crop depending on
the date of the visit. The concrete rule instance is: ”if the month of the Visit
is January then the possibleStages are (A, B1, B2)”. Focusing on interaction
specification, the possibleStages attribute is derived since it is inferred by the
rule engine when it fires rules such as the one above. And the attribute date of
visit notifies possibleStages, making that when the event onChange happens in
the Web form date field, then an action makes the rule engine run and the list of
possibleStages is re-rendered, updating the list with the new values determined
by the rule engine.

Presentation features specify the conceptual model element’s visibility prop-
erties, enabling user interface customization. For example, this makes it possible
to select what concepts will appear in the application menu, and what attributes
are included as columns of tables showing all instances of a concept type.

17

4 MDD for Rule-based Web applications

4.1 General perspective

Figure 3 shows the proposed MDD schema for rule-based Web applications,
which is divided into two processes. The first one (the bottom flow in Fig. 3)
generates the implementation of the rule base in a rule implementation technol-
ogy, and the second one (the top flow in Figure 3) produces the code for the
Web architecture.

The development process starts with the specification of a conceptual rule
model which defines the domain ontology and the set of rules using an platform-
independent formalism such as CML. Application of the model-driven approach
produces two different results. One one hand, ontology and rules are transformed
into Jess, which supports the development and deployment of rule-based systems
tightly coupled to Java applications. As a result, a Jess rule base, a text file
containing the set of rules converted to Jess syntax, is generated.

Furthermore, a Web-based architecture is generated from the CML model
extended with the interaction and presentation features. Web application code
is based on the MVC architectural pattern and the JavaServer Faces (JSF)
framework, producing a set of JavaBeans classes and JSP (Java Server Pages).

Jess Rule
model

Jess rule base

CML Model

Java and JSF

Web model
Java

JSF

classes
pages

P

I

M

latform
ndependent
odel

P

S

M

latform
pecific
odels

Code

integration

Web Rule-based

application

M2M

Transformations
M2T

Transformations

Interaction &
Presentation

Fig. 3. MDD schema for Rule-based Web system generation

Although the two MDD processes are executed independently of each other,
the final result must integrate the rule base into the Web application. This is
done by the appropriate method calls to the Jess API (Application Programming
Interface) in the Java code generated, entailing integration of the rule engine into
the Web application.

The rule-based Web application generated benefits of having the decision
logic externalized from core application code, since uncoupling the rules from the
source code increases scalability and maintainability of rule-based applications
[20]. Our approach makes it possible for the two MDD processes to be executed
separately, and therefore, any change in the rule model affecting only to rule logic
(rule instances) but without affecting to the structure of information (concepts,
relationships, and so on) can be translated to a new rule base without having
to modify or regenerate anything else in the Web architecture. This approach
makes Web applications easier to maintain and evolve.

18

4.2 MDD of Jess rules

The first transformation of Jess rules in MDD involves the CML source model
being translated into a platform-specific model based on a Jess rules metamodel,
using an M2M transformation. The metamodel proposed for Jess rules (Figure
4) is an extended version of a simple rule metamodel for rule-based systems
described in [21].

RFactSlot

- slotName : String
- slotValueRange : String
- slotCardinality : RSlotCardinality
- slotType : String

RDefFact

- factName : String
RFunctionType

- system
- userdefined

<<enumeration>>

RRuleType

- constraint
- initialization

<<enumeration>>

RSlotCardinality

- slot
- multislot

<<enumeration>>

RFunction

- functionName : String
- parameters [0..] : String
- returnValue : String
- functionType : RFunctionType

RDefFacts

- defName : String
- documentation : String

0..*+facts 0..*

RVariable

- varName : String

RModule

- moduleName : String
- rulemetamodel : String
- outputFilePath : String

1

0..*

+funInModule

1

+functions

0..*

{ordered}

1

0..*

1

+defFacts 0..*

RCondElem

- ceName : RCondElemEnum

0..*
*

1
+childCE

0..*
*

1

RFactTemplate

- factName : String

0..1

+extends

0..1

1

0..*

+owner

1

+Slot

0..*

{ordered}

0..*

+inModule

+factTemplates

0..*

RRule

- ruleName : String
- ruleType : RRuleType
- description : String
- Salience : Integer

0..* 0..*0..*

+actions

0..*

{ordered}
1

0..1

1

+condition

0..1

1

0..*

1

+rules
0..*

RSlotMatchExp

- slotName : String
- matchExp : String

0..*

+factTemplate

0..*

RPattern

1

0..*

1

+ceMatchPattern0..*

0..*

+factTemplate

0..*

1

0..*

1

+ceMatchPattern

0..*

1

0..*

1

+slotMatchExp
0..*

RQuery

- queryName : String
- documentation : String
- quetyType : RQueryType

0..*

+variables

0..*
{ordered}

0..* +queries0..*

0..*

+ceMatchPattern

0..* {ordered}

RQueryType

- allFacts
- aFactByKey

<<enumeration>>

RDefSlot

- slotName : String
- slotcardinality : RSlotCardinality

0..*+slots 0..*

RDefSlotValue

- value : String
1..*

+slotValue

1..*

Fig. 4. Jess Rules Metamodel

In the Jess rules metamodel, a metaclass is defined for each Jess language
element. The root element of a Jess rule model is RModule. A module contains
fact templates, rules, functions, facts and queries. The RFactTemplate metaclass
models fact templates, the Jess constructor for storing information.

RRule enables the representation of rules. A rule has a ruleName, a property
called salience that determines the order in which applicable rules are fired by
the rule engine, a containment reference condition representing the rule’s con-
dition part (antecedent), and a reference called actions representing the rule’s
action part (consequent). RPattern and RSlotMatchExp metaclasses define pat-
tern matching expressions in rule conditions. Actions are function calls that
assert new facts, or retract or modify existing facts.

Facts are defined by the RDefFacts metaclass. Facts are acquired from in-
stances of concepts in the CML source model. Finally, RQuery models queries
to consult the working memory at runtime.

19

The mapping from CML rule-based models to Jess rule models is designed
by a M2M transformation which maps each CML metamodel constructor to
one or several Jess Rule metamodel elements. The Jess rule model generated by
the M2M transformation is the source model for a M2T transformation which
automatically generates the Jess rule base source code, producing a Jess file
(.clp) with a code for every element included in the Jess rule model. The M2T
transformation is designed using JET, as described later in this paper.

4.3 MDD of JSF Web architecture

A second MDD process is applied (see Figure 3) to generate a Web architecture
that integrates rules into a Web application. In this process, Jess rules can be
integrated into the Web application, since both the Jess rule base and the Web
architecture are generated from the same CML model.

Figure 5 shows the proposed target architecture for rule-based Web appli-
cations, based on the MVC architecture pattern, the JSF framework and rich
AJAX JBoss Richfaces components.

Web Browser Apache Tomcat
Application Server

Jess rule engine

JavaEE Platform

JSF
+

RichFaces Jess facts

Jess
rule base

Fig. 5. Rule-based Web application architecture

The integrated rule engine manages the Jess rule base and the text file con-
taining persistent facts. The Web application enables the user to perform four
basic predetermined functions, create new instances, read the current list of in-
stances, update and delete instances. That CRUD operations are executed on
the Jess rule engine working memory, enabling the inference mechanism to fire
appropriate rules when necessary. The rule engine executes a forward-chaining
inference mechanism to drive the reasoning process, firing the rules with condi-
tions evaluated as true, and executing their actions to infer new information or
modify existing one.

A metamodel for the JSF Web architecture was designed. In the M2M and
M2T transformations from a CML model to a JSF model and finally to code,
each concept is mapped to several elements, a JavaBean class, a JSF page for
instance creation and edition, a JSF page for listing all instances of that concept
type, and a managed bean to be included in the configuration file. Interaction
and presentation features are taken into account at this level in model-driven
processes.

20

As a result, the use of both rules and AJAX technology improves the cre-
ation and edition of instances in the Web application. Since Web forms are
implemented with AJAX RichFaces components, each single form value can be
validated and submitted individually as it is entered. This facility entails the
rule engine firing suitable rules and inferring new information that drives the
instance creation or edition, for example, updating choice-field values.

5 Tool Support: InSCo-Gen

Our rule-based Web application model-driven development approach is demon-
strated by our proof-of-the-concept, the InSCo-Gen tool. InSCo-Gen was de-
veloped using MDD tools provided by the Eclipse Modeling Project. Models
and metamodels were defined using the Eclipse Modeling Framework (EMF4),
including three metamodels, the CML metamodel for conceptual models, the
Jess Rule metamodel used for representing Jess platform-specific models, and
the JSF metamodel used by Web-based specific models.

Conceptual models conforming to the CML metamodel are created using
the built-in reflective EMF editor. In order to improve model specification, the
reflective editor is customized using Exeed (EXtended Emf EDitor) [22], a plugin
which can modify editor default icons and labels, adding Exeed annotations to
the metamodel. A screenshot with a model created with this editor is shown in
Figure 2.

Modeling certain aspects of Web design, such as interaction and presentation,
is implemented in different ways. Whereas interaction features are added to
the conceptual CML metamodel through metaclass properties, presentation is
defined by a set of XML configuration files, which can be edited by the developer
before generating the Web application code.

Two M2M transformations are designed with Atlas Transformation Language
(ATL5). The first one maps a CML model to a Jess platform-specific model. The
second one transforms a CML model into a JSF-specific model.

The outputs of both ATL transformations are the inputs of two M2T transfor-
mations implemented with Java Emitter Templates (JET6). As a result, InSCo-
Gen automatically produces the Web application code, on one hand, source text
files with Jess rules and facts, and on the other, the Web application components,
the faces-config.xml and web.xml configuration files, the Java Beans for model
classes, and a Jess-Engine Bean which uses the Jess Java API (Application Pro-
gramming Interface) to integrate the rule engine into the architecture. Moreover,
a set of JSP/JSF web pages are generated for the user interface. These pages are
based on the RichFaces library [8], an open source framework that adds AJAX
capability to JSF applications.

4 http://www.eclipse.org/modeling/emf/
5 http://www.eclipse.org/m2m/atl/
6 http://www.eclipse.org/modeling/m2t/?project=jet

21

6 Related Work

Our proposal uses the CML rule and ontology modeling formalism as the MDD
source model. To put CML into the MDD framework, we defined a metamodel
for CML. The definition of a UML Profile for the specification of CML knowledge
models is addressed in [23] where the authors also discusses the possible mapping
of the profile elements to a Jess platform specific model.

Some previous work has proposed the generation of Jess rules from ontology
and rule models, such as OWL (Ontology Web Language) [24] and SWRL (Se-
mantic Web Rule Language) [25]. These proposals focus on Jess code generation
without applying a genuine MDD/MDA approach. But the most important dif-
ference between the proposal presented in this paper and those publications is
that they do not integrate Jess into a functional Web application, so the Jess
rule base generated must be run in a development tool using a shell, such as the
Protege JessTab [26].

An MDD approach to Web Applications based on MVC and JavaServer
Faces is described in [27]. Existing Web Engineering methods, such as UWE
[28], WebML [29] and WebDSL [30], approach the design and development of
Web applications addressing such concerns as structure, presentation, naviga-
tion. However, they do not consider rule modeling in Web application develop-
ment. Our proposal focus on introducing rule modeling in this context, and we
do not consider other concerns of Web application modeling such as navigation
model, since we simplify the functionality to CRUD operations and, therefore,
types and navigation links are fixed and preset.

Regarding MDD of Web applications integrating rules, [31] describes MDD
principles for rule-based Web services modeling using R2ML, and proposes an
MDD approach for generating Web services from rule models. Whereas this
proposal focuses on a Web services architecture, our work is based on a MVC
architecture using the JSF framework.

7 Conclusions and future work

In this paper, rule-based and model-driven techniques are intertwined for the
development of rule-based Web applications. The main contribution of our work
is to enrich the specification of Web applications with a rule modeling formalism,
introducing a new concern in Model-Driven Web Engineering. A model-driven
approach for generating Web implementation enhanced with inference features
is described and demonstrated by an MDD tool.

