
Una fruttuosa esperienza in Logica Computazionale
A valuable experience in Computational Logic

Annalisa Bossi, Nicoletta Cocco
Dipartimento di Informatica, Università Ca’ Foscari di Venezia,

via Torino 155, 30172, Venezia, Italy
email:{bossi, cocco}@dsi.unive.it

Il Milione: A Journey in the Computational Logic in Italy

65



SOMMARIO/ ABSTRACT

Illustriamo qui brevemente la nostra esperienza nel campo
della verifica e delle trasformazioni dei programmi logici.
Pur occupandoci ora di tematiche completamente diverse,
verifica di propriet̀a di sicurezza da un lato e analisi di
sistemi biologici dall’altro, continuiamo ad utilizzare
proficuamente la nostra precedente esperienza.

In this paper, we briefly describe our esperience in the field
of verification and transformation of logic programming.
Though now we are working in a completely different field,
verification of security properties on one hand and biosys-
tems analysis on the other, our previous experience contin-
ues to be a valuable guide.

Keywords: logic programming, termination verification,
program transformation

1 Introduction

It is very pleasant to remember the time we spent in work-
ing on Logic Programming. The friendship and warmth
of the people we met, the enthusiasm and interest in re-
search, the curiosity and joy of young researchers, have
been strong reasons for working in this field and to be
happy with it.

Our main interest, since the beginning, was analysis and
verification of logic programs and program transformation.
After more than fifteen years of happy and satisfactory re-
search, we felt the need to enlarge our research field and
we tried to export our expertise in Computational Logic to
different research topics.

In the following section we briefly resume our main re-
sults in the field of logic programming and then we give a
brief account of our present research interests.

2 Our contribution to Logic Programming

Programming methodology imposes to focus first on the
correctness of a program and only later on its efficiency.
This is necessary also in logic programming and it requires
both program verification and program optimization tools.
Our research in LP has been motivated by these needs,
dealing mainly withtransformation systemsand withanal-
ysis techniques.
Analysis techniques.
Logic programs are declarative in essence, and this is a
great advantage for programs prototyping and develop-
ment. Nevertheless, there are properties which are not
directly expressed by the program itself and have to be
proved. We proposed a technique for verifying correct-
ness and completeness of a logic program with respect to
a Pre/Post declarative specification of data properties [1].
This can be used to guarantee both the correspondence of
the program to its intended meaning and the applicabil-
ity of program transformations. We considered also the
operational property on having successes, or finite fail-
ures, which is relevant for query correctness and efficiency
[5, 6]. Besides, the property of not having finite failures
can be used to simplify applicability conditions of program
transformation operations.
Techniques for verifying termination.
Termination is an essential property of programs. We con-
sidered the problem of verifyinguniversal terminationof
logic programs. This is a rather strong requirement for a
query, namely to have only finite LD-derivations1. All the
methods to solve this problem, if effective, can only pro-
vide sufficient criteria for termination. In our works we
developed various methods for the analysis of universal
termination by considering different classes of programs
which can be verified.

We introduced a class of functions to weight the terms
occurring in a program (semilinear norms) [16, 18]. The
norms in this class provide a syntactical characterization

1SLD-derivations build with the leftmost selection rule.

Il Milione: A Journey in the Computational Logic in Italy

66



of rigid terms, i.e. terms whose weight does not change
under substitution. The notion of rigid term generalizes
the notion of ground term. We defined a proof method for
universal termination, based on Pre/Post conditions which
deal with the rigidity of terms and can be derived by the
mode and type properties of atoms. In [17] we general-
ized our previous work by considering also terms with a
specified structure by means oftyped norms. Besides, we
studied how mode and type information can be used for
characterizing termination properties. We defined the class
of well-moded programs[31], namely programs which
are inductively ”well-formed” with respect to a specified
input-output functionality. This allowed us to define and
characterizewell-terminating programs, namely programs
for which all well-moded queries have only finite LD-
derivations. We proposed also a termination property for
general logic programs (programs with negation) [19]. A
general program istyped-terminatingif it terminates for
any well-typed query. These definitions lead to sufficient
conditions for termination which are compositional and
simple to verify.

In [14] we completed our work on the verification of ter-
mination properties, by proposing a modular proof tech-
nique applicable to hierarchical general programs. Be-
sides, by using mode or type information, it is possible to
verify termination incrementally.
Trasformations on logic and Prolog programs.
Program transformations are applied both in program syn-
thesis and in program optimization. For logic programs
the “logic” component makes transformations very natural
and easy to be studied formally. But, when we move to
Prolog programs, non-declarative properties, like termina-
tion, cannot be ignored.

