
Sulla decidibilità di programmi FDNC
On the decidability of FDNC programs

P. A. Bonatti

Il Milione: A Journey in the Computational Logic in Italy

55

SOMMARIO/ABSTRACT

Questo articolo introduce una nuova dimostrazione della
decidibilità del controllo di consistenza per i programmi
FDNC sotto la semantica dei modelli stabili, basandosi su
splitting sequences regolari. Con questa tecnica, riusciamo
a rilassare leggermente la definizione di programmi
FDNC e muoviamo un primo passo verso l’analisi delle
relazioni tra programmi FDNC e la teoria dei programmi
finitamente ricorsivi.

We provide a new decidability proof for the consistency of
FDNC programs under the stable model semantics, based
on regular splitting sequences. With this technique, we can
slightly relax the definition of FDNC programs and make
a first step towards a precise understanding of the rela-
tionships between FDNC programs and finitely recursive
programs.

Keywords: Answer set programming, finitely recursive,
finitary, and FDNC programs, module sequences.

1 Introduction

Some of the recent works of Alberto concern modal exten-
sions of logic programming [5, 1]. A major motivation for
those programs is reasoning about actions and change. In
this setting, nonmonotonic constructs such as negation as
failure are extremely useful to encode compactly the frame
axiom and action consequences. However, for a long time
such features could be supported only by forbidding func-
tion symbols, in order to ensure decidability.

Later results dropped this restriction. Finitary programs
[4] preserve decidability even in the presence of infinite
domains. This is achieved at the cost of restrictions on the
cycles in dependency graphs containing an odd number of
negative edges. Such limitations imply restrictions on the
constraints (in the form of denials like← A1, . . . , An, for
example) that can be encoded in a finitary program.

FDNC programs [8] adopt a different strategy. They
restrict the syntax to (a skolemized form of) 2-variable
guarded logic and avoid the restrictions on cycles and con-
straints.

In this paper we reformulate the decidability of the con-
sistency check for FDNC programs in terms of regular
splitting sequences. In this way we slightly generalize a
decidability result published in [8].

2 Preliminaries

We assume the reader to be familiar with Logic Program-
ming and the stable model semantics [2]

Disjunctive logic programs are sets of (disjunctive) rules

A1 ∨A2 ∨ ... ∨Am ← L1, ..., Ln (m > 0, n ≥ 0),

where each Aj (j = 1, ...,m) is a logical atom and each Li

(i = 1, ..., n) is a literal, that is, either a logical atom A or
a negated atom notA.

If r is a rule with the above structure, then let head(r) =
{A1, A2, ..., Am} and body(r) = {L1, ..., Ln}. More-
over, let body+(r) (respectively body−(r)) be the set of all
atoms A s.t. A (respectively notA) belongs to body(r).

The ground instantiation of a program P is denoted
by Ground(P), and the set of atoms occurring in
Ground(P) is denoted by atom(P). Similarly, atom(r)
denotes the set of atoms occurring in a rule r.

A Herbrand model M of P is a stable model of P iff
M ∈ lm(PM), where lm(X) denotes the set of least mod-
els of a positive (possibly disjunctive) program X , and
PM is the Gelfond-Lifschitz transformation of P , obtained
from Ground(P) by (i) removing all rules r such that
body−(r) ∩M 6= ∅, and (ii) removing all negative liter-
als from the body of the remaining rules.

Disjunctive programs may have one, none, or multiple
stable models. We say that a program is consistent if it has
at least one stable model; otherwise the program is incon-
sistent. A skeptical consequence of a program P is any

Il Milione: A Journey in the Computational Logic in Italy

56

formula satisfied by all the stable models of P . A credu-
lous consequence of P is any formula satisfied by at least
one stable model of P .

The dependency graph of a program P is a labelled di-
rected graph, denoted by DG(P), whose vertices are the
ground atoms of P ’s language. Moreover, there exists an
edge from A to B iff for some rule r ∈ Ground(P), A ∈
head(r) and either B occurs in body(r), or B ∈ head(r).