The resulting rule-based Web architecture implements the MVC architectural
pattern using the JavaServer Faces framework, and incorporates rich JBoss Rich-
faces components to enhance the user interface with AJAX capabilities. The Jess
rule engine is embedded in the Web application to provide inference capabilities.
Our proposal does not include a navigation model, since application functionality
is predetermined by CRUD functions.

Due to the declarative nature of rules, the decision logic is externalized from
core application code producing Web applications easier to maintain and evolve.

22

The approach is being evaluated through its use in the development of a Web
decision-support system for pest control in agriculture, which makes recommen-
dations to growers and technicians about the necessity of treating a specific pest
or disease in grapes.

As future work, it is planned to use other ontology and rule modeling lan-
guages such as OWL and SWRL as source models for the model-driven ap-
proach, and define interoperability modules with other rule formalisms. Differ-
ent rule platforms, such as JBoss Rules [32], will be also considered as a target
rule technology. The Web application generated, which is aimed at enriching
the architecture with database facilities, will be improved to provide a complete
persistence layer.

Acknowledgments. This work was supported by the Spanish Ministry of Ed-
ucation and Science under the project TIN2004-05694, and by the Junta de
Andalucia (Andalusian Regional Govt.) project P06-TIC-02411.

References

1. Eiter, T., Ianni, G., Krennwallner, T., Polleres, A.: Rules and ontologies for the
semantic web. In Baroglio, C., Bonatti, P.A., Maluszynski, J., Marchiori, M.,
Polleres, A., Schaffert, S., eds.: Reasoning Web. Volume 5224 of Lecture Notes in
Computer Science., Springer (2008) 1–53

2. Brachman, R.J., Levesque, H.J.: Knowledge representation and reasoning. Morgan
Kaufmann, San Francisco (2004)

3. Object Management Group: MDA Guide Version 1.0.1. OMG document:
omg/2003-06-01 (2003)

4. Mellor, S., Clark, A., Futagami, T.: Model-Driven Development - Guest editors
introduction. IEEE Software 20(5) (Sep-Oct 2003) 14–18

5. Anjewierden, A.: CML2. Technical Report 11, University of Amsterdam (1997)
URL: http://www.swi.psy.uva.nl/projects/kads22/#cml2.

6. Schreiber, G., Akkermans, H., Anjewierden, A., de Hoog, R., Shadbolt, N.,
de Velde, W.V., Wielinga, B.: Knowledge Engineering and Management: The
CommonKADS Methodology. The MIT Press, Cambridge (2000)

7. Sun Microsystems: JavaServer Faces http://java.sun.com/javaee/javaserverfaces/.
8. JBoss: RichFaces (2007) http://www.jboss.org/jbossrichfaces/.
9. Friedman-Hill, E.: Jess in Action: Java Rule-Based Systems. Manning Publications

(2003)
10. del Águila, I.M., Cañadas, J., Palma, J., Túnez, S.: Towards a methodology for

hybrid systems software development. In: Proceedings of the Int. Conference on
Software Engineering and Knowledge Engineering (SEKE). (2006) 188–193

11. Durkin, J.: Expert Systems: Catalog of Applications. Akron (Ohio), Intelligent
Computer Systems Inc. (1993)

12. Russell, S.J., Norvig, P.: Artificial intelligence: a modern approach. Prentice-Hall,
Inc., Upper Saddle River, NJ, USA (1995)

13. Object Management Group: Semantics of Business Vocabulary and Business Rules
(SBVR). http://www.omg.org/spec/SBVR/1.0 (2008)

14. Object Management Group: Ontology Definition Metamodel RFP (2003) Avail-
able: http://www.omg.org/cgi-bin/doc?ad/2003-03-40.

23

15. Object Management Group: Production Rule Representation RFP (2003) Avail-
able: http://www.omg.org/cgi-bin/doc?br/2003-09-03.

16. RuleML: The Rule Markup Initiative (2001) URL: http://www.ruleml.org.
17. Horrocks, I., Patel-Schneider, P., Boley, H., Tabet, S., Grosof, B., Dean, M.: SWRL:

A Semantic Web Rule Language combining OWL and RuleML. W3C. Available
at www.w3.org/Submission/2004/SUBM-SWRL-20040521 (2004)

18. REWERSE Working Group I1: R2ML -The REWERSE I1 Rule Markup Language
(2006) URL: http://oxygen.informatik.tu-cottbus.de/rewerse-i1/?q=R2ML.

19. Rule Interchange Format Working Group: RIF Use Cases and Requirements. W3C
Working Draft (2006) URL: http://www.w3.org/TR/rif-ucr/.

20. Frankel, D., Hayes, P., Kendall, E., McGuinness, D.: The Model Driven Seman-
tic Web. In: 1st International Workshop on the Model-Driven Semantic Web
(MDSW2004), Monterey, California, USA. (2004)

21. Chaur G. Wu: Modeling Rule-Based Systems with EMF. Eclipse Corner Articles
http://www.eclipse.org/articles/ (2004)

22. Kolovos, D.S.: Exeed: EXtended Emf EDitor - User Manual.
http://www.eclipse.org/gmt/epsilon/doc/Exeed.pdf (2007)

23. Abdullah, M., Benest, I., Paige, R., Kimble, C.: Using unified modeling language
for conceptual modelling of Knowledge-Based systems. In: Conceptual Modeling -
ER 2007. (2007) 438–453

24. Mei, J., Bontas, E.P., Lin, Z.: OWL2Jess: A Transformational Implementation of
the OWL Semantics. Lecture Notes in Computer Science 3759 (2005) 599–608

25. OConnor, M., Knublauch, H., Tu, S., Grosof, B., Dean, M., Grosso, W., Musen,
M.: Supporting Rule System Interoperability on the Semantic Web with SWRL.
Lecture Notes in Computer Science 3759 (2005) 974–986

26. Eriksson, H.: Using JessTab to integrate Protege and Jess. Intelligent Systems,
IEEE 18(2) (2003) 43–50

27. Distante, D., Pedone, P., Rossi, G., Canfora, G.: Model-Driven development of web
applications with UWA, MVC and JavaServer faces. In: L. Baresi, P. Fraternali,
and G.-J. Houben (Eds.): ICWE 2007, LNCS. Volume 4607., Springer, Heidelberg
(2007) 457–472

28. Koch, N., Knapp, A., Zhang, G., Baumeister, H.: Uml based web engineering: An
approach based on standards. In: Web Engineering: Modelling and Implementing
Web applications. Human-Computer Interaction Series. Springer, Berlin (dec 2007)

29. Fraternali, P., Bongio, A., Brambilla, M., Comai, S., Matera, M.: Designing Data-
Intensive Web Applications. 1 edn. Morgan Kaufmann (December 2002)

30. Groenewegen, D.M., Hemel, Z., Kats, L.C., Visser, E.: WebDSL: a domain-specific
language for dynamic web applications. In: Companion to the 23rd ACM SIGPLAN
conference on Object-oriented programming systems languages and applications,
Nashville, TN, USA, ACM (2008) 779–780

31. Ribarić, M., Gašević, D., Milanović, M., Giurca, A., Lukichev, S., Wagner, G.:
Model-Driven engineering of rules for web services. In: Generative and Trans-
formational Techniques in Software Engineering II: International Summer School,
GTTSE 2007, Braga, Portugal, July 2-7, 2007. Revised Papers, Springer-Verlag
(2008) 377–395

32. JBoss: Drools documentation http://www.jboss.org/drools/documentation.html.

24

Design Process Ontology � Approach Proposal?

Grzegorz J. Nalepa1 and Weronika T. Furma«ska1

Institute of Automatics,
AGH University of Science and Technology,
Al. Mickiewicza 30, 30-059 Kraków, Poland

gjn@agh.edu.pl, wtf@agh.edu.pl

Abstract. The ARD+ method supports the conceptual design of the
XTT2-based rules. However, number of limitations of the method have
been identi�ed. In this paper a new approach to the conceptual design of
rules is proposed. The main idea comes down to the use of the Semantic
Web methods and tools to represent ARD+ and overcome the limitations
of the original method. In the approach proposed in this paper an OWL
ontology capturing the semantics of the ARD+ model is proposed. Such
an ontology models the functional dependencies between rule attributes,
as well as the history of the design process. At the same time it is more
�exible that the original method, opening up possibility of integration
with other modeling methods and tools, e.g. UML.

1 Introduction

Practical design support is important for intelligent systems [1]. The phase of
knowledge acquisition and initial conceptual modeling with help of human ex-
perts largely in�uences the quality complex systems. In case of knowledge-based
system a hierarchical and iterative feature of this process improves the design.

ARD+ [2,3,4] method has been invented to support the conceptual design
of the XTT2-based rules. ARD+ (Attribute Relationship Diagrams) is a rule
prototyping method in the HeKatE project (http://hekate.ia.agh.edu.pl).
It supports the logical rule design with the XTT2 method (eXtended Tabular

Trees) [5,6]. However, number of limitations of the method have been identi�ed.
In this paper a new approach to the conceptual design of rules is proposed.

The main idea comes down to the use of the Semantic Web methods and tools
to represent ARD+ and overcome the limitations of the original method. In the
approach proposed in this paper an OWL ontology capturing the semantics of the
ARD+ model is proposed. Such an ontology models the functional dependencies
between rule attributes, as well as the history of the design process. At the
same time it is more �exible than the original method, opening up possibility of
integration with other modeling methods and tools, e.g. UML.

The rest of the paper is organized as follows: The next section describes the
context of ARD+ rule prototyping. Then the limitations of the original method

? The paper is carried out within the AGH UST Project No. 10.10.120.105.

25

are outlined, and the motivation for its extension given. The proposed Design

Process Ontology (DPO) is a new approach to the conceptual design of rules.
The DPO is introduced in the subsequent section. Possible directions for the
future work are given in the �nal section.

2 ARD+ Rule Prototyping Method

The Attribute Relationship Diagrams (ARD+) method [2,3,4] supports the con-
ceptual design of rule systems. The primary assumption is, that the state of the
intelligent system is described by the attribute values, which correspond to cer-
tain system characteristics. The dynamics of the system is described with rules.
In order to build the model of the dynamics, the attributes (in this approach
state variables) need to be identi�ed �rst. The identi�cation process is a knowl-
edge engineering procedure, where the designer (knowledge engineer) uses ARD
to represent the identi�ed attributes, together with their functional dependencies
captured. Using them, rules can be built in the next logical design phase.

ARD is a general method, that tries to capture two features of the design: the
attributes, with functional relations between them, and the hierarchical aspect
of the process. The second feature is related to the fact that in practice the
knowledge engineering process is a gradual re�nement of concepts and relations.

In Fig. 1 a simple ARD dependency diagram can be observed. It is in fact
one of the phases of the benchmark thermostat case study [7] studied in detail in
the HeKatE project. The diagram models a simple dependency read as �thermo-
stat Temperature depends on Time speci�cation�. This is a general statement �
currently ARD does not model what the speci�c dependency is, only a simple
fact that some dependency exists.

In the following design stage this model can be re�ned, by specifying Time as
a compound attribute, and later on discovering that the set of newly introduced
attributes (Date, Hour, season, and operation) can be in fact decomposed
into two subsets that depend on each other. The nodes of the ARD diagram
correspond to so-called characteristics (properties) that are described by one or
more attributes. Attributes can be conceptual (general), and physical (speci�c).

Two transformations of the model are possible: �nalization and split. The
speci�cation transformation (between Time and Date, Hour, season, and
operation) is called �nalization, whereas the other one is called split. These are
captured in the Transformation Process History diagram (TPH). Together with
the ARD dependency diagram they form the ARD Model. In the model on the
right (Fig. 3) the black edges correspond to �nalization and split transformations,
and the blue edges show the functional dependencies.

