
La Logica Computazionale in sistemi basati su agenti
Computational Logic in Agent Based Systems

Paolo Mancarella e Francesca Toni

Il Milione: A Journey in the Computational Logic in Italy

70



SOMMARIO/ABSTRACT

Viene descritto l’utilizzo della logica computazionale
a supporto della formalizzazione ed implementazione
di agenti in sistemi multi-agente. In questo ambito è
necessario l’uso di varie forme di logica computazionale,
tra le quali abduzione, argomentazione e sistemi basati
su preferenze. Viene presentato a grandi linee il modello
per agenti denominato KGP, nonché una sua estensione
in corso di definizione per la modellazione di agenti
in ambienti distribuiti quali il Grid e più in generale
architetture service-oriented

We describe recent work on the deployment of computa-
tional logic to support the formalisation and implemen-
tation of agents in multi-agent systems. Several forms
of computational logic systems are needed in this setting,
including abductive, argumentative and preference-based
systems. We briefly sketch the agent model called KGP,
and an ongoing extension of it which is needed to model
agents in distributed settings such as the Grid and, more
generally, Service-oriented architectures.

Keywords: Logica computazionale, sistemi multi-agente,
abduzione, argomentazione

1 Introduction

Computational Logic (CL) has been successfully adopted,
in recent years, in modelling agents within agent based sys-
tems. The adoption of CL techniques has the advantage
that formal specifications come along with their compu-
tational counterparts in the form of provably correct and
executable proof procedures. The formal and computa-
tional models needed in the agent based settings require
an integrated treatment of different features, which can be
handled within various extensions of the basic logic pro-
gramming framework, including abduction, argumentation
and constraint logic programming. In this short paper we

briefly summarize one such approach which has lead to the
defnition of the KGP model for agency, and which is being
further developed to cope with the specification of agents
in service-oriented applications.

2 The KGP model

KGP is an acronym for Knowledge, Goals and Plan. The
model is intended to provide a modular and hierarchical
specification of agents equipped with a variety of advanced
reasoning features to allow intelligent decision making and
behaviour. KGP agents are particularly suited to open dy-
namic environments where they have to adapt to changes
in their environment and they have to function in circum-
stances where they have incomplete information. Here we
give an overview of the KGP agent model and its compo-
nents [4, 3]. The model relies upon
− an internal (or mental) state, holding the agent
Knowledge base (beliefs), Goals (desires) and Plans (in-
tentions),
− a set of reasoning capabilities,
− a set of physical capabilities,
− a set of transition rules, defining how the state of the
agent changes, and defined in terms of the above capabili-
ties,
− a set of selection operators, to enable and provide ap-
propriate inputs to the transitions,
− a cycle theory, providing the control for deciding which
transitions should be applied when, and defined using the
selection operators. The model is defined in a modular
fashion, in that different activities are encapsulated within
different capabilities and transitions, and the control is a
separate module. The model also has a hierarchical struc-
ture, depicted in figure 1.

Internal state. This is a tuple 〈KB0,F , C,Σ〉, where:

• KB0 holds the (dynamic) beliefs of the agent about
the external world in which it is situated, as well as a
record of the actions it has already executed.

Il Milione: A Journey in the Computational Logic in Italy

71



Figure 1: A graphical overview of the KGP model

• F is a forest of trees whose nodes are goals, which
may be executable or not. Each tree in the forest
gives a hierachical presentation of goals, in that the
tree represents the construction of a plan for the root
of the tree. The set of leaves of any tree in F forms
a currently chosen plan for achieving the root of the
tree. Executable goals are actions which may be
physical, communicative, or sensing. Non-executable
goals may be mental or sensing. Only non-executable
mental goals may have children, forming (partial)
plans for them. Actions have no children in any trees
in F . The roots of trees in F are referred to as
top-level goals, the executable goals are referred to
as actions, and non-executable goals which are not
top-level goals are referred to as sub-goals. Top-
level goals are classified as reactive or non-reactive.
Roughly speaking, reactive goals are generated in re-
sponse to observations, e.g. communications received
from other agents and changes in the environment, for
example to repair plans that have already been gener-
ated. Non-reactive goals, on the other hand, are the
chosen desires of the agent. Note that some top-level
(reactive) goals may be actions.

