
LA TRASFORMAZIONE DEI PROGRAMMI PER LO
SVILUPPO, LA VERIFICA E LA SINTESI DEL SOFTWARE

PROGRAM TRANSFORMATION FOR DEVELOPMENT,
VERIFICATION, AND SYNTHESIS OF SOFTWARE

Alberto Pettorossi, Maurizio Proietti, Valerio Senni

Il Milione: A Journey in the Computational Logic in Italy

7

SOMMARIO/ABSTRACT

In questo articolo presentiamo brevemente la metodologia
di trasformazione dei programmi per lo sviluppo di soft-
ware corretto ed efficiente. Ci riferiremo, in particolare, al
caso della trasformazione e dello sviluppo dei programmi
logici con vincoli.

In this paper we briefly describe the use of the program
transformation methodology for the development of cor-
rect and efficient programs. We will consider, in particular,
the case of the transformation and the development of con-
straint logic programs.

Keywords: Constraint logic programming, model check-
ing, program synthesis, unfold/fold program transforma-
tion, software verification.

1 Introduction

The program transformation methodology has been intro-
duced in the case of functional programs by Burstall and
Darlington [3] and then it has been adapted to logic pro-
grams by Hogger [11] and Tamaki and Sato [26]. The main
idea of this methodology is to transform, maybe in sev-
eral steps and by applying different transformation rules,
the given initial program into a final program with the aim
of improving its efficiency and preserving its correctness.
If the initial program is a non-executable specification of
an algorithm, while the final program is executable, then
program transformation is equivalent to program synthe-
sis. Thus, program transformation can be viewed as a tech-
nique both: (i) for program improvement and advanced
compilation, and (ii) for program synthesis and program
development.

In recent years program transformation has also been
used as a technique for program verification. It has been
shown, in fact, that via program transformation one can
perform model checking and, in general, one can prove

properties of infinite state systems that cannot be analyzed
by using standard model checking techniques.

In what follows we will illustrate the three uses of pro-
gram transformation we have mentioned above, namely
(i) program improvement, (ii) program synthesis, and
(iii) program verification. In particular, we will consider
the case of algorithms and specifications written as con-
straint logic programs [12] and we will focus our attention
on the following transformation rules [1, 6, 8, 9, 25, 26]:
definition, unfolding, folding, goal replacement, and clause
splitting which will be applied according to some specific
strategies. This approach to program transformation is,
thus, called the rules + strategies approach.

2 Program improvement

Programs are often written in a parametric form so that
they can be reused in different contexts, and when a para-
metric program is reused, one may want to transform it for
taking advantage of the new context of use. This transfor-
mation, called program specialization [10, 13, 16], usually
allows a great efficiency improvement. Let us present an
example of this transformation by deriving a deterministic,
specialized pattern matcher from a given nondeterminis-
tic, parametric pattern matcher and a specific pattern. In
this example the matching relation on strings of numbers
is the relation le¯m(P, S) which holds between a pattern
P = [p1, . . . , pn] and a string S iff in S there exists a sub-
string Q= [q1, . . . , qn] such that for i=1, . . . , n, pi ≤ qi.
(This example can be generalized by considering any re-
lation which can be expressed via a constraint logic pro-
gram.)

The following constraint logic program can be taken as
the specification of our general pattern matching problem:

1. le¯m(P, S)←ap(B, C, S)∧ap(A,Q, B)∧le(P,Q)
2. ap([],Ys,Ys)←
3. ap([X|Xs],Ys, [X|Zs])← ap(Xs,Ys,Zs)
4. le([], [])←
5. le([X|Xs], [Y |Ys])← X≤Y ∧le(Xs, Y s)

Il Milione: A Journey in the Computational Logic in Italy

8

where ap denotes list concatenation. Suppose that we want
to use this general program in the case of the pattern P =
[1,0,2]. We start off our transformation by introducing the
following clause by applying the so-called definition rule:

6. le¯ms(S)← le¯m([1,0,2], S)