An atom A depends on B if there is a directed path from
A to B in the dependency graph.

A disjunctive program P is finitely recursive [4, 3] iff
each ground atom A depends on finitely many ground
atoms in DG(P).

A FDNC program is a set of disjunctive rules conform-
ing to any of the following schemata:

(R1) A1(x) ∨ ... ∨An(x)← (not)B0(x), ..., (not)Bl(x)
(R2) R1(x, y) ∨ ... ∨Rn(x, y)←

(not)P0(x, y), . . . , (not)Pl(x, y)
(R3) R1(x, f1(x)) ∨ ... ∨Rn(x, fn(x))←

(not)P0(x, g0(x)), . . . , (not)Pl(x, gl(x))
(R4) A1(y) ∨ ... ∨An(y)←

(not)B0(Z0), ..., (not)Bl(Zl), R(x, y)
(R5) A1(f(x)) ∨ ... ∨An(f(x))←

(not)B0(W0), ..., (not)Bl(Wl), R(x, f(x))
(R6) R1(x, f1(x)) ∨ ... ∨Rn(x, fn(x))←

(not)B0(x), ..., (not)Bl(x)

(R7) C1(~c1) ∨ ... ∨ Cn(~cn)← (not)D1(~d1), ..., (not)Dl(~dl)

where n, l ≥ 0, Zi ∈ {x, y}, Wi ∈ {x, f(x)}, and each ~ci,
~di is a tuple of one or two constants. Each rule r must be
safe, i.e., each variable must occur in body+(r). Moreover
at least one rule of type (R7) must be a fact.

Our results depend on a splitting theorem that allows to
construct stable models in stages. In turn, this theorem is
based on the notion of splitting set of a program P [2],[6],
that is, any set U of atoms such that, for all rules r ∈
Ground(P), if head(r)∩U 6= ∅ then atom(r) ⊆ U . The
set of rules r ∈ Ground(P) such that head(r)∩U 6= ∅ is
called the bottom of P relative to the splitting set U and is
denoted by botU (P).

The partially evaluated complement of the bottom pro-
gram determines the rest of each stable model. The partial
evaluation of a ground logic program P with splitting set
U w.r.t. a set of ground atoms X is the program eU (P,X)
defined as follows:

eU (P,X) = { r′ | there exists r ∈ P s.t.
(body+(r) ∩ U) ⊆ X, (body−(r) ∩ U) ∩X = ∅,
head(r′) = head(r), body+(r′) = body+(r) \ U,
body−(r′) = body−(r) \ U } .

We are finally ready to formulate the splitting theorem.

Theorem 1 (Splitting theorem [6]) Let U be a splitting
set for a logic program P . An interpretation M is a stable
model of P iff M = J ∪ I , where

1. I is a stable model of botU (P), and

2. J is a stable model of eU (Ground(P) \ botU (P), I).

The splitting theorem has been extended to transfinite
sequences in [7]. A (transfinite) sequence is a family
whose index set is an initial segment of ordinals, {α :
α < µ}. The ordinal µ is the length of the sequence.

A sequence 〈Uα〉α<µ of sets is monotone if Uα ⊆ Uβ

whenever α < β, and continuous if, for each limit ordinal
α < µ, Uα =

⋃
ν<α Uν . A sequence with µ = ω is smooth

if each of its elements is finite.

Definition 2 [Lifschitz-Turner, [7]] A splitting sequence
for a program P is a monotone, continuous sequence
〈Uα〉α<µ of splitting sets for P s.t.

⋃
α<µ Uα = atom(P).

Lifschitz and Turner generalized the splitting theorem to
splitting sequences.

Theorem 3 (Splitting sequence theorem [7]) Let P be a
disjunctive program. M is a stable model of P iff there
exists a splitting sequence 〈Uα〉α<µ such that

1. M0 is a stable model of botU0(P),

2. for all successor ordinals α < µ, Mα is a stable
model of eUα−1(botUα(P)\ botUα−1(P),

⋃
β<α Mβ),

3. for all limit ordinals λ < µ, Mλ = ∅,
4. M =

⋃
α<µ Uα.