At first we focused onprogram specialization, which
consists in restricting the applicability of the original pro-
gram while optimizing it: the specialized program deals
with fewer cases but in a more efficient way. Some parts
of the computation become redundant, other parts can be
pre-computed (partial evaluation). Specialization seems to
fit very well logic programs in order to pass from a rela-
tional definition to some specific functionalities. We pro-
posed a methodology for specializing a logic program [7]
and studied a set of basic transformation operations which
allow one (i) to associate a new application domain to the
query by means of constraints, and (ii) to propagate them
through the program for optimizing it. The set of basic
operations includes:

- new definition, it defines a new predicate in terms of
other predicates already available in the program;

- unfold, it substitutes an atom in a clause body with all
its definitions;

- fold, it substitutes a set of atoms in a clause body with
an equivalent atom;

- prune, it removes a redundant clause from the program;
- thin, it removes a redundant literal from a clause body;
- fatten, it adds further literals in a clause body whenever

this allows for simplifications;
- replace, it substitutes a set of literals in a clause body

for another set of literals; it is a generalization of thethin
andfattenoperations.

Each operation must produce a program which is equiv-
alent to the original one, but more efficient. Program
equivalence depends on the semantics we consider. Hence,
we studied these transformation operations with respect to
different program semantics. Our effort has been to deter-
mine sufficient conditions, simple to verify, for the vari-
ous operations and semantics. We considered the classic
semantics given by the minimal Herbrand model [7] and
the semantics given by computed answers substitutions [2].
Moreover, in [8, 9] we considered general programs (with
negation) and some semantics for them, such as Fitting’s
semantics, Kunen’s semantics, and the Well-founded se-
mantics.

Besides basic transformation operations, we definedsi-
multaneous replacementand we studies it with respect to
the three-valued completion of a logic program [11].

Any transformation system is a source-to-source rewrit-
ing methodology devised to improve the efficiency of a
program. Any such transformation should preserve the
main properties of the initial program. The transforma-
tion operations defined for logic programs do not consider
operational properties, among them, termination. These
properties become relevant for Prolog programs. To deal
with that we followed two approaches.

On one hand, we consideredacyclic programs, namely
programs which terminate for each ground query and any
selection rule, andacceptable programs, namely programs
which terminate for each ground query and leftmost selec-
tion rule. For both of them we identified the subclasses of
programs closed under unfold and fold operations [20, 11].

In order to be applicable most of the transformations re-
quire to reorder the atoms in clause bodies, then in [12] we
extended the previous work by considering also aswitch
operation which allows one to reorder consecutive atoms.

On the other hand, in [3, 4] we followed a more opera-
tional approach and we defined anon-increasingproperty
for a transformation. It is a very strong property which
guarantees that the transformation is both preserving uni-
versal termination and optimizing, since it cannot increase
the depth of the derivation tree associated to a query.

In [13] we considered and analyzed the main systems for
transforming logic and Prolog programs. In particular we
discuss if they preserve non-declarative properties of the
original program and specifically termination properties.
Semantics for logic programs.
Our work on the semantics of logic programming is ruled
by the convincement that a semantics should help in un-
derstanding the meaning of programs by providing use-
ful notions of observable program equivalences. Thes-
semantic approach(see [26]) provides a methodology to
define semantics which enjoy this property. Each seman-
tics in the approach captures some observable properties

Il Milione: A Journey in the Computational Logic in Italy

67



of logic programs and allows us to detect when two pro-
grams are undistinguishable by observing their behaviors,
thus providing a suitable base for program analysis and
transformation. Following this approach, we defined the
Ω- semantics, a compositional semantics for positive logic
programs. It provides a refined notion of observational
equivalence which takes into account both computed an-
swers and program composition by union of clauses [27].

Most logic programming languages offer some kind
of dynamic schedulingto increase the expressive power
and to control execution. But the presence of dynamic
scheduling makes more complex the programs behaviour
and more difficult the description of the semantics.Input
consumingderivations have been introduced and studied
in [21, 22, 23] to describe dynamic scheduling while ab-
stracting from the technical details. In [15] we reviewed
and compared the different proposals given for dynamic
scheduling and in particular for the denotational semantics
of programs with input consuming derivations. We also
show how they can be applied to termination analysis.

3 Present Research

Verification of security properties.
In the recent years, security has gained more and more im-
portance. In this field, our research focus oninformation
flow properties, i.e., security properties that allow one to
express constraints on how information should flow among
different groups of entities. An interesting feature of these
kind of properties, is that they protect the system even
against internal attacks performed by, e.g., viruses or Tro-
jan horses.