Clauses 1–6 constitute the initial program from which
we begin our program transformation process by apply-
ing the transformation rules according to the so-called De-
terminization Strategy [8]. This strategy, which we will
not present here, allows a fully automatic derivation of
the deterministic, efficient pattern matcher. We unfold
clause 6 w.r.t. the atom le¯m([1,0,2], S), that is, we replace
the atom le¯m([1,0,2], S) which is an instance of the head
of clause 1, by the corresponding instance of the body of
clause 1. We get:

7. le¯ms(S)← ap(B,C, S)∧ap(A,Q, B)∧le([1,0,2], Q)

In order to fold clause 7, we introduce the following defi-
nition:

8. new1(S)← ap(B,C, S)∧ap(A,Q, B)∧le([1,0,2], Q)

and then we fold clause 7, that is, we replace (the instance
of) the body of a clause 8 which occurs in the body of
clause 7 by (the corresponding instance of) the head of
clause 8. We get:

9. le¯ms(S)← new1(S)

Then we unfold clause 8 w.r.t. the atoms ap and le and we
get:

10. new1([X|Xs])← 1≤X∧ap(Q,C,Xs)∧le([0,2], Q)
11. new1([X|Xs])← ap(B, C,Xs)∧ap(A,Q, B)∧

le([1,0,2], Q)

Then we apply the clause splitting rule to clause 11, by
separating the cases where 1 ≤ X and 1 > X . We get:

12. new1([X|Xs])←1≤X∧ap(B,C,Xs)∧ap(A,Q,B)∧
le([1,0,2], Q)

13. new1([X|Xs])←1>X∧ap(B,C,Xs)∧ap(A,Q,B)∧
le([1,0,2], Q)

In order to fold clauses 10 and 12 we introduce the follow-
ing two clauses defining the predicate new2:

14. new2(Xs)← ap(Q, C,Xs)∧le([0, 2], Q)
15. new2(Xs)← ap(B,C,Xs)∧ap(A,Q,B)∧le([1,0,2],Q)

Then we fold clauses 10 and 12 by using the two clauses
14 and 15 and we also fold clause 13 by using clause 8.
We get the following clauses which define new1:

16. new1([X|Xs])← 1≤X∧new2(Xs)
17. new1([X|Xs])← 1>X∧new1(Xs)

They are mutually exclusive because of the constraints
1≤X and 1 > X . Now the program transformation con-
tinues in a similar way as above: we introduce the new
predicates new3 through new6, we derive their defining
clauses, and eventually, we get the following specialized,
deterministic program:

9. le¯ms(S)← new1(S)
16. new1([X|Xs])← 1≤X∧new2(Xs)
17. new1([X|Xs])← 1>X∧new1(Xs)
18. new2([X|Xs])← 1≤X∧new3(Xs)
19. new2([X|Xs])← 0≤X∧1>X∧new4(Xs)
20. new2([X|Xs])← 0>X∧new1(Xs)
21. new3([X|Xs])← 2≤X∧new5(Xs)
22. new3([X|Xs])← 1≤X∧2>X∧new3(Xs)
23. new3([X|Xs])← 0≤X∧1>X∧new4(Xs)
24. new3([X|Xs])← 0>X∧new1(Xs)
25. new4([X|Xs])← 2≤X∧new6(Xs)
26. new4([X|Xs])← 1≤X∧2>X∧new2(Xs)
27. new4([X|Xs])← 1>X∧new1(Xs)
28. new5([X|Xs])←
29. new6([X|Xs])←

This final program is deterministic in the sense that at most
one clause can be applied during the evaluation of every
ground goal. As in the case of the Knuth-Morris-Pratt
matcher, the efficiency of this final program is very high
because it behaves like a deterministic finite automaton.

3 Program Synthesis

Program synthesis is a technique for deriving programs
from formal, possibly non-executable, specifications (see,
for instance, [11, 24] for the derivation of logic programs
from first-order logic specifications). In this section we
present an example of use of the program transformation
technique for performing program synthesis and deriving
a constraint logic program from a first-order formula.