3 Revised decidability results

We first observe that strictly speaking, FDNC programs are
not always finitely recursive, due to the presence of local
variables, i.e. variables that occur in the body of a rule and
not in its head. Such variables arise in instances of rule
schema (R4); in particular x occurs only in the body. How-
ever it is not hard to verify that the following proposition
holds:

Proposition 4 If an atom R(t, u) belongs to a stable
model of an FDNC program, then either u = f(t) for some
function symbol f , or (t, u) is one of the vectors of con-
stants ~ci occurring in the head of some instance of (R7).

It follows that each rule of the form (R4) can be replaced
by a finite number of its instances:

• one for each substitution [y/f(x)], where f is a func-
tion symbol occurring in the program;

• one for each substitution [x/a1, y/a2] for each vector
of constants ~ci = (a1, a2) occurring in the head of
some instance of schema (R7).

By Proposition 4, such transformation preserves the set
of stable models of the given FDNC program. Moreover,
the transformation removes all local variables so the trans-
formed program is a finitely recursive FDNC program.

Il Milione: A Journey in the Computational Logic in Italy

57

With a similar argument we can further normalize
FDNC programs, restricting the set of atoms that may oc-
cur in a rule head. Each instance of schema (R2) can be re-
placed by a finite number of its instances by analogy with
the previous case. By Proposition 4, such transformation
preserves the set of stable models of the given FDNC pro-
gram. Moreover, the transformation specializes the heads
of the instances of (R2) so that the following lemma holds:

Lemma 5 Every FDNC program is equivalent to a FDNC
program with no rules of the form (R2) or (R4).

Corollary 6 Every FDNC program P is equivalent to a
finitely recursive FDNC program P ′ such that the binary
atoms occurring in Ground(P ′) are of the form R(t, f(t))
(for some function symbol f) or R(~ci), where ~ci occurs in
the head of some instance of (R7).

Note that the above program transformation can be ef-
fectively computed. Therefore, from now on, we shall fo-
cus without loss of generality on normal FDNC programs,
that we define as programs whose rules conform to some
of the schemata (R1), (R3), (R5), (R6), and (R7).

In the following, let P be a given normal FDNC pro-
gram, and let us construct a suitable splitting sequence for
P . First take any effective enumeration t1, t2, . . . , ti, . . .
of the ground compound terms of P ’s language, such that
each term ti precedes all the terms larger than ti (in terms
of the number of function symbol occurrences). For all
such ground terms ti, we shall denote by Ûi the set of all
ground atoms A(ti) and R(ti, f(ti)), for all function sym-
bols f . Now a canonical splitting sequence for P can be
defined as follows:

• let U0 be the set of all atoms of the form A(c), R(c, d),
or R(c, f(c)), where c and d are constants;

• let Ui+1 = Ui ∪ Ûi+1.

Since P has no rules conforming to (R2) or (R4), it is easy
to check that 〈Ui〉i<ω is indeed a splitting sequence for
Ground(P).

Moreover, note that by definition, canonical sequences
are smooth, as U0 and the sets Ûi are all finite.

Another important property of canonical sequences is
that the program slices Pi+1 = botUi+1(P)\botUi

(P) they
induce are all isomorphic to each other. By isomorphic, we
mean that for all 0 < i < j < ω, Pj can be obtained from
Pi by uniformly replacing ti with tj (in symbols, Pj =
Pi[ti/tj]).

Now consider finite sequences of models 〈Mi〉i<k with
the following properties:

• M0 is a stable model of botU0(P);

• Mi+1 is a stable model of eUi
(botUi+1(P) \

botUi(P),Mi).

We say such a sequence is blocked if Mk = Mj [tj/tk] for
some j such that 1 < j < k, that is, Mk can be obtained
from Mj by replacing term tj with tk.

Lemma 7 Every blocked model sequence 〈Mi〉i<k (in-
duced by a canonical splitting sequence 〈Ui〉i<ω for a nor-
mal FDNC program P) can be extended to an infinite se-
quence 〈Mi〉i<ω satisfying the following properties:

1. M0 is a stable model of botU0(P);

2. Mi+1 is a stable model of eUi
(botUi+1(P) \

botUi(P),Mi).