In general, ARD could be used support the design of both forward and back-
ward chaining rules. However, so far it's been mainly used for forward chaining.
The basic idea is that having the most detailed, speci�c ARD dependency dia-
gram, rule prototypes can be automatically built. A rule prototype is a pair of
sets of attributes present in the rule premise, and a set of decision attributes.
The prototype is aimed at an attributive rule language [3], such as XTT2 [5,6].

26

Time Temperature

Temperature

Date

Hour

season

operation

Temperature
Date

Hour

season

operation

Temperature
season

operation

Date

Hour

Fig. 1. ARD diagram

Thermostat

Time

Temperature

Time Temperature

Date

Hour

season

operation

Date

Hour

season

operation

Date Hour

Fig. 2. TPH diagram

Thermostat

Time

Temperature

Time

Temperature

Date

Hour

season

operation

Date

Hour

season

operation

Date Hour

Fig. 3. ARD+ model

3 Motivation

The ARD+ method [4] is an extension of the original ARD [2,3]. Compared to
its predecessor it has a formalized description and a well-de�ned set of model
transformations. ARD+ also introduced the concept of capturing the evolution
of the model design by the means of the TPH diagram. The method also pro-
vided a practical algorithm for building XTT prototypes. The ARD+ design
process requires the knowledge engineer to identify attributes, characteristics
and relations in both the ARD and TPH diagrams. However, it is apparent that
the method has certain important limitations or drawbacks.

1. The identi�cation of attributes and dependencies is a straightforward task
only in the case of simple, small systems with 10-30 rules. However, it could

27

turn out a very tedious and time consuming tasks in case of complex systems
having tens of attributes and hundreds of rules.

2. ARD+ allows only to capture general functional dependencies, without clas-
sifying them in any way. In fact the �ARD dependency� has a very unspeci�c
semantics. In ARD+ it is possible to state �A depends on B and C� but it is
not possible to specify how it depends, what is the nature of the dependency.

3. The semantics of TPH is also a very broad one. An edge in the TPH diagram
simply means that the new ARD+ characteristics is somehow related to
another characteristics on the previous stage of the design. Again, it is not
explicitly speci�ed how it is related. In fact, in ARD+ two transformations
are possible: �nalization and split. The goal of the TPH is to capture these
transformations. However it does not explicitly di�erentiates them (there is
only one class of TPH edges).

4. The last problem concerns a coherent description of the ARD+ model. In [4]
two diagrams are described: the ARD+ diagram capturing the functional
dependencies between properties grouping attributes at a given design stage,
and the TPH diagram, capturing the history of the design process. Later
on, in the design tool VARDA [8] a combined diagram � here referred as
an ARD+ model � has been introduced. It combines the dependency and
history diagrams as observed in Fig. 3. However, it has not been formally
described and analyzed.

The �rst problem concerns support for knowledge acquisition in general,
and has been addressed in [9]. A practical approach to a partial automation
of the attribute and dependency identi�cation process by the use of knowledge
discovery methods has been introduced there.

The focus of this paper is to propose a single coherent solution for the three
remaining problems. A richer knowledge representation model is proposed. In
particular it should:

1. allow to specify di�erent classes of functional dependencies,
2. provide more expressive means for the history description,
3. allow to build a single coherent model combining both functional dependen-

cies and history information in a single model.

In the next section a proposal of using standard Semantic Web methods
meeting the above mentioned requirements is put forward.

4 Design Process Ontology Proposal

The basic idea presented here comes down to proposing an ontology � called the
Design Process Ontology (DPO) �capturing the functional dependencies present
in the main ARD diagram and history information captured in the TPH.

In general, an ontology is a knowledge representation [10] that serves as a
formal de�nition of objects in the universe of discourse and relationships among
them. The domain is described by means of concepts (classes), roles (properties)

28

and instances (individuals). Relations can be speci�ed both among classes and
individuals. Ontologies allow for a formal de�nition of the vocabulary in the
universe of discourse, together with its intended meaning and constraints present
in the domain. In this paper the Web Ontology Language (OWL) [11], speci�cally
the OWL DL dialect, based on Description Logics (DL) [12] is used.

Similarities of the ontology-based modelling approach and the ARD method
has been investigated in [13,14]. Alternative approaches to a mapping between
ontology concepts and system attributes have been considered. One of them
consists in representing system attributes and characteristics as concepts in an
ontology. Another proposal is to treat attributes as instances of a generic class
Attribute. Both approaches allow for describing the relations between system
attributes using ontology properties. In this paper an ontology based on the
former approach is presented.

Design Process Ontology is a proposal of a task ontology [15]. Its aim is to cap-
ture the system characteristics together with dependencies among them, as well
as represent the gradual re�nement of the design process. Basically, DPO consists
of a general class Attribute and four properties: dependsOn, transformedInto,
splitInto, and finalizedInto.

The property dependsOn is very general and may be further specialized. It is
used to represent functional dependencies among the system characteristics. At
this stage we do not formally specify the semantics, which intuitively may be put
as �one attribute depends on the other�. Functional in this context have a di�er-
ent meaning than functional properties used in OWL (owl:FunctionalProperty),
where they denote that the property has an unique value for each instance.

The other three properties (transformedInto, splitInto and finalizedInto)
denote the TPH relations � the design process transformations. A hierarchy of
the TPH properties may be introduced as follows (DL convention):
split_into v transformed_into, finalized_into v transformed_into.
The domain and the range of all the properties is the general class Attribute.

DPO may be specialized by concrete ontologies for speci�c design tasks. In
this case system characteristics (conceptual and physical attributes) subclass the
Attribute class. All the characteristics and attributes identi�ed in a system are
represented as independent classes. The properties may be specialized accord-
ingly, so that they range over concrete system classes rather than the general
Attribute class. An example of such an ontology for the Thermostat system is
depicted in Fig. 4. The ontology has been built in OWL using Protegé.

ARD is a method used in a gradual re�nement process. As the process pro-
gresses, the functional dependencies change and new TPH relations are added.
It is worth emphasizing that the historical TPH relations remain unchanged,
whereas the functional ones are di�erent at each process stage (observe Fig. 2).
Thus, the ontology is di�erent at various design stages. At a given moment an
ontology represents all of the characteristics and attributes identi�ed in the sys-
tem from the beginning of the design process. All the TPH relations, such as
split and �nalization are shown. As for the functional dependencies, only the
most speci�c relations identi�ed at certain moment are shown (observe Fig. 4).

29

Fig. 4. Simple DPO in OWL designed in Protegé

30

5 Conclusions and Future Work

The paper concerns the conceptual prototyping of decision rules. The ARD+
method discussed in a paper provides simple means for capturing functional
dependencies between attribute present in rules. Moreover, it allows to capture
and represent the evolution of the model, the history of the design. However, it
has some limitations addressed in the paper.

In order to solve these problems, it is proposed to use the Semantic Web tools
in the system conceptual design phase. The proposal is to capture the system
elements and various dependencies among them, using an ontology. In the Design
Process Ontology, certain speci�c relations are de�ned. The ontology presented
in this paper includes only the basic relations and serves as the illustration of
the approach. A concrete ontology specializing the DPO is equivalent to ARD
model of a system. Moreover, it provides a more coherent model, while allowing
to introduce more relations, which would not be possible in the original ARD.

Future work concerns further investigation of the possibilities of using on-
tologies in the design process. This includes formalizing various ARD+ model
features in Description Logics. As for now, the dependencies between the sys-
tem characteristics are modelled with various OWL properties (roles). It will be
considered, if some of those relations can be incorporated into class descriptions.
Certain formal descriptions would help to verify relations such as split_into.

The set of various dependencies represented in an ontology will be enlarged.
The general functional relation depends_on should be specialized, including the
di�erentiation between AND/OR dependencies (as used in AND/OR graphs in
diagnostic systems). The set of TPH relations may also be enriched.

As the design process progresses, the Design Process Ontology changes. The
transformations between subsequent ontologies will be analyzed and their for-
malization will be proposed. Use of rules on top of the DPO is considered. These
rules could be possibly introduced as DLP (DL Programs) or expressed in SWRL.

A future requirement � not directly addressed here � concerns support for
certain annotations present in the UML class diagram. In this case, the reworked
method would be closer in semantics to the UML-based design. For more details
see [16,17]. The possibilities of integrating OWL with UML using Protege4 is
also to be discussed. This approach could provide means to use and integrate
both Semantic Web technologies as well as classic software engineering methods
to design intelligent systems.

References

1. Giarratano, J., Riley, G.: Expert Systems. Principles and Programming. Fourth
edition edn. Thomson Course Technology, Boston, MA, United States (2005) ISBN
0-534-38447-1.

2. Nalepa, G.J., Lig¦za, A.: Conceptual modelling and automated implementation of
rule-based systems. In: Software engineering : evolution and emerging technologies.
Volume 130 of Frontiers in Arti�cial Intelligence and Applications. IOS Press,
Amsterdam (2005) 330�340

31

3. Lig¦za, A.: Logical Foundations for Rule-Based Systems. Springer-Verlag, Berlin,
Heidelberg (2006)

4. Nalepa, G.J., Wojnicki, I.: Towards formalization of ARD+ conceptual design and
re�nement method. In Wilson, D.C., Lane, H.C., eds.: FLAIRS-21: Proceedings
of the twenty-�rst international Florida Arti�cial Intelligence Research Society
conference: 15�17 may 2008, Coconut Grove, Florida, USA, Menlo Park, California,
AAAI Press (2008) 353�358

5. Nalepa, G.J., Lig¦za, A.: A graphical tabular model for rule-based logic program-
ming and veri�cation. Systems Science 31(2) (2005) 89�95

6. Nalepa, G.J., Lig¦za, A.: Hekate methodology, hybrid engineering of intelligent
systems. International Journal of Applied Mathematics and Computer Science
(2009) accepted for publication.

7. Negnevitsky, M.: Arti�cial Intelligence. A Guide to Intelligent Systems. Addison-
Wesley, Harlow, England; London; New York (2002) ISBN 0-201-71159-1.

8. Nalepa, G.J., Wojnicki, I.: Varda rule design and visualization tool-chain. In
Dengel, A.R., et al., eds.: KI 2008: Advances in Arti�cial Intelligence: 31st Annual
German Conference on AI, KI 2008: Kaiserslautern, Germany, September 23�26,
2008. Volume 5243 of LNAI., Berlin; Heidelberg, Springer Verlag (2008) 395�396

9. Atzmueller, M., Nalepa, G.J.: A textual subgroup mining approach for rapid ard+
model capture. In Lane, H.C., Guesgen, H.W., eds.: FLAIRS-22: Proceedings
of the twenty-second international Florida Arti�cial Intelligence Research Society
conference: 19�21 May 2009, Sanibel Island, Florida, USA. (2009)

10. van Harmelen, F.: Applying rule-based anomalies to kads inference structures.
ECAI'96 Workshop on Validation, Veri�cation and Re�nement of Knowledge-
Based Systems (1996) 41�46

11. McGuinness, D.L., van Harmelen, F.: Owl web ontology language overview, w3c
recommendation 10 february 2004. Technical report, W3C (2004)

12. Baader, F., Calvanese, D., McGuinness, D.L., Nardi, D., Patel-Schneider, P.F.,
eds.: The Description Logic Handbook: Theory, Implementation, and Applications.
Cambridge University Press (2003)

13. Szostek-Janik, J.: Translations of knowledge representations for rule-based systems.
AGH University of Science and Technology (2008) MSc Thesis.

14. Nalepa, G.J., Furma«ska, W.T.: Proposal of a new rule-based inference scheme for
the semantic web applications. In: 1st International Conference on Computational
Collective Intelligence - Semantic Web, Social Networks & Multiagent Systems.
(2009) To be published.