• C is the Temporal Constraint Store, namely a set of
constraint atoms in some given underlying constraint
language. These basically constrain the time variables
of the goals in F . For example, they may specify a
time window over which the time of an action can be
instantiated, at execution time.

• Σ is a set of equalities instantiating time variables
with time constants. For example, when the time vari-
ables of actions are instantiated at action execution
time, records of the instantiations are kept in Σ.

Reasoning capabilities. These are:

• Planning, which generates plans for mental goals
given as input. These plans consist of temporally con-

strained sub-goals and actions designed for achieving
the input goals.

• Reactivity, which is used to provide new reactive top-
level goals, as a reaction to perceived changes in the
environment and the current plans held by the agent.

• Goal Decision, which is used to revise the non-
reactive top-level goals, adapting the agent’s state to
changes in its own preferences and in the environ-
ment.

• Identification of Preconditions and Identification of
Effects for actions, which are used to determine ap-
propriate sensing actions for checking whether ac-
tions may be safely executed (if their preconditions
are known to hold) and whether recently executed ac-
tions have been successful (by checking that some of
their known effects hold).

• Temporal Reasoning, which allows the agent to rea-
son about the evolving environment, and to make pre-
dictions about properties, including non-executable
goals, holding in the environment, based on the (par-
tial) information the agent acquires over its life-time.

• Constraint Solving, which allows the agent to reason
about the satisfiability of the temporal constraints in
C and Σ.

In the concrete realisation of the KGP model, we have
chosen to realise the above capabilities in various exten-
sions of the logic programming paradigm. In particular,
we use (conventional) logic programming for Identifica-
tion of Preconditions and Effects, abductive logic program-
ming with constraints for Planning, Reactivity and Tempo-
ral Reasoning, and logic programming with priorities for
Goal Decision.

Physical capabilities. In addition to the reasoning capa-
bilities, the agent is equipped with “physical” capabilities,
linking the agent to its environment, consisting of

• A Sensing capability, allowing the agent to observe
that properties hold or do not hold, and that other
agents have executed actions.

• An Actuating capability, for executing (physical and
communicative) actions.

Transitions. The state 〈KB0,F , C,Σ〉 of an agent
evolves by applying transition rules, which employ the ca-
pabilities as follows:

• Goal Introduction (GI), possibly changing the top-
level goals in F , and using Goal Decision.

• Plan Introduction (PI), possibly changing F and C
and using Planning.

Il Milione: A Journey in the Computational Logic in Italy

72



• Reactivity (RE), possibly changing the reactive top-
level goals in F and possibly C, and using the Reac-
tivity capability.

• Sensing Introduction (SI), possibly introducing new
sensing actions in F for checking the preconditions
of actions already in F .

• Passive Observation Introduction (POI), changing
KB0 by recording unsolicited information coming
from the environment, and using Sensing.

• Active Observation Introduction (AOI), possibly
changing Σ and KB0, by recording the outcome of
(actively sought) sensing actions, and using Sensing.

• Action Execution (AE), executing all types of actions
and as a consequence changing KB0 and Σ, and us-
ing Actuating.

• State Revision (SR), possibly revising F , and using
Temporal Reasoning and Constraint Solving.

Cycle and Selection operators. The behaviour of an
agent is given by the application of transitions in se-
quences, repeatedly changing the state of the agent. These
sequences are not determined by fixed cycles of behaviour,
as in conventional agent architectures, but rather by reason-
ing with cycle theories. Cycle theories define preference
policies over the order of application of transitions, which
may depend on the environment and the internal state of
an agent. They rely upon the use of selection operators for
detecting which transitions are enabled and what their in-
puts should be, as follows:
−action selection for inputs to AE;
this selection operator uses the Temporal Reasoning and
Constraint Solving capabilities;− goal selection for inputs
to PI;
this selection operator uses the Temporal Reasoning and
Constraint Solving capabilities; − effect selection for in-
puts to AOI; this selection operator uses the Identification
of Effect reasoning capability;
− precondition selection for inputs to SI; this selection op-
erator uses the Identification of Preconditions, Temporal
Reasoning and Constraint Solving capabilities.
The provision of a declarative control for agents in the
form of cycle theories is a highly novel feature of the
model, which could, in principle, be imported into other
agent systems. In the concrete realisation of the KGP
model, we have chosen to realise cycle theories in the same
framework of logic programming with priorities and con-
straints that we also use for Goal Decision.