The example we will present is the N -queens example,
which has been often considered in the literature for in-
troducing programming techniques such as recursion and
backtracking. The N -queens problem can be described as
follows. We are required to place N(≥ 0) queens on an
N×N chess board, so that no two queens attack each other,
that is, they do not lie on the same row, column, or diago-
nal. By using the fact that no two queens should lie on the
same row, we represent the position of the N queens on the
N×N chess board as a permutation L = [i1, . . . , iN] of
the list [1, . . . , N] such that ik is the column of the queen
on row k.

A specification of the solution L for the N -queens prob-
lem is given by the following first-order formula ϕ(N,L):

nat(N) ∧ nat−list(L) ∧ length(L,N) ∧
∀X (member(X, L)→ in(X, 1, N))∧
∀A,B,K,M
((1≤K ∧K≤M ∧occurs(A,K, L) ∧occurs(B,M,L))

→ (A 6=B ∧A−B 6=M−K ∧B−A 6=M−K))

where the various predicates which occur in ϕ(N, L) are
defined by the following constraint logic program P :

nat(0)←
nat(N)← N =M+1 ∧M≥0 ∧ nat(M)
nat−list([])←
nat−list([H|T])← nat(H) ∧ nat−list(T)

Il Milione: A Journey in the Computational Logic in Italy

9

length([], 0)←
length([H|T], N)← N =M+1∧M≥0∧ length(T, M)
member(X, [H|T])← X =H
member(X, [H|T])← member(X,T)
in(X, M, N)← X =N ∧M≤N
in(X, M, N)← N =K+1 ∧M≤K ∧ in(X, M, K)
occurs(X, I, [H|T])← I =1 ∧X =H
occurs(X, I+1, [H|T])← I≥1 ∧ occurs(X, I, T)
Now, we would like to synthesize a constraint logic pro-
gram R which computes a predicate queens(N,L) such
that the following Property π holds:
(π) M(R) |= queens(N, L) iff M(P) |= ϕ(N,L)
where by M(R) and M(P) we denote the perfect model
of the program R and P , respectively. By applying the
technique presented in [9], we start off from the formula
queens(N, L)← ϕ(N,L). From that formula by applying
a variant of the Lloyd-Topor transformation [17], we derive
this stratified program F :

queens(N, L)← nat(N)∧nat−list(L)∧ length(L,N)∧
¬aux1(L,N) ∧ ¬aux2(L)

aux1(L,N)← member(X, L) ∧ ¬in(X, 1, N)
aux2(L)← 1≤K ∧K≤M∧

¬(A 6=B∧A−B 6=M−K∧B−A 6=M−K)∧
occurs(A,K, L) ∧ occurs(B,M, L)

It can be shown that this variant of the Lloyd-Topor trans-
formation preserves the perfect model semantics and, thus,
we have that:

M(P ∪ F) |= queens(N, L) iff M(P) |= ϕ(N,L).
The derived program P ∪F is not very satisfactory from
a computational point of view, when using SLDNF reso-
lution with the left-to-right selection rule. Indeed, for a
query of the form queens(n, L), where n is a nonnega-
tive integer and L is a variable, program P ∪F works by
first generating a value l for L and then testing whether
or not length(l, n) ∧ ¬aux1(l, n) ∧ ¬aux2(l) holds. This
generate-and-test behavior is very inefficient and it may
also lead to nontermination. Thus, the process of pro-
gram synthesis proceeds by applying the definition, un-
folding, folding, and goal replacement transformation rules
(see [9] for details), with the objective of deriving a more
efficient, terminating program. We derive the following
definite logic program R:

queens(N, L)← new2(N, L, 0)
new2(N, [],K)← N =K
new2(N, [H|T], K)← N ≥K+1∧ new2(N, T, K+1)∧

new3(H, T, N, 0)
new3(A, [], N,M)← in(A, 1, N) ∧ nat(A)
new3(A, [B|T], N, M)← A 6=B ∧A−B 6=M+1 ∧

B−A 6=M+1 ∧ nat(B) ∧
new3(A, T, N, M+1)

together with the clauses defining the predicates in and
nat .