15. Guarino, N.: Formal ontology and information systems. In: Proceedings of the First
International Conference on Formal Ontologies in Information Systems. (1998) 3�
15

16. Nalepa, G.J., Kluza, K.: Uml representation proposal for xtt rule design method.
In Nalepa, G.J., Baumeister, J., eds.: 4th Workshop on Knowledge Engineering
and Software Engineering (KESE2008) at the 32nd German conference on Arti-
�cial Intelligence: September 23, 2008, Kaiserslautern, Germany, Kaiserslautern,
Germany (2008) 31�42

17. Nalepa, G.J.: Xtt rules design and implementation with object-oriented methods.
In Lane, H.C., Guesgen, H.W., eds.: FLAIRS-22: Proceedings of the twenty-second
international Florida Arti�cial Intelligence Research Society conference: 19�21 May
2009, Sanibel Island, Florida, USA. (2009)

32

A Data Structure for the Refactoring of
Multimodal Knowledge

Jochen Reutelshoefer, Joachim Baumeister, Frank Puppe

Institute for Computer Science, University of Würzburg, Germany
{reutelshoefer, baumeister, puppe}@informatik.uni-wuerzburg.de

Abstract. Knowledge often appears in different shapes and formalisms,
thus available as multimodal knowledge. This heterogeneity denotes a
challenge for the people involved in today’s knowledge engineering tasks.
In this paper, we discuss an approach for refactoring of multimodal
knowledge on the basis of a generic tree-based data structure. We ex-
plain how this data structure is created from documents (i.e., the most
general mode of knowledge), and how different refactorings can be per-
formed considering different levels of formality.

1 Introduction

In today’s knowledge engineering tasks knowledge at the beginning of a project
is often already available in various forms and formalisms distributed over mul-
tiple sources, for instance plain text, tables, flow-charts, bullet lists, or rules. We
define this intermixture of different shapes of knowledge at different degrees of
formalization as multimodal knowledge. However, current state-of-the-art tools
are often constrained to a specific knowledge representation and acquisition inter-
face for developing the knowledge base. In consequence, the tools are commonly
not sufficiently flexible to deal with multimodal knowledge. While the evolution
of the knowledge system based on a single formalism (e.g, ontology evolution)
has been thoroughly studied, the evolution of multimodal knowledge has not
yet been sufficiently considered. In this paper, we propose a data structure and
methods, that support representation and refactoring of multimodal knowledge.
We have implemented this data structure within a semantic wiki, since such
systems proved to be well-suited to support collaborative knowledge engineering
at different levels of formalization.

The rest of the paper is organized as follows: In the next section, we give a
detailed introduction into multimodal knowledge, and we motivate why refactor-
ing of this type of knowledge is necessary. Further, we provide a data structure,
that helps to perform refactorings. In Section 3, we introduce categories of refac-
torings for multimodal knowledge and we show how they can be performed using
the described approach. In this context, we discuss how semi-automated methods
can help on the refactoring tasks. In Section 4, we discuss the overlapping as-
pects of refactoring with the related domains ontology engineering and software
engineering. We conclude pointing out the challenges we face with this approach
and give an overview of the planned future work.

33

2 Multimodal Knowledge

We introduce the idea of multimodal knowledge (MMK) and its advantages
and challenges. Further, we present a data structure called KDOM to represent
multimodal knowledge in an appropriate manner. An implementation of this
approach within the semantic wiki KnowWE is also given.

2.1 Multimodal Knowledge and the Knowledge Formalization
Continuum

Often, knowledge is available in different (digital) representations as we already
motivated above. To gain advantage of the knowledge by automated reason-
ing, the collection of differently shaped knowledge pieces needs to be refactored
towards an initial (formalized) knowledge base. During this process the entire
knowledge base may contain a wide range of different degrees of formalization
and distinct representations. The full range from unstructured plain text over
tables or flowcharts to executable rules, or logics sketched as in Figure 1 is
metaphorically called the knowledge formalization continuum (KFC) [1].

Fig. 1. Sketch of the Knowledge Formalization Continuum building the basis for mul-
timodal knowledge

By turning knowledge into other representations, it allows for (not com-
pletely) seamless transitions in either direction - more formal or less formal. The
most suitable degrees of formalization for a given project need to be carefully
selected according to the cost-benefit principle. However, in any case refactor-
ings towards the desired target knowledge base become necessary. Refactoring is
defined as changing the structure of something without changing the semantics.
For clarification, we comprehend refactoring in this context as changing structure

34

without changing the intended semantics as we are also dealing with non-explicit
knowledge artefacts (e.g., plain text). This point of view also considers plain
texts as first class knowledge items, which can (manually or semi-automated) be
refactored to an executable representation.

Advantages of Working with Multimodal Knowledge:
User friendliness: The formats and representations the domain experts are used

to (e.g., plain text in some cases) can be integrated in the knowledge engineering
process. Thus, people can participate in the first step with a minimum of training
efforts. Lowering the barriers of participation tackles an important problem of
knowledge engineering in general.

Bootstrapping : Assuming that we can work with different representations
of knowledge, the bootstrapping process shows up being extremely simple: Any
documents relevant to the problem domain can just be imported into the system.
The evolution of the knowledge driven by the knowledge engineering process will
increase its value continuously.

Maintenance: Many (executable) knowledge bases that have been created in
the past lack of maintainability. For example, in the compiled versions of large
rule bases there is often no sufficient documentation attached to allow other
people to further extend or modify the knowledge. Using the MMK approach —
to keep the executable knowledge artefacts closely located next to original justi-
fying less formal knowledge entities — provides knowledge engineers a context-
sensitive comprehension of the formalized knowledge.

The Challenge of Working with Multimodal Knowledge:
The main challenge is to cope with the different forms of knowledge with respect

to formality and syntactical shape. In the next section, we present an approach
enabling the multimodal knowledge to be refactored (at the cost of some pre-
engineering). However, in detail there are further challenges to be considered:

– handle redundancy of knowledge in different representations and degrees of
formality

– tracing the original source of knowledge items (justification) while traversing
the KFC

– keeping readability/understandability for humans (the flow of the content)

2.2 KDOM – a Data Structure for Multimodal Knowledge

The most important aspect of this approach is that free text is accepted as a fun-
damental representation of knowledge. The key idea is to have a self-documenting
knowledge base, that can easily be understood by the domain experts. Further,
explicitly formalized parts can be embedded into the free text paragraphs. Our
approach, to cope with the problems of different knowledge formats described
above, implies to break down the given data to (some) textual representation.
Some non-textual structure like tables or flowcharts can be converted into text

35

(for example using cell delimiter signs or XML-formats). However, images, for
instance, cannot be converted into a useful (in this context) textual representa-
tion. Thus, these items are considered as knowledge atoms. This approach treats
such items as units, which can be refactored (merely moved) as a whole, but its
internal structure cannot be changed. To apply refactoring methods, we build
a detailed document tree from the given document corpus. We call this tree
the Knowledge Document Object Model (KDOM) inspired by the DOM-tree of
HTML/XML-documents. The difference is that the source data is not in XML
syntax and that we have an explicit underlying semantics for (at least parts of)
the content. Of course, one system cannot support every imaginable format of
knowledge. Thus, some pre-engineering efforts are necessary to provide support
for the formats required. These include the formats given in the startup knowl-
edge and the target formats forming the ’goal’ of the engineering task. In the
pre-engineering step we define a kind of schema-tree merely forming the ontology
of the syntactical structure of the content that is processed.

The KDOM Schema Tree We describe the possible compositions of syntac-
tical entities in a multimodal knowledge document as a tree. At each level the
expected occurring formats are listed as siblings. We call such a definition of a
syntactical entities together with some intended semantics a KDOM-type. An
example KDOM schema tree for documents containing text, tables, comments,
and rules is shown in Figure 21.

Fig. 2. Sketch of a KDOM schema tree for tables, rules, and comments.

1 A KDOM schema is similar to an XML-Schema definition except that we do not
have XML-Syntax, but an explicit definition of the syntactical shape (a parser) for
each type.

36

This tree schema specifies the syntactical patterns, that can occur as sub-
patterns of its parents. The type Document — which is always the root node
in this KDOM schema — has three children types: Rule, Relation Table, and
Comment. Thus, in the document rules, relation tables and comments are ex-
pected. Each of these first level types may specify children types for themselves
denoting which sub-entities are expected. It does not specify any cardinalities or
orders of appearances in the document.2 In the next paragraph we outline how
this KDOM schema is used to create a content tree from knowledge documents
applying a semi-parsing-like approach. Semi-parsing denotes, that only specific
parts of a document are processed in detail by parsers, while other parts remain
as text nodes containing a (potentially large) fragment of plain text.

Building a Content KDOM Tree Having an appropriate schema tree of
types including their parsers defined, one can start to create content trees from
the documents. The following gives a short definition of the tree-based data
structure:

Definition 1 (KDOM). A KDOM is defined as set of nodes, where a node
n ∈ KDOM is defined as a tuple

n = (id, content, type, parent, children).

Thus, each node stores a unique id, some textual content, a type (describing
the role of the content), one parent (with exception of the root node having no
parent), and an (ordered) list of children nodes. A valid KDOM of a document
is given if:

1. The text content of the root node equals the text content of the document.
2. The following constraints are true:

(a) text-concatenation(n.children) = n.text for all n ∈ {KDOM \LEAFS}
LEAFS being the subset of KDOM with an empty chilren set

(b) n.type accepts n.text for all n ∈ {KDOM}, i.e., the text part of the node
n can be mapped to the corresponding type.

At each level in the schema tree the implicit type PlainText is allowed,
catching arbitrary content, that is not covered by explicitly defined types (semi-
parsing). This definition implies, that a concatenation of the leafs in depth-first
search order results in the full document text string. We also provide types for
concepts, concept values, conditions over concepts, and rules; further types can
be easily added. The construction of a KDOM is sketched by pseudo code in
Listing 1.1.

The root node of a document always refers to the full document — this is
also the first step of the tree building algorithm. Then, in each level all children
types are iterated and searched in the father’s content. When one type detects
2 The order of the siblings defines the order the entities are processed in the parsing

algorithm (see Listing 1.1)

37

a text passage that is relevant (findOccurences i.e., matched by its parser), then
it allocates this text fragment. Once some text fragment is allocated by a type
it will only be processed by the children types of the former type (defined by the
KDOM schema tree). If there is lots of unstructured text in MMK we expect that
lots of text does not match any type and thus is not allocated by an (explicit)
type in the tree (createPlaintextNodes).

Listing 1.1. A recursive algorithm to build up a KDOM tree
buildKDOMTree (fatherNode) :

f o r a l l (type : ch i ldrenTypes (fatherNode))
ch i ldrenNodes = f indOccurrences (type , unal locatedTextOfFather)

f o r a l l (chi ldNode : ch i ldrenNodes)
buildKDOMTree (chi ldNode)

f o r a l l (s t r i n g : una l locatedTexts)
c rea t eP la in t e x tNode s (s t r i n g)

Figure 3 shows an example of a document that is parsed by the KDOM
schema introduced in Figure 2. It shows a wiki system describing possible prob-
lems with cars. The particular article provides information on clogged air filters
in form of plain text paragraphs, rules, and a table.

The first paragraph shows some describing text, followed by a comment line.
Then, a rule (labeled number 3) is defined followed by plain text and so on. Rule
and tables are labeled in detail hierarchically, e.g., (3.1) and (3.2) for the two
parts of the rule. Given that the parser-components of the types of the schema
tree are configured correctly to recognize the relevant text parts, we can use the
proposed algorithm to create the KDOM content tree from the document. The
resulting parse tree shown in Figure 4 has one node for each labeled section from
the document.

As required already mentioned above any level in the tree contains the whole
content of the document. The content can be considered/engineered at different
levels of formality. Thus, also the refactoring methods in general can be applied
at different levels.

2.3 Implementation in KnowWE

Semantic wikis have been successfully used in many different software engineer-
ing and knowledge engineering projects in the last years, e.g., KIWI@SUN [2].
Further, a semantic wiki is a suitable tool to capture multimodal knowledge as
described. For this reason we implemented the introduced KDOM data struc-
ture in the semantic wiki KnowWE [3]. In fact, the KDOM tree is the main
data structure carrying the data of the wiki pages. A unique ID is assigned to

38

Fig. 3. An example document containing tables, rules, and comments.