Roughly speaking, the idea simply consists in repeat-
ing the subsequence Mj , . . . ,Mk−1 forever, replacing the
terms tj , . . . , tk−1 as appropriate.

Proof. Let 〈Mi〉i<k be a blocked sequence as described in
the lemma’s statement. Point 1 follows immediately from
the hypothesis, so we focus on point 2. Since 〈Mi〉i<k is
blocked, there exists j < k such that Mk = Mj [tj/tk].
For all i > k, let mi = j + (i − k) mod(k − j) and
Mi = Mmi

[tmi
/ti]. Moreover, for all i ≥ 0 let Pi+1 =

botUi+1(P) \ botUi(P). As we already pointed out before
this lemma, Pi = Pmi [tmi/ti]. Now, since both the pro-
gram slices and the models with indexes i and mi are sub-
ject to the same symbol renaming, we have that

eUi
(Pi,Mi−1) = eUmi

(Pmi
,Mmi−1)[tmi

/ti] .

Since semantics does not depend on symbol names and by
assumption Mmi is a stable model of eUmi

(Pmi ,Mmi−1)
(as mi lies between j and k), we clearly have that Mi is a
stable model of eUi(Pi,Mi−1); this proves point 2.

Now proving decidability is relatively easy. We start by
characterizing satisfiability in terms of blocked sequences.

Theorem 8 M is a stable model of a normal FDNC pro-
gram P iff M is the limit of the extension (in the sense of
Lemma 7) of a blocked sequence 〈Mi〉i<k (induced by a
canonical splitting sequence 〈Ui〉i<ω for P).

Proof. (If) Suppose M is the limit of a sequence 〈Mi〉i<ω

such that 〈Mi〉i<k is a blocked sequence and such that:

1. M0 is a stable model of botU0(P);

2. Mi+1 is a stable model of eUi
(botUi+1(P) \

botUi(P),Mi).

Note that each program slice Pi+1 = botUi+1(P) \
botUi(P) contains only atoms from Ui+1 \ Ui−1 (because
P is a normal FDNC program). Therefore the partial eval-
uation of Pi+1 does not depend on the atoms in Ui−1, that
is, for all i < ω,

eUi(Pi+1,
⋃
j≤i

Mj) = eUi(Pi+1,Mi) .

Il Milione: A Journey in the Computational Logic in Italy

58

Then properties 1 and 2 above entail the properties re-
quired by the splitting sequence theorem (for µ = ω). It
follows that the limit M =

⋃
i<ω Mi is a stable model of

P .
(Only if) Suppose that M is a stable model of P . Let

M0 = M ∩ U0 and for all i < ω, let Mi+1 = M ∩
(Ui+1 \ Ui). By the splitting theorem, M0 is a stable
model of botU0(P). Moreover, by applying the split-
ting theorem twice for all i, we have that each Mi+1 is
a stable model of eUi(botUi+1(P) \ botUi(P),

⋃
j≤i Mj)

that, as we pointed out in the If part of the proof, equals
eUi

(botUi+1(P) \ botUi
(P),Mi). Then we are only left to

show that the sequence 〈Mi〉i<ω contains a blocked prefix
〈Mi〉i<k, that is, for some j and k such that 0 < j < k <
ω, Mk = Mj [tj/tk].

To see this, observe that by definition for all i > 0, Mi

is a subset of Ûi, and Ûi is isomorphic to Û1, that is, Ûi =
Û1[t1/ti] and |Ûi| = |Û1|. It follows that for all i > 0
there exists Si ⊆ Û1 such that Mi = Si[t1/ti]. Since
Û1 is finite, there must be two indexes j and k and a set
S ⊆ Û1 such that 0 < j < k ≤ 2|Û1|, Mj = S[t1/tj], and
Mk = S[t1/tk]. Consequently, Mk = S[t1/tj][tj/tk] =
Mj [tj/tk], which completes the proof.