Since the transformation rules preserve the perfect
model semantics, we have that M(R) |= queens(N, L)

iff M(P ∪ F) |= queens(N, L) and, thus, Property (π)
holds. Moreover, it can be shown that R terminates for all
queries of the form queens(n,L) and it computes a solu-
tion for the N -queens problem in a clever way: each time
a queen is placed on the board, program R tests whether
or not it attacks every other queen already placed on the
board.

4 Program Verification

The proof of program properties is often needed during
program development for checking the correctness of soft-
ware components w.r.t. their specifications. In this section
we see the use of program transformation for proving pro-
gram properties specified either by first-order formulas or
by temporal logic formulas.

Proofs performed by using program transformation have
strong relationships with proofs by mathematical induc-
tion (see [2] for a survey on inductive proofs). In par-
ticular, the unfolding rule can be used for decomposing
a formula of the form ϕ(f(X)), where f(X) is a com-
plex term, into a combination of n formulas of the forms
ϕ1(X), . . . , ϕn(X), and the folding rule can be used for
applying inductive hypotheses.

It has been shown that the unfold/fold transformations
introduced in [3, 26] can be used for proving several kinds
of program properties, such as equivalences of functions
defined by recursive equation programs [14], equivalences
of predicates defined by logic programs [20], first-order
properties of predicates defined by constraint logic pro-
grams [21], and temporal properties of concurrent sys-
tems [7, 23].

4.1 The unfold/fold proof method

By using a simple example taken from [21], we illustrate
a method based on program transformation, called un-
fold/fold proof method, for proving first-order properties
of constraint logic programs. Consider the following con-
straint logic program Member which defines the member-
ship relation for lists:

member(X, [Y |L])← X =Y
member(X, [Y |L])← member(X,L)

Suppose we want to show that every finite list of numbers
has an upper bound, i.e., the following formula holds:

ϕ : ∀L∃U ∀X (member(X,L)→ X ≤ U)
The unfold/fold proof method works in two steps. In the
first step, ϕ is transformed into a set of clauses by applying
a variant of the Lloyd-Topor transformation [17], thereby
deriving the following program Prop1:

prop ← ¬p
p← list(L) ∧ ¬q(L)
q(L)← list(L) ∧ ¬r(L,U)
r(L,U)←X >U ∧ list(L) ∧member(X, L)

The predicate prop is equivalent to ϕ in the sense that
M(Member) |= ϕ iff M(Member ∪ Prop1) |= prop.

Il Milione: A Journey in the Computational Logic in Italy

10

In the second step, we eliminate the existential variables
occurring in Prop1 (that is, the variables occurring in the
body of a clause and not in its head) by applying the trans-
formation strategy presented in [21]. We derive the follow-
ing program Prop2 which defines the predicate prop:

prop ← ¬p

p← p1

p1 ← p1

Now, Prop2 is a propositional program and has a finite per-
fect model, which is {prop}. Since all transformations we
have made can be shown to preserve the perfect model, we
have that M(Member) |= ϕ iff M(Prop2) |= prop and,
therefore, we have completed the proof of ϕ because prop
belongs to M(Prop2).

Note that the unfold/fold proof method can be viewed as
an extension to constraint logic programs of the quantifier
elimination method, which has well-known applications in
the field of automated theorem proving (see [22] for a brief
survey).

4.2 Infinite-state model checking

Now we present a method for verifying temporal proper-
ties of infinite state systems based on the transformation of
constraint logic programs [7].

As indicated in [4], the behavior of a concurrent system
that evolves over time according to a given protocol can
be modeled by means of a state transition system, that is,
(i) a set S of states, (ii) an initial state s0 ∈ S, and (iii) a
transition relation t ⊆ S × S. We assume that t is a total
relation, that is, for every state s ∈ S there exists a state
s′ ∈ S, called successor state of s, such that t(s, s′) holds.
A computation path starting from a (possibly not initial)
state s1 is an infinite sequence of states s1 s2 . . . such that,
for every i≥1, there is a transition from si to si+1.