39

Fig. 4. Structure of the KDOM content tree for the given example document.

40

every content node of the tree, which allows precise referencing of specific parts
of a document/wiki page. The types are integrated into the system by a plugin
mechanism. For additional (groups of) types a plugin is added to the core system
at system initialization time.

Figure 5 shows a class diagram with the core classes participating in the
implementation of the KDOM approach in the system KnowWE.

Fig. 5. A simple class diagram of the KDOM implementation in KnowWE.

For each KnowWEType a SectionFinder as parser component is specified,
which is responsible to allocate the correct text areas for the given type. To
generate the content tree the algorithm shown in Listing 1.1 is implemented.
Of course, a big part of the pre-engineering workload is implementing parsers
(SectionFinder) for defined types. For this reason, we provide a library of parser
components for common formats (e.g., XML, tables, line/paragraph-based), that
can be reused and extended. This allows for quick adaptation to new projects
demanding specific knowledge formats. Some of the markups implemented in
KnowWE can be found in [3].

3 Evolution of Multimodal Knowledge with Refactorings

The evolution of knowledge in wikis is typically performed by manual editing of
the source texts of the wiki pages by the user community. Although, many sys-
tems already provide some editing assistance techniques (e.g., templates, auto-
completion, tagging), the work of restructuring the knowledge already present
is still accomplished by manual string manipulations in the wiki source editor.

Given the KDOM tree described in Section 2.2 the structure of the knowledge
can be taken into account to develop further refactoring support. The text-based
knowledge can be considered in context when examining the content and types
of the surrounding nodes (father, siblings, cousins).

41

3.1 Refactorings

In the following we describe refactorings and how they can be performed with
this approach:

1. Renaming of concept
2. Coarsen the value range of a concept

Rename Concept This is probably the operation used most frequently, and it
is also simple to perform. The task is to identify each occurrence of the object in
all documents and replace it by the new name specified. Precondition of course
is, that the occurrences were captured correctly in the KDOM tree generated.
Problems can arise when different objects have the same name. For example if
different questions have equally named values. Overlapping value terms often
occur for example on scaled feature values like low, average/normal, and high.
Regarding the following two sketched rules the system needs to distinguish be-
tween normal as value for Exhaust pipe color and for Mileage evaluation, when
performing a renaming task on the value ranges.

IF Exhaust pipe color = normal

THEN Clogged Air Filter = N3

IF Mileage evaluation = normal

THEN Clogged Air Filter = N2

As the text string normal will probably appear quite frequently in an average
document base, it is necessary to identify the occurrences, when it is used as
value of a specific concept. The renaming algorithm can solve these ambiguities
by looking at the KDOM tree. Figure 6 shows the relevant KDOM subtrees of
the two rules. Thus, the renaming algorithm can be configured to check whether
a parent node of a value (1) is of type Finding(2). Further, it can look up the
content the sibling node of type Question (3) to infer the context of the value
for any occurrence.

Renaming of the occurrences in the formal parts in a consistent way is neces-
sary for compiling executable knowledge. However, the occurrences in less formal
parts cannot be identified that easily. But considering the whole knowledge cor-
pus renaming of these occurrences is still desirable with respect to consistency
of the multimodal knowledge base. We can provide all occurrences as propo-
sitions to the knowledge engineer as a simplest semi-automated approach. To
improve this approach, we are planning to employ advanced NLP techniques
on less detailed/formalized parts of the KDOM content trees to generate better
propositions.

42

Fig. 6. KDOM subtrees for findings of the two rules listed above.

Coarsen Value Range Often, domain experts start implementing the onto-
logical knowledge with choice questions providing detailed value ranges. During
ongoing development the value range of some concepts turn out to be unnec-
essary precise, e.g., an over-detailed concept. In the car diagnosis scenario, the
value range of Mileage evaluation is initially defined with the values given in the
following:

Mileage evaluation

- decreased

- normal

- slightly increased

- strongly increased

During the development of the knowledge base it turns, that it is not suitable
to have a distinction between slightly increased and strongly increased mileage.
A reason could be, that the knowledge is not so detailed to take advantage of
this distinction, resulting in an unnecessary high number of rules or disjunctive
expressions. The solution is a mapping of slightly increased and strongly increased
to a new value increased. To execute this it is necessary to find and adapt all
knowledge items using the object. This operation can be performed as an iterated
application of Rename Concept on the value range of the concept.

43

4 Related Work

The presented work is strongly related to refactoring in ontology engineering
and techniques for refactoring in software engineering.

Refactoring in Ontology Engineering The benefit of refactoring methods has
been recognized in ontology engineering, recently. Current research, however,
only discuss the modifications of concepts and properties within an ontology,
but does not consider possible implications of tacit knowledge that is neigh-
bouring and supporting the ontology. For example, in [4] various deficiencies
were presented that motivate the application of targeted refactoring methods.
Here, the particular refactoring methods also considered the appropriate modifi-
cations of linked rule bases. In [5] an approach for refactoring ontology concepts
is proposed with the aim to improve ontology matching results. The presented
refactorings are mainly based on rename operations and slight modifications of
the taxonomic structure. In the past, the approach KA scripts was presented
by Gil and Tallis [6]. KA scripts and refactoring methods are both designed to
support the knowledge engineer with (sometimes complex) modifications of the
knowledge. More recently, a related script-based approach for enriching ontolo-
gies was proposed by Iannone et al. [7].

Refactoring in Software Engineering The presented parsing algorithm can also
be compared to the parsing of formal languages (e.g., programming languages),
which has been employed successfully for multiple decades. There, the parsers are
often generated from a (context-free) grammar specification (e.g., ANTLR [8])
and can process the input in linear time [9]. The parse trees also are used for
refactoring in development environments. However, in order to deal with multi-
modal knowledge one advantage of the KDOM approach is that it can also deal
with non-formal languages (to some extend), for example, by employing text-
mining or information extraction techniques to generate nodes. Additionally, this
idea will be extended to a semi-automated workflow involving the knowledge en-
gineer. Further, we can add new syntax as plugins, and we are able to configure
the schema at runtime. Even though, we are working on the integration of parse
trees generated by classical parsers to allow embedding of formal languages into
the semi-parsing process at better performance.

5 Conclusion

In this paper, we introduced the generic data structure KDOM to support the
representation of multimodal knowledge. We explained how given documents
can be parsed into this data structure with some initial pre-engineering effort.
Further, we explained how it serves as the basis for refactoring of the knowl-
edge. We proposed a selection of refactorings and sketched how they can be
performed automated or semi-automated using the KDOM. We further plan
to apply semi-automated processes on the construction of the KDOM tree by

44

proposing detected objects or relations to the knowledge engineer, who then can
confirm if a given type should be attached to some text fragment.

One of the key challenges in this approach is, that the system needs to be
newly configured to each knowledge engineering task, its startup document struc-
tures and its target representations. This entails that the knowledge engineering
tools needs to be agile and methods and tools for the quick definition of parser
components are necessary.

References

1. Baumeister, J., Reutelshoefer, J., Puppe, F.: Engineering on the knowledge formal-
ization continuum. In: SemWiki’09: Proceedings of 4th Semantic Wiki workshop.
(2009)

2. Schaffert, S., Eder, J., Grünwald, S., Kurz, T., Radulescu, M.: Kiwi – a platform for
semantic social software (demonstration). In: ESWC’09: Proceedings of the 6th Eu-
ropean Semantic Web Conference, The Semantic Web: Research and Applications,
Heraklion, Greece (June 2009) 888–892

3. Reutelshoefer, J., Lemmerich, F., Haupt, F., Baumeister, J.: An extensible semantic
wiki architecture. In: SemWiki’09: Fourth Workshop on Semantic Wikis – The
Semantic Wiki Web (CEUR proceedings 464). (2009)

4. Baumeister, J., Seipel, D.: Verification and refactoring of ontologies with rules. In:
EKAW’06: Proceedings of the 15th International Conference on Knowledge Engi-
neering and Knowledge Management, Berlin, Springer (2006) 82–95

5. Svab, O., Svatek, V., Meilicke, C., Stuckenschmidt, H.: Testing the impact of
pattern-based ontology refactoring on ontology matching results. In: Third Inter-
national Workshop On Ontology Matching (OM2008). (October 2008)

6. Gil, Y., Tallis, M.: A script-based approach to modifying knowledge bases. In:
AAAI/IAAI’97: Proceedings of the 14th National Conference on Artificial Intelli-
gence and 9th Innovative Applications of Artificial Intelligence Conference, AAAI
Press (1997) 377–383

7. Iannone, L., Rector, A., Stevens, R.: Embedding knowledge patterns into OWL.
In: ESWC’09: Proceedings of the 6th European Semantic Web Conference, The
Semantic Web: Research and Applications. Springer (2009) 218–232

8. Parr, T.: The Definitive ANTLR Reference: Building Domain-Specific Languages.
Pragmatic Bookshelf (2007)

9. Wilhelm, R., Maurer, D.: Compiler Design. International Computer Science Series.
Addison-Wesley (1995) Second Printing.

45

Evaluating the Intelligibility
of Medical Ontological Terms

Björn Forcher1, Kinga Schumacher1, Michael Sintek1, and
Thomas Roth-Berghofer1,2

1 Knowledge Management Department,
German Research Center for Artificial Intelligence (DFKI) GmbH

Trippstadter Straße 122, 67663 Kaiserslautern, Germany
2 Knowledge-Based Systems Group, Department of Computer Science,

University of Kaiserslautern, P.O. Box 3049, 67653 Kaiserslautern

{firstname.lastname}@dfki.de

Abstract. The research project MEDICO aims at developing an intelli-
gent, robust and scalable semantic search engine for medical documents.
The search engine of the MEDICO demonstrator RadSem is based on
formal ontologies and is designated for different kinds of users, such as
medical doctors, medical IT professionals, patients, and policy makers.
Since semantic search results are not always self-explanatory, explana-
tions are necessary to support requirements of different user groups. For
this reason, an explanation facility is integrated into RadSem employing
the same ontologies for explanation generation. In this work, we present
a user experiment that evaluates the intelligibility of labels provided by
the used ontologies with respect to different user groups. We discuss
the results for refining our current approach for explanation generation
in order to provide understandable justifications of semantic search re-
sults. Here, we focus on medical experts and laymen, respectively, using
semantic networks as form of depiction.3

Key words: justification, graphical explanation, semantic search, eval-
uation, medical terms

1 Introduction

The research project MEDICO aims (among other things) at developing an in-
telligent semantic search engine for medical documents and addresses different
kinds of users, such as medical doctors, medical IT professionals, patients, and
policy makers. The ultimate goal of the project [1] is to realize a cross-lingual
and modality-independent search for medical documents, such as medical im-
ages, clinical findings or reports. Representational constructs of formal ontologies
3 This research work has been supported in part by the research program THESEUS
in the MEDICO project, funded by the German Federal Ministry of Economics and
Technology (grant number 01MQ07016). The responsibility for this publication lies
with the authors.

46

are used to annotate and retrieve medical documents. Currently, the MEDICO
demonstrator RadSem [2] employs the Foundational Model of Anatomy (FMA)
[3] and the International Classification of Diseases, Version 10 (ICD-10)4. As
there is no existing ontology of the ICD-10 available we implemented a tool
which parses the English and German online version providing an OWL ontol-
ogy of the ICD-10.

Since semantic search results are not always self-explanatory, explanations
are helpful to support users who have various intensions to use the search en-
gine. Each user group has different requirements and comes with different a priori
knowledge in the medical domain. Medical IT professionals, for instance, may
want to test the search engine. In this context, explanations are interesting when
the system presents unexpected results. It may turn out that the implementa-
tion or the used ontologies are incorrect. Hence, explanations can help to correct
the system or to improve it. In contrast to medical IT professionals, patients
and citizens are not interested in the exact implementation of the search algo-
rithm. Instead, they may want to learn something about the medical domain.
This concerns first of all medical terms but also the connection between medical
concepts.