We study different classes of security properties and
conditions to ensure global properties by means of local
unwinding conditions[25]. Locality allows us to define a
proof system which provides a very efficient technique for
the development and verification of secure processes [24].

For many practical applications the requirement of
a complete absence of any information flow could be
stronger than necessary when some knowledge about the
environment (context) in which the process is going to run
is available. To relax this requirement we introduce a gen-
eral notion ofsecure contextsfor a process [28]. In [29]
we moved from a process algebra setting to a standard
programming environment. We present a general unwind-
ing framework for the definition of information flow secu-
rity properties of concurrent programs, described in a stan-
dard imperative language, admitting parallel executions on
a shared memory.
Biosystems analysis.
Computational biology is a recent field combining com-
puter science and molecular biology to study living beings.
We focus our attention on two areas, pattern discovery and
system biology.
Pattern discovery. Many biological problems require to
blindly search into DNA or protein sequences for rele-

vant signals. Often we may assume that strings which ap-
pears ”strangely often” or ”strangely rarely” in such se-
quences have an associated functional purpose. We stud-
ied the techniques for finding such signals and for giving
them a compact representation as patterns. In particular
we definemaximal patterns[30], which correspond to the
largest subsets of strings which can be grouped together.
The set of maximal patterns is unique and very readable,
intuitively it represents all possible ”most abstract views”
of the strings we are interested in. We propose two differ-
ent algorithms for computing the set of maximal patterns.
Systems biologyis a rather new field studying complex in-
teractions in biological systems. The aim is to model such
systems, to formally analyze their properties and to sim-
ulate their behaviour. This would make possible to doin
silico experiments instead ofin vivo experiments, which
may be difficult, or even impossible, to perform on biolog-
ical systems. Computational logic and formal techniques
to specify and analyze concurrent processes can be applied
to this field.

4 Acknowledgements

Our thanks to Matteo Baldoni and Cristina Baroglio for
organizing this collection in honour of Alberto Martelli, a
dear friend and one of the most attracting personality for
the Italian Computational Logic community.

REFERENCES

[1] A. Bossi and N. Cocco. Verifying Correctness of Logic
Programs. In J. Diaz and F. Orejas, editors,Proceed-
ings TAPSOFT ’89, Barcelona, Spain, LNCS 352, pp.
96–110, Springer-Verlag, 1989.

[2] A. Bossi, e N. Cocco. Basic Transformation Opera-
tions which preserve Computed Answer Substitutions
of Logic Programs.Journal of Logic Programming,
16:47–87, 1993.

[3] A. Bossi and N. Cocco. Preserving universal ter-
mination through unfold/fold. In G. Levi and
M. Rodŕıguez-Artalejo, editors,Proceedings ALP’94,
LNCS 850, pp. 269–286, Springer-Verlag, 1994.

[4] A. Bossi and N. Cocco. Replacement Can Pre-
serve Termination. In J. Gallagher, editor,Proceed-
ings LOPSTR’96, LNCS 1207, pp.104–129, Springer-
Verlag, 1997.

[5] A. Bossi and N. Cocco. Programs without Failures.
In N. Fuchs, editor,Proceedings LOPSTR’97, LNCS
1463, pp. 28–48, Springer-Verlag,1998.

[6] A. Bossi and N. Cocco. Successes in Logic Programs.
In P. Flener, editor,Proceedings LOPSTR’98, LNCS
1559, pp. 219–239, Springer-Verlag, 1999.

Il Milione: A Journey in the Computational Logic in Italy

68



[7] A. Bossi, N. Cocco, e S. Dulli. A Method for Spe-
cializing Logic Programs.ACM Transactions on Pro-
gramming Languages and Systems, 12(2):253–302,
1990.

[8] A. Bossi, N. Cocco, e S. Etalle. On Safe Folding. In
M. Bruynooghe and M. Wirsing, editors,Proceedings
PLILP’92, Leuven, Belgium, LNCS 631, pp. 172–186,
Springer-Verlag, 1992.

[9] A. Bossi, N. Cocco, e S. Etalle. Transforming Normal
Programs by Replacement. In A. Pettorossi, editor,
Proceedings META’92, Uppsala, Sweden, LNCS 649,
pp. 265–279, Springer-Verlag, 1992.

[10] A. Bossi, N. Cocco, and S. Etalle. Transformation of
Left Terminating Programs: the Reordering Problem.
In M. Proietti, editor,Proceedings LOPSTR’95, LNCS
1048, pp. 33–45, Springer-Verlag, 1995.

[11] A. Bossi, N. Cocco, e S. Etalle. Simultaneous Re-
placement in Normal Programs.Journal of Logic and
Computation, 6(1):79–120, 1996.