The properties of the evolution over time of a concurrent
system are specified by using a temporal logic called Com-
putation Tree Logic (or CTL, for short [4]) which specifies
the properties of the computation paths. The formulas of
CTL are built from a given set of elementary properties of
the states by using: (i) the connectives: ¬ (‘not’) and ∧
(‘and’), (ii) the following quantifiers along a computation
path: g (‘for all states on the path’ or ‘globally’), f (‘there
exists a state on the path’ or ‘in the future’), x (‘next time’),
and u (‘until’), and (iii) the quantifiers over computation
paths: a (‘for all paths’) and e (‘there exists a path’).

Very efficient algorithms and tools exist for verifying
temporal properties of finite state systems, that is, systems
where the set S of states is finite [4]. However, many con-
current systems cannot be modeled by finite state systems.
Unfortunately, the problem of verifying CTL properties of
infinite state systems is undecidable, in general, and thus, it
cannot be approached by traditional model checking tech-
niques. For this reason various methods based on auto-
mated theorem proving have been proposed for enhancing
model checking and allowing us to deal with infinite state

〈t, A2, B1, B2〉

〈w, A2, B1, B2〉

〈u, A2, B1, B2〉

A2 := B2+1

A2<B2 ∨ B2=0

A2 := 0

Figure 1: The Bakery protocol: a graphical representation
of the transition relation tA for the agent A.

systems (see [5] for a method based on constraint logic
programming). Due to the above mentioned undecidabil-
ity limitation, all these methods are incomplete.

As an example of use of program transformation for ver-
ifying CTL properties of infinite state systems, now we
consider the Bakery protocol [15] and we verify that it sat-
isfies the mutual exclusion and starvation freedom proper-
ties.

Let us consider two agents A and B which want to ac-
cess a shared resource in a mutual exclusive way by using
the Bakery protocol. The state of agent A is represented by
a pair 〈A1, A2〉, where A1 is an element of the set {t, w, u}
of control states (where t, w, and u stand for think, wait,
and use, respectively) and A2 is a counter that takes values
from the set of natural numbers. Analogously, the state of
agent B is represented by a pair 〈B1, B2〉. The state of the
system consisting of the two agents A and B, whose states
are 〈A1, A2〉 and 〈B1, B2〉, respectively, is represented by
the 4-tuple 〈A1, A2, B1, B2〉. The transition relation t of
the two agent system from an old state OldS to a new state
NewS , is defined as follows:

t(OldS , NewS)← tA(OldS , NewS)
t(OldS , NewS)← tB (OldS , NewS)

where the transition relation tA for the agent A is given
by the following clauses whose bodies are conjunctions of
constraints (see also Figure 1):

tA(〈t , A2, B1, B2〉, 〈w , A21, B1, B2〉)← A21=B2+1
tA(〈w , A2, B1, B2〉, 〈u, A2, B1, B2〉)← A2<B2
tA(〈w , A2, B1, B2〉, 〈u, A2, B1, B2〉)← B2=0
tA(〈u, A2, B1, B2〉, 〈t , A21, B1, B2〉)← A21=0

The following analogous clauses define the transition rela-
tion tB for the agent B:

tB (〈A1, A2, t , B2〉, 〈A1, A2,w , B21〉)← B21=A2+1
tB (〈A1, A2,w , B2〉, 〈A1, A2, u, B2〉)← B2<A2
tB (〈A1, A2,w , B2〉, 〈A1, A2, u, B2〉)← A2=0
tB (〈A1, A2, u, B2〉, 〈A1, A2, t , B21〉)← B21=0

Note that the system has an infinite number of states, be-
cause counters may increase in an unbounded way.