For addressing these issues, we integrated an explanation facility into Rad-
Sem. The facility is used to justify search results by revealing a connection
between search and annotation concepts. Finding a connection the facility also
exploits the mentioned ontologies. Thus, the connection or justification contains
further concepts of the FMA or ICD-10. Especially the FMA provides several
medical terms for labeling a specific concept. As medical laymen cannot associate
any label with corresponding concepts a justification may not be understandable
to all of them. In contrast, medical experts may prefer explanations that fit their
daily language. In other words, the problem is to select appropriate labels with
respect to different user groups. For this reason, we conduct an experiment and
discuss its results in order to refine the explanation generation specifically to
medical experts and laymen.

This paper is structured as follows. The next section gives a short overview
about relevant research on explanations. Section 3 presents current techniques
of semantic search algorithms and motivates the need for explanations. Section 4
contains our work of justifying semantic search results. Section 5 describes the
user experiment and discusses its results in order to realize a tool that can be
used to tailor explanations to different user groups. We conclude the paper with
a brief summary and outlook.

2 Related Work

The notion of explanation has several aspects when used in daily life [4]. For in-
stance, explanations are used to describe the causality of events or the semantics
of concepts. Explanations help correcting mistakes or serve as justifications.

4 http://www.who.int/classifications/apps/icd/icd10online

47

Explanations in computer science were introduced in the first generation of
Expert Systems (ES). They were recognized as a key feature explaining solutions
and reasoning processes, especially in the domain of medical expert systems such
as MYCIN [5].

Explanation facilities were an important component supporting the user’s
needs and decisions [6]. In those early systems, explanations were often nothing
more than (badly) paraphrased rules that lacked important aspects or too much
information was given at once [7]. For that reason, Swartout and Moore formu-
lated five desiderata for ES explanations [8] which also apply for knowledge-based
systems, among them Fidelity and Understandability.

Fidelity means that the explanation must be an accurate representation of
what the ES really does. Hence, explanations have to build on the same knowl-
edge the system uses for its reasoning. Understandability comprises various fac-
tors such as User-Sensitivity and Feedback. User-Sensitivity addresses the user’s
goals and preferences but also his knowledge with respect to the system and the
corresponding domain. Feedback is very important because users do not neces-
sarily understand a given explanation. The system should offer certain kinds of
dialog so that users can become clear on parts they do not understand.

In [9], the Reconstructive Explainer is presented producing reconstructive ex-
planations for ES. It transforms a trace, i. e., a line of reasoning, into a plausible
explanation story, i. e., a line of explanation. The transformation is an active,
complex problem-solving process using additional domain knowledge. The de-
gree of coupling between the trace and the explanation is controlled by a filter
which can be set to one of four states regulating the transparency of the filter.
The more information of the trace is let through the filter, the more closely the
line of explanation follows the line of reasoning. This approach enables a disen-
gagement of an explanation component in order to reuse it in other ES. We took
up this theme in our current work.

The Semantic Web community also addresses the issue of explainability. The
Inference Web effort [10] realizes an explanation infrastructure for complex Se-
mantic Web applications. Inference Web includes the Proof Markup Language
for capturing explanation information. It offers constructs to represent where
information came from (provenance)or how it was manipulated (justifications).
Inference Web includes different tools and services in order to manipulate and
present the explanation information. The goal of our research is also to provide
tools and algorithms using formal knowledge such as ontologies for explanation
provision. The focus of our work is to generate understandable and adequate
explanations for knowledge-based systems.

3 Semantic Search

There are diverse definitions of the term semantic search. In general, search pro-
cesses comprise three steps, i. e., query construction, core search process, and
visualization of results [11]. In this work, we refer to the most common defini-
tion and use the term semantic search when formal semantics are used during

48

any part of the search process [12]. In this context, two main categories of seman-
tic search can be identified: fact and semantic document retrieval. Fact retrieval
engines are employed to retrieve facts (triples in the Semantic Web) from knowl-
edge bases based on formal ontologies. Such approaches apply three kinds of
core search techniques: reasoning, triple based, i. e., structural interpretation of
the query guided by semantic relations, and graph traversal search [12]. Semantic
document retrieval engines search for documents which are enriched with seman-
tic information. They use additional knowledge to find relevant documents by
augmenting traditional keyword search with semantic techniques. Such engines
use various thesauri for query expansion and/or apply graph traversal algorithms
to available ontologies [12, 13]. Analogously, the same semantic techniques are
used to retrieve other kinds of resources, e. g., images, videos, where additional
formal knowledge is used to describe them.

The MEDICO Demonstrator RadSem uses formal ontologies to annotate
medical documents in order to describe their content. The search algorithm
exploits the class structure of these ontologies to retrieve documents that are
annotated with semantically similar concepts with respect to a certain search
concept. For instance, searching for radiographs of the hand, users may obtain
documents that are annotated with the concept index finger or pisiform bone.
Currently, RadSem employs the FMA and ICD-10 ontology.

Users have various intensions to use semantic search engines. For instance, a
user wants to inform himself of a medical concept he do not remember. In this
case, he most probably searches for are similar or superior concept. Imaging,
the user searches for information about the shoulder height but using the term
shoulder for his search. If the user obtains a document and associated text snip-
pet highlighting the term acromion he may not know whether the document is
relevant or not. In this context, a short explanation can provide useful informa-
tion to support the user’s search intention. An explanation expressing that the
term acromion is a synonym for shoulder height and that the shoulder height is
part of the shoulder may help the user to remember.

The explanation has to reveal the connection between the query and the ob-
tained document. In general, users are not interested in the search techniques of
the engine, i. e., how the document is retrieved. In daily tasks users require only
a simple justification of the result. As semantic search algorithms use semantic
techniques such as ontologies this formal knowledge can be leveraged to generate
appropriate explanations.

4 Explanations in RadSem

The explanation facility in RadSem comprises two components: the Justification
Component and the Exploration Component. As its name implies, the first com-
ponent is primarily intended to justify the retrieval of medical documents. The
other component can be used to explore the underlying ontologies and offers
various kinds of interaction.

49

In general, explanations (like any kind of knowledge) have two different as-
pects: form and content [14]. Explanations are communicated through a certain
form of depiction such as text or semantic networks [15]. With respect to the
Understandability desideratum we chose semantic networks because they are an
intelligible alternative to text [16] representing qualitative connections between
concepts.

Fig. 1. Justification in RadSem

Most probably, a detailed explanation of the search algorithm used in Rad-
Sem is not important for most MEDICO users. Reusing our approach in other
semantic search projects we ignore consciously the desideratum Fidelity. Hence,
the Justification Component performs a kind of reconstructive explanation as
described in Section 2 omitting all process information of the search algorithm.
In this case the search concepts correspond to the input and the annotation
concepts correspond to output in the line of explanation, whereas the story in
between is constructed by the explanation facility using the ontologies FMA and
ICD-10 as knowledge base.

Since search and annotation concepts belong to ontologies the construction
is very simple. In general, ontologies can be transformed into a semantic network
representing a mathematical graph. Thus, the construction of the line of explana-
tion for semantic search in MEDICO can be reduced to a shortest path problem.
We chose the Dijkstra Algorithm [17] to solve this problem. The algorithm can
only be performed on non-negative edge path costs, so the question which costs
to choose for properties of the ontologies arises. In our first implementation we

50

assume an equal distribution, i. e., all properties have the same cost. Figure 1
depicts an example search in RadSem and according justification.

This simple approach already reveals two general problems. The first issue is
with the generation itself. The Dijkstra Algorithm determines only one shortest
path. Hence, potential alternative explanations are not found which may be
better in a certain context with respect to different user groups. In addition, the
number of concepts and thus, the amount of information is preset. Potentially,
the explanation path contains too much or too few information. The second
problem concerns the adequacy of a justification. In particular the FMA provides
several synonyms to label a concept. Currently, the explanation facility uses the
preferred label to name a certain concept in the explanation path. Most probably,
not all users can associate the preferred label with a corresponding concept.

Intelligibility is an important aspect of the quality of an explanation and
mainly applies for medical layman. In contrast, medical experts may prefer terms
which they use in their daily work. For instance, the term shoulder girdle may
be better for laymen in contrast to pectoral girdle which is more appropriate for
experts. To conclude, the difficulty is to determine the best label for different
user groups such as medical experts and medical laymen. In this work, we focus
on the second problem. Our goal is provide a simple approach to evaluate labels
with respect to the different user groups. This approach may be extended not
only to evaluate single labels but also to evaluate alternative explanation paths
or justifications.

Beyond question, the degree of knowledge about medical terms has a sig-
nificant effect on adequacy and intelligibility. Hence, a method is required to
determine the degree of knowledge of different user groups with respect to the
terms or labels used in an explanation path. Therefore, an inherent constant
must be considered.

An intuitive assumption is that the degree of knowledge can be correlated
with the frequency of terms in natural language. A useful statistical measure are
frequency classes. According to [18], the frequency class of a term t is defined
as follows: Let C be a text corpus and let f(t) denote the frequency of a term
t ∈ C. The frequency class c(t) of a term t ∈ C is defined as blog2(f(t∗)/f(t))c,
where t∗ denotes the most frequently used term in C. In many English corpora,
t∗ denotes the term the that corresponds to frequency class 0. Thus, a more
uncommonly used term has a higher frequency class. In the following, we refer
to any frequency class c(t) = i as ci.

5 Experiment

We assume that the degree of knowledge of medical terms can be correlated
with frequency classes. The more often a term is used in natural language the
more users know about that term. In order to verify the applicability of this
assumption we conducted a user experiment. In this experiment the test persons
should estimate their knowledge concerning several medical terms.

51

5.1 Experiment Setup

For evaluating the personal estimation of medical knowledge 200 medical terms
of the FMA and ICD-10 were selected consisting of one or two tokens. As German
is the mother tongue of the test persons, only German terms were considered in
order to avoid a distortion of the evaluation with respect to language problems.
We randomly selected ten terms for each frequency class c10, ..., c13 and 15 terms
for each frequency class c14, ..., c21. The frequency classes were determined with
the help of a service of the University of Leipzig.5 The first group of terms
contains well known terms such as Schulter (shoulder), Grippe (influenza), or
Zeigefinger (index finger), which all test persons typically know. In contrast,
the second group contains terms that are typically unknown to medical laymen.
In addition, we randomly selected 40 terms of the FMA and ICD-10 where a
frequency class could not be determined in order to have a greater probability
that at least some terms were unknown to medical experts. We refer to the
corresponding frequency class as c22.

Table 1. Personal Knowledge Estimation

(1) the term is completely unknown;
(2) the term has been heard of, but cannot be properly integrated

into a medical context;
(3) the meaning of the term is known or it can be derived. In

addition, the term can be vaguely integrated into a medical
context;

(4) the meaning of the term is known and it can be associated with
further medical terms;

(5) the term is completely clear and comprehensive knowledge can
be associated.

The 200 medical terms were randomly subdivided into four tests each con-
taining a varying number of frequency classes. Every test person was allowed
to do only one test. Thus, we had to take care that each of the four tests was
done as often as any other one. All test persons had to estimate their knowledge
about each term of a test on a scale from 1 to 5 (see Table 1) indicating their
Personal Knowledge Estimation (PKE).

5.2 Evaluation

In total, thirty-six persons participated in the experiment: twenty-eight laymen
and eight medical experts. The two groups were differentiated as follows. Test
persons with a profound medical qualification were classified as experts. For
instance, this concerns medical staff, students and doctors. All other test persons
were classified as laymen. Figures 2 and 3 depict the result of the evaluation.

52

Fig. 2. Experiment results: average values for experts (black) and laymen (gray)

Figure 2 depicts an average value of the PKE as function of the frequency
classes for experts (upper curve) and laymen (lower curve) as well. Figure 3
depicts the corresponding standard deviation.