[12] A. Bossi, N. Cocco, e S. Etalle. Transformation of
Left Terminating Programs. In A. Bossi editor,Pro-
ceedings of LOPSTR’99, Venezia, Italy, LNCS 1817,
pp. 156-175, Springer-Verlag, 2000.

[13] A. Bossi, N. Cocco e S. Etalle. Transformation Sys-
tems and Nondeclarative Properties. In A. Kakas and
F. Sadri editors,Computational Logic: Logic Pro-
gramming and Beyond (Essays in honour of Robert A.
Kowalski). LNAI 2407, pp. 162-186, Springer-Verlag,
2002.

[14] A. Bossi, S. Etalle N. Cocco, and S. Rossi. On Mod-
ular Termination Proofs of General Logic Programs.
Theory and Practice of Logic Programming, 2(3):263–
291, 2002.

[15] A. Bossi, S. Etalle N. Cocco, and S. Rossi. Declar-
ative Semantics of Input-Consuming Logic Programs.
In M. Bruynooghe, K. Lau editors,Program Devel-
opment in Computational Logic - A Decade of Re-
search Advances in Logic-Based Program Develop-
ment. LNCS 3049, Springer-Verlag, 2004.

[16] A. Bossi, N. Cocco, and M. Fabris. Proving termina-
tion of logic programs by exploiting term properties.
In S. Abramsky and T.S.E. Maibaum, editors,Pro-
ceedings CCPSD-TAPSOFT’91, LNCS 494, pp. 153–
180, Springer-Verlag, 1991.

[17] A. Bossi, N. Cocco, and M. Fabris. Typed Norms.
In Krieg-Bruckner, editor, Proceedings ESOP’92,
Rennes, France, LNCS 582, pp. 73–92. Springer-
Verlag, 1992.

[18] A. Bossi, N. Cocco, and M. Fabris. Norms on
terms and their use in proving universal termination
of a logic program. Theoretical Computer Science,
124:297–328, 1994.

[19] A. Bossi, N. Cocco, and S. Rossi. Termination of
Well-Typed Logic Programs. In H. Sondergaard editor,
Proceedings PPDP’01, Firenze, Italy, pp.73-81, ACM
Press, 2001.

[20] A. Bossi and S. Etalle. Transforming Acyclic Pro-
grams. ACM Transactions on Programming Lan-
guages and Systems, 16(4):1081–1096, July 1994.

[21] A. Bossi, S. Etalle, and S. Rossi. Semantics of well-
moded input-consuming logic programs.Computer
Languages, 26(1):1–25, 2000.

[22] A. Bossi, S. Etalle, and S. Rossi. Properties of input-
consuming derivations.Theory and Practice of Logic
Programming, 2(2):125–154, 2002.

[23] A. Bossi, S. Etalle, S. Rossi, and J.-G. Smaus. Ter-
mination of simply-moded logic programs with dy-
namic scheduling.ACM Transactions on Computa-
tional Logic (TOCL), 5(3):470–507, 2004.

[24] A. Bossi, R. Focardi, C. Piazza, and S. Rossi. A proof
system for information flow security. M. Leuschel, ed-
itor, Proceedings LOPSTR’02, LNCS 2664, pp. 2199–
218, Springer-Verlag, 2003.

[25] A. Bossi, R. Focardi, C. Piazza, and S. Rossi.
Verifying persistent security properties.Computer
Languages, Systems and Structures, 30(3-4):231–258,
2004.

[26] A. Bossi, M. Gabrielli, G. Levi, and M. Martelli.
The S-semantics approach: Theory and applications.
The Journal of Logic Programming, 19 & 20:149–198,
May 1994.

[27] A. Bossi, M. Gabbrielli, G. Levi, and M. C. Meo. A
compositional semantics for logic programs.Theoret-
ical Computer Science, 122(1-2):3–47, 1994.

[28] A. Bossi, D. Macedonio, C. Piazza, and S. Rossi. In-
formation flow in secure contexts.Journal of Com-
puter Security, 13(3):391–422, 2005.

[29] A. Bossi, C. Piazza, and S. Rossi. Compositional in-
formation flow security for concurrent programs.Jour-
nal of Computer Security, 15(3):373–413, 2007.

[30] N. Cocco and M. Simeoni, Maximal abstraction of
strings. Dipartimento di Informatica, Università Ca’
Foscari di Venezia, Rapporto di ricercaCS-2007-2,
2007.

[31] S. Etalle, A. Bossi, and N. Cocco. Termination of
well-moded programs. Journal of Logic Program-
ming, 38(2):243–257, 1999.

Il Milione: A Journey in the Computational Logic in Italy

69