The temporal properties of a transition system are spec-
ified by defining a predicate sat(S, P) which holds if and

Il Milione: A Journey in the Computational Logic in Italy

11

only if the temporal formula P is true at state S. For in-
stance, the clauses defining sat(S, P) for the cases where
P is: (i) an elementary formula F , (ii) a formula of the
form ¬F , (iii) a formula of the form F1 ∧ F2, (iv) a for-
mula of the form ef (F), are the following ones:

sat(S, F)← elem(S, F)
sat(S,¬F)← ¬sat(S, F)
sat(X, F1 ∧ F2)← sat(X,F1) ∧ sat(X,F2)
sat(S, ef (F))← sat(S, F)
sat(S, ef (F))← t(S, T) ∧ sat(T, ef (F))

where elem(S, F) holds iff F is an elementary property
which is true at state S. In particular, for the Bakery pro-
tocol we have the following clause:

elem(〈u, A2, u, B2〉, unsafe)←
that is, unsafe holds at a state where both agents A and
B are in the control state u (both agents are accessing the
shared resource at the same time).

Note that by ef we denote the composition of e (there
exists a computation path) and f (there exists a state on
the path) and, indeed, sat(S, ef (F)) holds iff there exists
a computation path π starting from S and a state s on π
such that F is true at s.

The mutual exclusion property holds for the Bakery pro-
tocol if there is no computation path starting from the ini-
tial state such that at a state on this path the unsafe prop-
erty holds. Thus, the mutual exclusion property holds if
sat(〈t , 0, t , 0〉,¬ef (unsafe)) belongs to the perfect model
M(Pmex), where: (i) 〈t , 0, t , 0〉 is the initial state of the
system and (ii) Pmex is the program consisting of the
clauses for the predicates t, tA, tB , sat, and elem defined
above.

In order to show that sat(〈t , 0, t , 0〉,¬ef (unsafe)) ∈
M(Pmex), we introduce a new predicate mex defined by
the following clause:

(µ) mex ← sat(〈t , 0, t , 0〉,¬ef unsafe)

and we transform the program Pmex ∪ {µ} into a new
program Q which contains a clause of the form mex ←.
This transformation is performed by applying the defini-
tion, unfolding, and folding rules according to the spe-
cialization strategy, that is, a strategy that derives clauses
specialized to the computation of predicate mex . From
the correctness of the transformation rules we have that
mex ∈ M(Q) iff mex ∈ M(Pmex ∪ {µ}) and, hence,
sat(〈t , 0, t , 0〉,¬ef (unsafe)) ∈ M(Pmex), that is, the
mutual exclusion property holds.

For the Bakery protocol we may also want to prove the
starvation freedom property which ensures that an agent,
say A, which requests the shared resource, will eventually
get it. This property is expressed by the CTL formula:
ag(wA → af (uA)), which is equivalent to: ¬ef ((wA ∧
¬af (uA)). The clauses defining the elementary properties
wA and uA are:

elem(〈w , A2, B1, B2〉,wA)←
elem(〈u, A2, B1, B2〉, uA)←

The clauses defining the predicate sat(S, P) for the case
where P is a CTL formula of the form af (F) are:
sat(X, af (F))← sat(X, F)
sat(X, af (F))← ts(X,Ys) ∧ sat all(Ys, af (F))
sat all([], F)←
sat all([X|Xs], F)← sat(X, F) ∧ sat all(Xs, F)
where ts(X,Ys) holds iff Ys is a list of all successor states
of X . For instance, one of the clauses defining predicate
ts in our Bakery example is:
ts(〈t , A2, t , B2〉, [〈w , A21, t , B2〉, 〈t , A2,w , B21〉])←

A21=B2+1 ∧B21=A2+1
which states that the state 〈t , A2, t , B2〉 has two possible
successor states: 〈w , A21, t , B2〉 (with A21=B2+1) and
〈t , A2,w , B21〉 (with B21=A2+1).

Let Psf denote the program obtained by adding to Pmex

the clauses defining: (i) the elementary properties wA and
uA, (ii) the atom sat(X, af (F)), (iii) the predicate sat all ,
and (iv) the predicate ts . In order to verify the starvation
freedom property we introduce the clause:

(σ) sf ← sat(〈t , 0, t , 0〉,¬ef (wA ∧ ¬af (uA)))
and, by applying the definition, unfolding, and folding
rules according to the specialization strategy, we transform
the program Psf ∪ {σ} into a new program R which con-
tains a clause of the form sf ←.

The derivations needed for verifying the mutual exclu-
sion and the starvation freedom properties were performed
in a fully automatic way by using our experimental con-
straint logic program transformation system MAP [18].