2.1 Computational model

One central distinguishing feature of the KGP model, in
comparison with other models for agency, including those
based on logic programming, is its modular integration

within a single framework of abductive logic program-
ming, temporal reasoning, constraint logic programming,
and preference reasoning based on argumentation in order
to support a diverse collection of capabilities. Each one of
these is specified declaratively and equipped with its own
provably correct computational counterpart. These com-
putational models are heavily based upon proof procedures
for (various extensions of) logic programming. In particu-
lar, the operational model for KGP agents relies upon CIFF
[2], a proof procedure for abductive logic programming
with constraints, and Gorgias [1], for logic programming
with priorities. These procedures have been obtained by
adapting and suitably extending two existing proof proce-
dures for logic programming, namely Fung and Kowalskis
IFF procedure for abductive logic programming for CIFF,
and Kakas and Tonis argumentation-based procedure for
negation as failure in logic programming for Gorgias. The
overall operational models are sound and (in some cases)
complete with respect to the abstract KGP model, and form
a solid bridge between the KGP model and its implemen-
tation within the PROSOCS platform, a prototype imple-
mentation using Sicstus Prolog and JXTA [5].

3 Argumentative agents in ARGUGRID

The use of agent technology offers a solution to dynamic
service composition in distributed settings such as the Grid
and more generally Service-Oriented Architectures. Dif-
ferent services can be associated with autonomous agents
that can identify and negotiate, on behalf of service re-
questors and providers, implementation plans that take into
account the requirements of both sides. The ARGUGRID
project1 aims at defining and deploying argumentation-
based agents to support the selection and composition of
services over the Grid and Service-Oriented Architectures
[6]. We have proposed in [7] an agent architecture inte-
grating a number of argumentative modules (for various
forms of decision-making), a module for interaction with
other agents, “physical” modules for carrying out this in-
teraction via communication, and several data structures.
This type of argumentative agents can be seen as a vari-
ant of KGP agents. This variant relies upon the use of an
argumentation decision-making tool supporting all reason-
ing capabilities, and it makes use of argumentative proto-
cols for persuasion in negotiation. Argumentative agents
are equipped with a specialised internal state, consisting of
requirements, abstract or partially instantiated workflows,
concrete workflows, planned communicative actions and
actions executed in the past by the agent or by others, and
arguments. The KGP modular architecture allows us to
adopt a specialised set of reasoning capabilities supporting
the various forms of decision-making needed in ARGU-
GRID and inter-agent interaction, as well as a capability
for revising the knowledge/beliefs of agents, which is actu-

1www.argugrid.eu

Il Milione: A Journey in the Computational Logic in Italy

73



ally missing in the original KGP model. Specialised phys-
ical capabilities are also needed in this setting to provide
suitable forms of inter-agent communications, and finally
appropriate transitions encapsulate the new capabilities. In
this setting, agents need to be able to perform communica-
tive actions (for requesting services, accepting or refusing
the provision of services, etc.) and actions for consulting
registries, inquiring about services and their providers. In
their internal state, agents store (a selection of) all commu-
nicative acts they have participated in, as either speakers or
receivers, as well as the set of their current commitments,
namely the contracts they have committed to. Basically,
argumentative KGP agent are characterised by

• a (transient) state, consisting of
− a knowledge base, called KB0 as for the KGP
model, but holding communicative acts by or to the
agent, acts for consulting registries by the agent, as
well as contracts
− a set of goals, namely requirements by the user
“owning” the agent
− a set of decisions, of different kinds (to get ser-
vices of known types from some yet-to-be-decided
providers or from some known providers, or a deci-
sion to utter something, or a decision to consult some
registry)
− a set of arguments, providing justifications and rea-
sons for goals and decisions in the state