Corollary 9 A normal FDNC program P has a stable
model iff P has a blocked model sequence 〈Mi〉i<k (in-
duced by a canonical splitting sequence 〈Ui〉i<ω for P)
with k ≤ 2|Û1|.

Corollary 10 Deciding whether a FDNC program P is
consistent is decidable.

Proof. Consistency can be nondeterministically checked
as follows: First normalize P . Next for i = 1, . . . , 2|Û1|,
build the program eUi(Pi+1,Mi) and pick up one of its
stable models Mi+1; if no such model exists, then return
false. Check whether Mi+1 is isomorphic to some previous
Mj ; if so, return true. Otherwise repeat the loop, or return
false if the end of the loop is reached. Clearly, this algo-
rithm returns true in at least one run iff P has a blocked
model sequence 〈Mi〉i<k with k ≤ 2|Û1|. By the above
corollary, it follows that the algorithm solves the consis-
tency problem for P .

Our results do not need all the restrictions placed on
FDNC programs. Proposition 4 holds even when the pro-
gram is not safe, provided that the rules conforming to (R2)
have nonempty bodies. The other proofs do not depend on
safeness. In this sense, our results are slightly more general
than those in [8].

4 Conclusions and future work

We have given an alternative proof of a decidability re-
sult of [8] for FDNC programs by proving that a consistent
normal FDNC program has always a stable model which is
the limit of a regular sequence 〈Mi〉i<ω of stable models

of the finite programs eUi
(Pi+1,Mi). Such a regular se-

quence can be finitely represented by a blocked sequence
〈Mi〉i<k.

The term blocked is deliberately inspired by the notion
of blocking in tableaux for modal and description logics.
The intuitions in all these areas are analogous, and the
goals are the same, namely decidable reasoning in the pres-
ence of infinite domains through a finite representation of
infinite regular models.

We are planning to complete this investigation by char-
acterizing credulous and skeptical reasoning and their
computational complexity in terms of blocked model se-
quences. In particular, in order to provide effective reason-
ing methods, we are going to exploit the fact that normal
FDNC programs are finitely recursive; for such programs
the sequence of bottom programs induced by a smooth
splitting ω-sequences is consistent iff the entire program is
consistent. The consistency of the bottoms can be proved
by (a suitable adaptation of) Lemma 7.

It will be interesting to inspect applications of these
ideas to modal extensions of logic programming, in the
spirit of [5], possibly exploiting the translation in [1].

REFERENCES

[1] M. Baldoni, L. Giordano, and A. Martelli. Translat-
ing a modal language with embedded implication into
horn clause logic. In ELP, volume 1050 of LNCS,
pages 19–33. Springer, 1996.

[2] C. Baral. Knowledge Representation, Reasoning and
Declarative Problem Solving. Cambridge University
Press, Cambridge, 2003.

[3] S. Baselice, P.A. Bonatti, and G. Criscuolo. On finitely
recursive programs. In ICLP 2007, volume 4670 of
LNCS, pages 89–103. Springer, 2007.

[4] Piero A. Bonatti. Reasoning with infinite stable mod-
els. Artif. Intell., 156(1):75–111, 2004.

[5] Laura Giordano, Alberto Martelli, and Camilla
Schwind. Ramification and causality in a modal ac-
tion logic. J. Log. Comput., 10(5):625–662, 2000.

[6] V. Lifschitz and H. Turner. Splitting a Logic Program.
In Proc. of the 12th Int. Conf. on Logic Programming,
MIT Press Series Logic Program, pages 581–595. MIT
Press, 1995.

[7] Vladimir Lifschitz and Hudson Turner. Splitting a
logic program. In International Conference on Logic
Programming, pages 23–37, 1994.

[8] M. Simkus and T. Eiter. FDNC: Decidable non-
monotonic disjunctive logic programs with function
symbols. In LPAR 2007, volume 4790 of Lecture Notes
in Computer Science, pages 514–530. Springer, 2007.

Il Milione: A Journey in the Computational Logic in Italy

59