5 Conclusions and Future Directions

We have presented the program transformation method-
ology and we have demonstrated that it is very effective
for: (i) the derivation of correct software modules from
their formal specifications, and (ii) the proof of properties
of programs. Since program transformation preserves cor-
rectness and improves efficiency, it is very useful for con-
structing software products which are provably correct and
whose time and space performance is very high.

In order to make program transformation effective in
practice we need to increase the level of automation of the
transformation strategies for program improvement, pro-
gram synthesis, and program verification. Furthermore,
these strategies should be incorporated into powerful tools
for program development.

An important direction for future research is also the ex-
ploration of new areas of application of the transforma-
tion methodology. In this paper we have described the use
of program transformation for verifying temporal proper-
ties of infinite state concurrent systems. Similar techniques
could also be devised for verifying other kinds of proper-
ties and other classes of systems, such as security proper-
ties of distributed systems, safety properties of hybrid sys-
tems, and protocol conformance of multiagent systems. A
more challenging issue is the fully automatic synthesis of

Il Milione: A Journey in the Computational Logic in Italy

12

software systems which are guaranteed to satisfy the prop-
erties specified by the designer.

6 Acknowledgements

We would like to thank the editors of the Intelligenza
Artificiale Magazine for their invitation to write this pa-
per in honor of Prof. Alberto Martelli. We also thank
Prof. Martelli for teaching us the ‘structural way’ of pre-
senting algorithms which we learned from his unification
paper [19].

REFERENCES

[1] A. Bossi, N. Cocco, and S. Etalle. Transforming nor-
mal programs by replacement. In Proc. Meta ’92,
LNCS 649, 265–279. Springer-Verlag, 1992.

[2] A. Bundy. The automation of proof by mathematical
induction. In A. Robinson and A. Voronkov, editors,
Handbook of Automated Reasoning, volume I, 845–
911. North Holland, 2001.

[3] R. M. Burstall and J. Darlington. A transformation
system for developing recursive programs. J. ACM,
24(1):44–67, January 1977.

[4] E. M. Clarke, O. Grumberg, and D. Peled. Model
Checking. MIT Press, 2000.

[5] G. Delzanno and A. Podelski. Constraint-based de-
ductive model checking. Int. J. Software Tools for
Technology Transfer, 3(3):250–270, 2001.

[6] S. Etalle and M. Gabbrielli. Transformations of CLP
modules. Theo. Comp. Sci., 166:101–146, 1996.

[7] F. Fioravanti, A. Pettorossi, and M. Proietti. Verifying
CTL properties of infinite state systems by specializ-
ing constraint logic programs. In Proc. VCL’01, Flo-
rence (Italy), 85–96. Univ. Southampton, UK, 2001.

[8] F. Fioravanti, A. Pettorossi, and M. Proietti. Special-
ization with clause splitting for deriving determin-
istic constraint logic programs. In Proc. IEEE Int.
Conf. on Systems, Man and Cybernetics, Hammamet
(Tunisia), Vol. 1, 188–193. IEEE Computer Society
Press, 2002.

[9] F. Fioravanti, A. Pettorossi, and M. Proietti. Transfor-
mation rules for locally stratified constraint logic pro-
grams. In Program Development in Computational
Logic, LNCS 3049, 292–340. Springer-Verlag, 2004.

[10] J. P. Gallagher. Tutorial on specialisation of logic pro-
grams. In Proc. PEPM ’93, Copenhagen, Denmark,
88–98. ACM Press, 1993.

[11] C. J. Hogger. Derivation of logic programs. Journal
of the ACM, 28(2):372–392, 1981.

[12] J. Jaffar and M. Maher. Constraint logic program-
ming: A survey. Journal of Logic Programming,
19/20:503–581, 1994.

[13] N. D. Jones, C. K. Gomard, and P. Sestoft. Par-
tial Evaluation and Automatic Program Generation.
Prentice Hall, 1993.

[14] L. Kott. The McCarthy’s induction principle: ‘oldy’
but ‘goody’. Calcolo, 19(1):59–69, 1982.