Figure 2 contains two outliers for medical laymen: c13 and c19. The first one
can be traced to the term Atlas. It is an ambiguous term whose meaning in
a geological context is quite common. In contrast, its meaning as first cervi-
cal vertebra is relatively unknown. The second outlier can be traced to some
compounds which are quite common for the German language. The meaning of
those terms can easily be derived but their occurrence in daily language is rare.
In contrast to laymen, the curve of medical experts is without any irregularity.
Merely the estimation of general terms is very interesting because experts seem
to consider what they do not know with respect to the general term. The stan-
dard deviation for both groups is quite interesting. From frequency class c18 on
the values jump up. A possible reason for that may be that people have more
knowledge in subfields of the medical domain than in others, i. e., when they
have a certain disease.

The main objective of the experiment was not to verify a correlation between
users’ degree of knowledge and frequency classes. In fact, the intention is pri-
marily to denote intervals of frequency classes as a means of prognosis whether
user groups probably know a term or require supporting information. For this
purpose, we introduce three Boolean functions: k(t) for known terms, s(t) for
support requiring terms, and u(t) for unknown terms. With respect to average
PKE of medical laymen, we identified three suitable intervals, and defined the
functions as follows (index l indicates laymen):

1. kl(t) is true iff c(t) ∈ [c11, ..., c15]
2. sl(t) is true iff c(t) ∈ [c16, ..., c19]

5 http://wortschatz.uni-leipzig.de/

53

Fig. 3. Experiment results: standard deviation for experts (black) and laymen (gray)

3. ul(t) is true iff c(t) ∈ [c20, ..., cn] and n > 20

The proposed functions do not apply to medical experts. The average PKE
of all concepts indicates that medical experts generally know terms used in the
FMA and ICD-10. Thus, only the function ke(t) can be defined which is always
true (index e indicates experts).

As mentioned before, the functions allow evaluating a justification as pre-
sented in Section 4. For instance, there are two justifications A and B of the
same search result whereas both comprise three terms. If the middle term of A
is a known term and if the middle term of B is a support requiring term, prob-
ably justification A is the better one. The concepts can also be used to tailor
justifications. Let a justification represent a path in class hierarchy and comprise
four terms. If one of the mid terms is an unknown term and the one is known,
the unknown term can be removed.

In many cases, labels of the FMA or ICD-10 contain other concept labels.
For instance, distal phalanx of left index finger includes the concept labels distal
phalanx, left and index finger. All labels have different frequency classes and
thus, a prediction whether a user knows such a concept cannot be made (this
applies for all non lexical labels). But this may not be necessary in order to select
the most suitable label for a concept with respect to medical laymen or experts.
Using the kl(t) and ke(t) it is possible to define two sets of labels. These sets can
be generalized with respect to various attributes of the labels such as average
frequency class of sub labels, label length or token count. The most prominent
member of one class can be used to solve a label selection problem. A label
with minimal distance to that member may be the most appropriate label for a
concept concerning different user groups.

The presented experiment and proposed method may only be seen as a first
approach to improve the current explanation generation. We ignored some im-
portant aspects of the experiment, such as compounds or ambiguous terms. In

54

addition, users probably may not estimate their knowledge hundred per cent
correctly. For this reason, the presented approach can only be regarded as initial
point to evaluate terms or complete explanation paths which can be improved
by using further methods such as user interactions.

6 Summary and Outlook

In this paper we presented the explanation facility of the MEDICO Demonstra-
tor RadSem. The semantic search engine of RadSem uses formal ontologies to
annotate and retrieve medical documents. The explanation facility employs the
same ontologies and uses reconstructive explanations as a means of justifying
semantic search results. Improving the justifications we conduct an experiment
with medical experts and laymen. The objective of the experiment was to deter-
mine a correlation between users’ degree of knowledge and medical terms. We
discussed the results and proposed a method which can be used to determine
which terms of the used ontologies should be used in an explanation with respect
to medical experts and laymen as initial start. The overall approach can be used
to justify various semantic search algorithms using formal ontologies.

The next step of our research is to refine the method for tailoring and evalu-
ating terms and explanations. In addition, we will consider various kinds of user
interactions to improve this method.

References

1. Möller, M., Sintek, M.: A scalable architecture for cross-modal semantic annotation
and retrieval. In Dengel, A.R., Berns, K., Breuel, T.M., eds.: KI 2008: Advances
in Artificial Intelligence, Springer (2008)

2. Möller, M., Regel, S., Sintek, M.: RadSem: Semantic annotation and retrieval for
medical images. In: Proc. of The 6th Annual European Semantic Web Conference
(ESWC2009). (2009)

3. Rosse, C., Mejino, J.L.V.: The Foundational Model of Anatomy Ontology.
In: Anatomy Ontologies for Bioinformatics: Principles and Practice. Volume 6.
Springer (2007) 59–117

4. Passmore, J.: Explanation in Everyday Life, in Science, and in History. In: History
and Theory, Vol. 2, No. 2. Blackwell Publishing for Wesleyan University (1962)
105–123

5. Buchanan, B.G., Shortliffe, E.H., eds.: Rule-Based Expert Systems: The MYCIN
Experiments of the Stanford Heuristic Programming Project. Addison-Wesley Pub-
lishing Company, Reading, Massachusetts (1984)

6. Swartout, W.R., Paris, C., Moore, J.D.: Explanations in knowledge systems: Design
for explainable expert systems. IEEE Expert 6(3) (1991) 58–64

7. Richards, D.: Knowledge-based system explanation: The ripple-down rules alter-
native. In: Knowledge and Information Systems. Volume 5. (2003) 2–25

8. Swartout, W.R., Moore, J.D.: Explanation in second generation expert systems.
Second generation expert systems (1993) 543–585

9. Wick, M.R., Thompson, W.B.: Reconstructive expert system explanation. Artif.
Intell. 54(1-2) (1992) 33–70

55

10. McGuinness, D.L., Ding, L., Glass, A., Chang, C., Zeng, H., Furtado, V.: Expla-
nation interfaces for the semantic web: Issues and models. In: Proceedings of the
3rd International Semantic Web User Interaction Workshop (SWUI’06). (2006)

11. Organizers, T.: Guidelines for the trecvid 2007 evaluation (2007)
12. Hildebrand, M., Ossenbruggen, J., van Hardman, L.: An analysis of search-based

user interaction on the semantic web. Report, CWI, Amsterdam, Holland (2007)
13. Mäkelä, E.: Survey of semantic search research. In: Proceedings of the Seminar on

Knowledge Management on the Semantic Web. (2005)
14. Kemp, E.A.: Communicating with a knowledge-based system. In Brezillon, P., ed.:

Improving the Use of Knowledge-Based Systems with Explanation. (1992)
15. Ballstaedt, S.P.: Wissensvermittlung. Beltz Psychologische Verlags Union (1997)
16. Wright, P., Reid, F.: Written information: Some alternatives to prose for expressing

the outcomes of complex contingencies. Journal of Applied Psychology 57 (2)
(1973) 160–166

17. Dijkstra, E.W.: A note on two problems in connexion with graphs. Numerische
Mathematik 1 (1959) 269–271

18. zu Eissen, S.M., Stein, B.: Intrinsic plagiarism detection. In: ECIR. (2006) 565–569

56

HaDEs � Presentation of the HeKatE Design

Environment?

Krzysztof Kaczor and Grzegorz J. Nalepa

Institute of Automatics,
AGH University of Science and Technology,
Al. Mickiewicza 30, 30-059 Kraków, Poland

kk@agh.edu.pl, gjn@agh.edu.pl

Abstract. TOOL PRESENTATION: The paper introduces the HeKatE
design environment called HaDEs. The HeKatE project aims at deliver-
ing new knowledge representation methods for rule-based systems. Prin-
cipal ideas include an integrated hierarchical design process covering
stages from conceptual, through logical to physical design. These stages
are supported by speci�c knowledge representation methods: ARD+,
XTT2, and HMR. The whole design process is supported by a number of
tools, namely: VARDA and HJEd in the ARD+conceptual design stage
and rule prototyping, HQEd for the XTT2 logical design and �nally
HeaRT, the rule runtime environment. The goal of this tool presentation
is to introduce the design process using a practical example.

1 Introduction

Practical design methodologies for intelligent systems remain a �eld of active de-
velopment. Developing such a methodology requires an integration of accurate
knowledge representation and processing methods [1], as well as practical tools
supporting them. Some of the important features of such approaches are: scal-
able visual design, automatic code generation, support for existing programming
frameworks. At the same time quality issues, as well as a formalized description
of the designed systems should be considered.

The HeKatE project (see hekate.ia.agh.edu.pl) aims at providing an in-
tegrated methodology for the design, implementation, and analysis of rule-based
systems [2,3]. An important goal of the project is to allow for an easy integration
of knowledge and software engineering methods and approaches, thus providing
a Hybrid Knowledge Engineering methodology. The project delivers several new
knowledge representation methods, as well as a set of practical tools supporting
the whole design process.

This paper provides a short overview of the project including its main objec-
tives and tools in Sect. 2. Then in Sect. 3 the HeKatE design toolchain called
HaDEs is introduced. The paper accompanies a tool presentation given at the
KESE 2009 workshop.

? The paper is supported by the HeKatE Project funded from 2007�2009 resources for
science as a research project.

57

2 HeKatE Project Overview

2.1 Research Objectives

The main principles of the HeKatE project are based on a critical analysis of
the state-of-the art of the rule-based systems design, see [4].

Formal Language for Knowledge Representation. It should have a
precise de�nition of syntax, properties and inference rules. This is crucial for
determining its expressive power, and solving formal analysis issues.

Internal Knowledge Base Structure. Rules working within a speci�c
context, are grouped together and form the extended decision tables. These
tables are linked together forming a partially ordered graph structure which
encodes the �ow of inference.

Systematic Hierarchical Design Procedure. A complete, well-founded
design process that covers all of the main phases of the system lifecycle, from
the initial conceptual design, through the logical formulation, all the way to the
physical implementation is proposed. A constant veri�cation of the model w.r.t.
critical formal properties, such as determinism and completeness is provided.

In the HeKatE approach the control logic is expressed using forward-chaining
decision rules. They form an intelligent rule-based controller or simply a business
logic core. The controller logic is decomposed into multiple modules represented
by attributive decision tables. The emphasis of the methodology is its possible
application to a wide range of intelligent controllers. In this context two main
areas have been identi�ed in the project: control systems, in the �eld of intelligent
control, and business rules [5] and business intelligence systems, in the �eld
of software engineering. In the case of the �rst area the meaning of the term
�controller� is straightforward. In the second area the term denotes a well isolated
software component implementing the application logic, or logical model.

2.2 Main Methods

HeKatE introduces a formalized language for rule representation [4]. Instead
of simple propositional formulas, the language uses expressions in the so-called
attributive logic [3]. This calculus has a stronger expressiveness than the proposi-
tional logic, while providing tractable inference procedures for extended decision
tables. The current version of the rule language is called XTT2 [6]. The cur-
rent version of the logic, adopted for the XTT2 language, is called ALSV(FD)
(Attributive Logic with Set Values over Finite Domains).

Based on the logic, a rule language called XTT is provided [7,6]. XTT stands
for eXtended Tabular Trees. The language is focused not only on providing an
extended syntax for single rules, but also allows for an explicit structurization of
the rule base. XTT introduces explicit inference control solutions, allowing for a
�ne grained and more optimized rule inference than in the classic Rete-like solu-
tions. The representation has a compact and transparent visual representation
suitable for visual editors.