• a number of extended reasoning capabilities, namely
abstract decision-making, social decision-making,
communicative reactivity, registry consultation; each
capability is supported by an appropriate argumenta-
tion system (base)

• a revision capability, for modifying the argumentation
systems supporting the various reasoning capabilities

• physical capabilities, namely listening, talking, and
consulting

• a set of transitions, namely ADM (using the abstract
decision-making capability), SDM (using the social
decision-making capability), CR (using the commu-
nicative reactivity capability), RC (using the registry
consultation capability), R (using the revision capa-
bility), LI, TA, CON (using the listening, talking and
consulting capabilities, respectively)

• a control, in the form of a conditional policy, that, for
each transition, gives one or more possible next tran-
sitions depending on whether a number of conditions
hold or not.

Here, the consulting capability is intended for accessing
information in registries. The reasoning capabilities corre-
spond to the IDM (individual decision-making), SDM (so-
cial decision making), and SI (social interaction) modules
in [7]. The listening and talking capabilities are special
cases of sensing and actuating in the KGP model.

4 Conclusions

We have briefly described work carried out in recent years
and still ongoing, which aims at adopting computational
logic for the description of agents in agent based systems.
The use of computational logic allows us, on one hand to
partially fill the gap between agent models and their com-
putational realization. Indeed, the specification of KGP
agent is a sort of executable specification due to the fact
that the computational logic tools adopted in this setting
are equipped with suitable concrete proof procedures. On
teh other hand, the modularity of the KGP model allows
one to extend it naturally to support new forms of reason-
ing, such as the ones needed in order to model the type
of agents needed in service-oriented applications. Again,
computational logic tools, based on various forms of argu-
mentation, can be adopted in these settings to support the
new type of capabilities needed, such as decision making
and negotiation. This is still ongoing work we are carrying
out within the ARGUGRID project.

REFERENCES

[1] N. Demetriou and A. C. Kakas. Argumentation with
abduction. In Proceedings of the fourth Panhellenic
Symposium on Logic, 2003.

[2] U. Endriss, P. Mancarella, F. Sadri, G. Terreni, and
F. Toni. The CIFF proof procedure for abductive logic
programming with constraints. Lecture Notes in Arti-
ficial Intelligence, 3229:680–684, 2004.

[3] A. C. Kakas, P. Mancarella, F. Sadri, K. Stathis, and
F. Toni. Declarative agent control. Lecture Notes in
Artificial Intelligence, 3487:96–110, 2005.

[4] A.C. Kakas, P. Mancarella, F. Sadri, K. Stathis, and
F. Toni. The KGP model of agency. In R. Lopez de
Mantaras and L. Saitta, editors, Proceedings of the Six-
teenth European Conference on Artificial Intelligence,
Valencia, Spain (ECAI 2004). IOS Press, August 2004.

[5] K. Stathis, A.C. Kakas, W. Lu, N. Demetriou, U. En-
driss, and A. Bracciali. PROSOCS: A platform for
programming software agents in computational logic.
Applied Artificial Intelligence, 20(4-5), 2006.

[6] F. Toni. Argumentative KGP agents for service com-
position. Proc. AITA08, Architectures for Intelli-
gent Theory-Based Agents, AAAI Spring Symposium,
March 2008, Stanford University, CA, USA, 2008.

[7] M. Morge, P. Mancarella, F. Toni, J. McGinnis, S. Bro-
muri, and K. Stathis Toward a modular architecture of
argumentative agents to compose services. In Proceed-
ings JFSMA 2007, 2007.

Il Milione: A Journey in the Computational Logic in Italy

74



5 Contacts

Paolo Mancarella (Corresponding Author)
Dipartimento di Informatica, Università di Pisa
Largo B. Pontecorvo, 3
56127 Pisa, Italy
Tel: +39 050 2212 710
paolo.mancarella@unipi.it

Francesca Toni
Department of Computing, Imperial College London
South Kensington Campus, Huxley Building
London SW7 2AZ, UK
Tel: +44 (0)20 7594 8228
ft@doc.ic.ac.uk

Il Milione: A Journey in the Computational Logic in Italy

75