[15] L. Lamport. A new solution of Dijkstra’s concur-
rent programming problem. Communications ACM,
17(8):453–455, 1974.

[16] M. Leuschel and M. Bruynooghe. Logic program
specialisation through partial deduction: Control is-
sues. Theory and Practice of Logic Programming,
2(4&5):461–515, 2002.

[17] J. W. Lloyd. Foundations of Logic Programming.
Springer-Verlag, Berlin, 1987. Second Edition.

[18] MAP. The MAP transformation system. http://
www.iasi.cnr.it/˜proietti/system.html,

1995–2008.

[19] A. Martelli and U. Montanari. An efficient unification
algorithm. ACM TOPLAS, 4(12):258–282, 1982.

[20] A. Pettorossi and M. Proietti. Synthesis and transfor-
mation of logic programs using unfold/fold proofs.
Journal of Logic Programming, 41(2&3):197–230,
1999.

[21] A. Pettorossi, M. Proietti, and V. Senni. Proving
properties of constraint logic programs by eliminat-
ing existential variables. In Proc. ICLP ’06, LNCS
4079, 179–195. Springer-Verlag, 2006.

[22] M. O. Rabin. Decidable theories. In Jon Barwise,
editor, Handbook of Mathematical Logic, 595–629.
North-Holland, 1977.

[23] A. Roychoudhury, K. Narayan Kumar, C. R. Ramakr-
ishnan, I. V. Ramakrishnan, and S. A. Smolka. Verifi-
cation of parameterized systems using logic program
transformations. In Proc. TACAS 2000, Berlin, Ger-
many, LNCS 1785, 172–187. Springer, 2000.

[24] T. Sato and H. Tamaki. Transformational logic pro-
gram synthesis. In Proc. Int. Conf. on Fifth Genera-
tion Computer Systems, 195–201. ICOT, 1984.

[25] H. Seki. Unfold/fold transformation of stratified pro-
grams. Theo. Comp. Sci., 86:107–139, 1991.

[26] H. Tamaki and T. Sato. Unfold/fold transformation
of logic programs. In Proc. ICLP ’84, 127–138, Up-
psala, Sweden. Uppsala University, 1984.

Il Milione: A Journey in the Computational Logic in Italy

13

7 Contacts

Alberto Pettorossi
Dipartimento di Informatica, Sistemi e Produzione, Università di Roma “Tor Vergata”
Via del Politecnico 1,
00133 Roma, Italy
+39 0672597379
pettorossi@disp.uniroma2.it

Maurizio Proietti (Corresponding Author)
Istituto di Analisi dei Sistemi e Informatica, Consiglio Nazionale delle Ricerche
Viale Manzoni 30,
00185 Roma, Italy
+39 067716426
maurizio.proietti@iasi.cnr.it

Valerio Senni
Dipartimento di Informatica, Sistemi e Produzione, Università di Roma “Tor Vergata”
Via del Politecnico 1,
00133 Roma, Italy
+39 0672597717
senni@disp.uniroma2.it

8 Biography

Alberto Pettorossi is professor of Theoretical Computer Science at the Engineering Faculty of the University of Roma
“Tor Vergata”. His research activity has been in the area of rewriting systems and concurrent computation, and it is now
concerned with the automatic derivation, transformation, and verification of programs.

Maurizio Proietti received his Laurea degree in Mathematics from the University of Roma “Sapienza”. He is a senior
researcher at the Istituto di Analisi dei Sistemi e Informatica “A. Ruberti” of the National Research Council (IASI-CNR)
in Roma. His research interests include various aspects of constraint and logic programming, and automatic methods for
the transformation, synthesis, and verification of programs.

Valerio Senni is a Ph. D. student in Information Engineering at the the University of Roma “Tor Vergata”. He holds a
research contract for the development of automatic methods for proving program correctness.

Photograph. A black and white glossy photograph, passport- sized of each author is also required. It will be printed
in the corresponding biography box.

Il Milione: A Journey in the Computational Logic in Italy

14