58

HeKatE also provides a complete hierarchical design process for the creation
of the XTT-based rules. The main phase of the XTT rule design is called the
logical design. The logical rule design process may be supported by a preceding
conceptual design phase. In this phase the rule prototypes are built with the
use of the so-called Attribute Relationship Diagrams. The ARD method has
been introduced in [8], and later re�ned in [3]. The principal idea is to build a
graph, modelling functional dependencies between attributes on which the XTT
rules are built. The version used in HeKatE is called ARD+ as discussed in [9].
The practical implementation on the XTT rule base is performed in the physical
design phase. In this stage the visual XTT model is transformed into an algebraic
presentation syntax called HMR. A custom inference engine, HeaRT runs the
XTT model described in HMR.

The complete framework including the discussed methods and tools is de-
picted in Fig. 1.

HML

HMR

ARD+

XTT2

Implementation Process

Visual Design Logical Model Automated Implementation

HeaRT

HaThoR

jvm/C++

V1 V2 V3HJEd/Varda

MODEL

CONTROLLER

VIEWS

Drools

SWRL

RIF

Analysis

HQEd

Logical

D
e
s
ig

n
 P

ro
c
e
s
s

Human readable

Machine readable

XML serialization

Physical

Conceptual

Fig. 1. The complete design and runtime framework

3 HaDEs Design Toolchain

The HeKatE design process is supported by a number of tools supporting the
visual design and the automated implementation of rule-based systems (see
https://ai.ia.agh.edu.pl/wiki/hekate:hades).

HJEd visual editor supports the ARD+ design process. It is a cross-platform
tool implemented in Java. Its main features include the ARD+ diagram creation
with on-line design history available through the TPH diagram. An example of
a design capturing functional dependencies between system attributes is shown
in Fig. 2. It is a medical diagnosis system. The diagram on the left shows the
dependencies between rule attributes, whereas the right one captures the design

59

history. Once created, the ARD+ model can be saved in a XML-based HML
(HeKatE Markup Language) �le. The �le can be then imported by the HQEd
design tools supporting the logical design.

Fig. 2. ARD+ design in HJEd

VARDA is a prototype semi-visual editor for the ARD+ diagrams imple-
mented in Prolog, with an on-line model visualization with Graphviz. The tool
also supports prototyping of the XTT model, where table headers including a
default inference structure are created, see Fig. 3. In this case three tables are
generated. The ARD+ design is described in Prolog, and the resulting model
can be stored in HML.

HQEd provides support for the logical design with XTT, see Fig. 4. In the
�gure some additional decision tables to input attribute values are present. It
is able to import a HML �le with the ARD+ model and generate the XTT
prototype. It is also possible to import the prototype generated by VARDA.
HQEd allows to edit the XTT structure with on-line support for syntax checking
on the table level. Attribute values entered are checked against their domains
and a number of possible anomalies is eliminated.

The editor is integrated with a custom inference engine for XTT2 called
HeaRT. The role of the engine is twofold: run the rule logic designed with the

60

HealthCare

Medication

[[creatinineLevel], [medication], [creatinineClearance], [age]] [[dose]]

[[diagnosis], [age], [allergic]] [[medication]]

[[weight], [creatinineLevel], [age]] [[creatinineClearance]]

Fig. 3. XTT model generation in VARDA

use of the editor, as well as provide constant formal analysis of the rulebase. The
communication uses a custom TCP-based protocol.

Fig. 4. XTT model edited in HQEd with anomalies detected

HeaRT (HeKatE Run Time) is a dedicated inference engine for the XTT2

rule bases. It is implemented in Prolog in order to directly interpret the HMR
representation which is generated by HQEd. HMR (HeKatE Meta Representa-
tion) is a textual representation of the XTT2 logic designed by HQEd. It is a
human readable form, as opposed to the machine readable HML format. The
HeaRT engine implements the inference based on the ALSV(FD) logic [6,4].

61

HalVA (HeKatE Veri�cation and Analysis) is a modularized veri�cation
framework provided by HeaRT. So far several plugins are available, including
completeness, determinism and redundancy checks. The plugins can be run form
the interpreter or from HQEd using the communication protocol.

4 Conclusions

The paper shortly introduces the main concepts of the HeKatE project, its meth-
ods and tools. The main motivation behind the project is to speed up and sim-
plify the rule-based systems design process, while assuring the formal quality of
the model. The HeKatE design process is supported by the HeKatE design en-
vironment called HaDEs. During the presentation given at the KESE workshop
the tools were presented using practical examples.

References

1. van Harmelen, F., Lifschitz, V., Porter, B., eds.: Handbook of Knowledge Repre-
sentation. Elsevier Science (2007)

2. Giarratano, J., Riley, G.: Expert Systems. Principles and Programming. Fourth
edition edn. Thomson Course Technology, Boston, MA, United States (2005) ISBN
0-534-38447-1.

3. Lig¦za, A.: Logical Foundations for Rule-Based Systems. Springer-Verlag, Berlin,
Heidelberg (2006)

4. Nalepa, G.J., Lig¦za, A.: Hekate methodology, hybrid engineering of intelligent sys-
tems. International Journal of Applied Mathematics and Computer Science (2009)
accepted for publication.

5. Ross, R.G.: Principles of the Business Rule Approach. 1 edn. Addison-Wesley
Professional (2003)

6. Nalepa, G.J., Lig¦za, A.: Xtt+ rule design using the alsv(fd). In Giurca, A., Analyti,
A., Wagner, G., eds.: ECAI 2008: 18th European Conference on Arti�cial Intelli-
gence: 2nd East European Workshop on Rule-based applications, RuleApps2008:
Patras, 22 July 2008, Patras, University of Patras (2008) 11�15

7. Nalepa, G.J., Lig¦za, A.: A graphical tabular model for rule-based logic program-
ming and veri�cation. Systems Science 31(2) (2005) 89�95

8. Nalepa, G.J., Lig¦za, A.: Conceptual modelling and automated implementation of
rule-based systems. In: Software engineering : evolution and emerging technolo-
gies. Volume 130 of Frontiers in Arti�cial Intelligence and Applications. IOS Press,
Amsterdam (2005) 330�340

9. Nalepa, G.J., Wojnicki, I.: Towards formalization of ARD+ conceptual design and
re�nement method. In Wilson, D.C., Lane, H.C., eds.: FLAIRS-21: Proceedings of
the twenty-�rst international Florida Arti�cial Intelligence Research Society confer-
ence: 15�17 may 2008, Coconut Grove, Florida, USA, Menlo Park, California, AAAI
Press (2008) 353�358

62

JSON Rules - The JavaScript Rule Engine

Emilian Pascalau1 and Adrian Giurca2

1Hasso Plattner Institute, Germany,
emilian.pascalau@hpi.uni-potsdam.de

2Brandenburg University of Technology, Germany,
giurca@tu-cottbus.de

Abstract. TOOL PRESENTATION: There is a considerable browser
potential in being able to easily wire together different services into new
functionality. Usually, developers use JavaScript or related technologies
to do browser programming. This short paper presents, JSON Rules, a
JavaScript rule engine running Event-Condition-Action rules triggered
by Document-Object-Model Events.

1 Introduction

The Rule Engine implementing the JSON Rules [1] language was designed to
fulfill at least the following requirements:

– create and execute rules in a Web browser
– support for ECA and PR rules
– forward chaining rule engine, influenced by the RETE algorithm;
– process atomic event-facts;
– the Working Memory contains beside regular facts, event facts.

The main goal of the rule engine is to empower users with the client side abili-
ties to model/execute web scenarios/applications/mashups by means of business
rules (See [1] and [2]). Particularly intelligent UI scenarios are in the main stream
of interest.

For a better understanding of the context we consider the following situation:
We are looking for a job using the Monster Job Search Service. Once the job is
obtained the location is shown on Google Maps.

2 The JSON Rules language

The language was initially introduced in [1]. JSON notation combined with
JavaScript function calls offers large capabilities to express various kinds of rules.
Recall that we deal both with production rules and with Event-Condition-Action
(ECA) rules i.e. rules of the form

RuleID: ON EventExpression IF C1 && ... && Cn DO [A1, ..., Am]

where the event part is optional and denotes an event expression matching the
triggering events of the rule; C1, ... Cn are boolean conditions using a Drools
like syntax and [A1, ... Am] is a sequence of actions.

63

2.1 Ontology of events - DOM events

The JSON event expression is related to the Event interface specification in
DOM Level 3 Events1, therefore the properties of this expression have the same
meaning as in the Event specification. At runtime these properties of this ex-
pression are matched against the incoming DOM events and their values can be
processed in the rule conditions and actions.

Example 1 (ECA Rule).

{"id": "rule101",
"appliesTo": ["http://mail.yahoo.com/"],
"eventExpression": {"type": "click",

"target": "$X"
},

"condition":[
"$X:HTMLAnchorElement($hrefVal:href)",
"new RegExp(/showMessage\?fid=Inbox/).test($hrefVal)"
],

"actions":["append($X.textContent)"]
}

3 The Engine

There is an important difference between the actual rule engines and the
JavaScript Rule Engine implementing the JSON Rules language for at least two
reasons: events facts are not static facts that require usual operation such as:
delete, update on the Working Memory but they are dynamic facts. They are
dynamically consumed based on the appearance time. Second the whole engine is
a live system: it is reactive because reacts based on events and it is proactive
for by itself produces events.

The project is hosted on Google Code platform2.

3.1 How you can use the engine

The engine is programmed in JavaScript and can be used as any JavaScript
framework. Basically, the lifetime of the rule engine is in the scope of the lifetime
of the current DOM inside the browser. Simple steps to make it run are:

1. Load the engine in your page:

<script type="text/javascript"
src="http://www.domain.com/jsonRulesEngine_Version.js">

</script>

1 http://www.w3.org/TR/DOM-Level-3-Events/
2 http://jsonrules.googlecode.com

64

http://www.w3.org/TR/DOM-Level-3-Events/
http://jsonrules.googlecode.com

2. Create an instance of the engine:

var jsonRulesEngine=new org.jsonrules.JSONRulesMainSystem();

3. Run the engine by calling run() with the URI of location of the repository
as input parameter:

jsonRulesEngine.run("http://www.domain.com/rulesRepo.txt");

When the engine and the rulesets are available, the main things that happen
are:

– When an event is raised, the EventManager catches that event. Then the
EventManager checks the ActionProcessor state.

– If the ActionProcessor is running, then the EventManager stores the event
in the queue of events that the InferenceEngine must later on process.

– However if the ActionProcessor is idle then the EventManager sends a mes-
sage to the InferenceEngine containing the queue of events that must be
processed. The InferenceEngine responds back to the EventManager, and
informs it that it has received/consumed the queue such that the EventManager
can reset its own queue.

– Events are processed one by one. For each event rules triggered by that
event will be matched against the WorkingMemory. The action of each ex-
ecutable rule is added to the list of executable actions (to be processed by
the ActionProcessor) according with possible priority of rules.

– The list of executable actions it is send to the ActionProcessor, to execute
them. Any JavaScript functions can be called in the rule actions’ part.

4 Conclusions

This paper describes shortly the general ideas behind an ECA rule-based and
forward chaining engine for browsers.

References

1. Adrian Giurca and Emilian Pascalau. JSON Rules. In Proceedings of the Proceedings
of 4th Knowledge Engineering and Software Engineering, KESE 2008, volume 425,
pages 7–18. CEUR Workshop Proceedings, 2008.

2. Emilian Pascalau and Adrian Giurca. A Rule-Based Approach of Creating and
Executing Mashups. In Proceedings of the 9th IFIP Conference on e-Business, e-
Services, and e-Society (I3E 2009), LNCS. Springer, 2009. forthcoming.

65

66

Author Index

Baumeister, Joachim 33

Cañadas, Joaqúın 13

Forcher, Björn . 46
Furmańska Weronika T. 25

Giurca, Adrian 1, 63

Kaczor, Krzysztof 57

Nalepa, Grzegorz J. 25, 57

Palma, José . 13
Pascalau, Emilian 1, 63
Puppe, Frank . 33

Reutelshoefer, Jochen 33
Roth-Berghofer, Thomas 46

Schumacher, Kinga46

Ténez, Samuel . 13

67

