
DALL’UNIFICAZIONE INSIEMISTICA AI VINCOLI SU
INSIEMI

FROM SET UNIFICATION TO SET CONSTRAINTS

Gianfranco Rossi

Il Milione: A Journey in the Computational Logic in Italy

20

SOMMARIO/ ABSTRACT

In questo articolo riassumiamo brevemente alcuni dei
problemi pìu interessanti che nascono quando si per-
mette di trattare gli insiemi come oggetti di “prima
classe” in un linguaggio logico, dall’unificazione di in-
siemi ben-fondati e non alla soluzioni di vincoli su insiemi.

In this paper, we briefly summarize some of the most chal-
lenging issues that arise when allowing sets to be dealt
with as first-class objects in a logic language, ranging from
set unification of well-founded and non-well-founded sets
to set constraint solving.

Keywords: Set unification, hypersets, set constraints.

1 Introduction

Sets are familiar mathematical objects, and they are often
used as a high-level abstraction to represent complex data
structures, whenever the order and repetitions of elements
are immaterial.

In the last two decades, a number of proposals have
emerged where sets are dealt with as primitive objects of
a (first-order) logic language. In this context, sets are of-
ten represented as first-order terms, calledset terms, built
from symbols of a suitable alphabet, using selected func-
tion symbols as set constructors. Furthermore, the lan-
guage usually provides the typical set-theoretic operations
to manipulate set objects.

These short notes summarize some of the most chal-
lenging issues arising when manipulating finite sets in a
logic language. In Section 2 we briefly reviewset unifi-
cation, i.e., the key problem of solving equations between
set terms. In Section 3 the unification problem is extended
to the case of non-well-founded sets. In Section 4 we in-
troduce set constraints as a way to allow set-theoretic op-
erations other than set equality to be taken into account.
Finally, in Section 5 we briefly review proposals aiming at

making set constraint solving more effective.

2 Set Unification

Intuitively, the set unification problem is the problem of
computing (or simply testing the existence of) an assign-
ment of values to the variables occurring in two set terms
which makes them denote the same set.

Various forms of set unification have been used in
various application areas, such as (see [13]): deductive
databases, AI and its various sub-fields (e.g., Automated
Deduction and Natural Language Processing), program
analysis and security, declarative programming languages
with sets.

Set unification can be thought of as an instance ofE-
unification, i.e., unification modulo an equational theory
E, where the identities inE capture the properties of set
terms—i.e., the fact that the ordering and repetitions of el-
ements in a set are immaterial.

The equational theoryE is strongly related to the rep-
resentation adopted for set terms. Two main approaches
have been presented in the literature: theunion-based rep-
resentation, and thelist-like representation. The union-
based representation makes use of the union operator (∪)
to construct sets. This representation has been often used
when dealing with the problem of set unification on its
own, where set unification is dealt with as anACI uni-
fication problem—i.e., unification in presence of operators
satisfying theAssociativity, Commutativity, and Idempo-
tenceproperties (e.g., [6]).

The list-like representation builds sets using anelement
insertion constructor (typically denoted by{· | ·}). With
this approach, the finite set{t0, . . . , tn} is represented by
a sequence of element insertions

{t0 | {· · · {tn | ∅} · · ·}},
wheret0, . . . , tn are either individuals or sets. While this
representation restricts the number of set variables which
can occur in each set term to one, on the other hand it al-
lows sets to be viewed and manipulated in a fashion sim-

Il Milione: A Journey in the Computational Logic in Italy

21

ilar to lists. As a matter of fact, this representation has
been adopted in a number of logic and functional-logic
programming languages with sets (e.g.,CLP (SET) [10]).

Various authors have investigated the problem of set uni-
fication using the list-like representation [3, 12, 23, 8].
In particular, the algorithm presented in [9] considers an
equational theoryE containing the two identities(Ab) and
(C`) stating the fundamental properties of the set construc-
tor {· | ·}:

(Ab) {X | {X |Z}} ≈ {X |Z}
(C`) {X | {Y |Z}} ≈ {Y | {X |Z}}.

The core of the unification algorithm is very similar in
structure to the traditional unification algorithms for stan-
dard Herbrand terms (e.g., [20]). The main difference
is represented by the reduction of equations between set
terms,{Y1 |V1} = {Y2 |V2}. The algorithm allows also to
account for equations of the formX = {t0, . . . , tn |X},
with X 6∈ vars(t0, . . . , tn), which turns out to be satisfi-
able for anyX containingt0, . . . , tn thanks to(Ab) and
(C`)). As an example, given the set unification problem

{X |S} = {1, 2}

(where {1, 2} is a syntactic shorthand for{1 | {2 | ∅}})
the algorithm non-deterministically computes the follow-
ing (complete) set of solutions:X = 1 ∧ S = {2}, X =
1 ∧ S = {1, 2}, X = 2 ∧ S = {1}, X = 2 ∧ S = {1, 2}.

A general survey of the problem of unification in pres-
ence of sets, across different set representations and differ-
ent admissible classes of set terms, can be found in [13].

The computational complexity properties of the set
unification have been investigated by Kapur and Naren-
dran [18], who established that these decision problems are
NP-complete. Complexity of the set unification operation,
however, depends on which forms of set terms (e.g., flat
or nested sets, with zero, one, or more set variables) are al-
lowed. The form of set terms in turn is influenced by the set
constructors used to build them. Thus, different complex-
ity results can be obtained for different classes of set terms.
For instance, while the set equivalence test of ground set
terms denoting flat sets, such as{a, b, c} and{b, c, a}, is
rather easy, when the decision problem deals with nested
set terms involving variables it becomes NP-complete.

Various authors have considered simplified versions of
the (Ab)(C`) problem obtained by imposing restrictions
on the form of the set terms. In particular, various works
have been proposed to study the simpler cases of match-
ing1 and unification ofBound Simpleset terms, i.e., bound
set terms of the form{s1, . . . , sn}, where eachsi is either
a constant or a variable [4, 16].

1Set matchingcan be seen as a special case of set unification, where
variables are allowed to occur in only one of the two set terms which are
compared.

3 Hypersets

Sets considered so far are the so calledhereditarily finite
sets, i.e. sets with a finite number of elements, all of which
are themselves hereditarily finite. This definition leaves
still a further possibility for infinity. Let us consider the
setsx and y that satisfy the equationsx = {∅, y}, y =
{x}. They are hereditarily finite, but they hide an infinite
descending chainx 3 y 3 x 3 y 3 · · ·. These sets in
which, roughly speaking, membership can form cycles are
callednon-well-founded sets(or hypersets). Hypersets are
very important in some areas, such as concurrency theory,
but hyperset theory has been applied in a number of areas
of logic, linguistics, and computer science, as well.

Introducing hypersets as a data structure in a logic pro-
gramming language requires a unification algorithm that is
able to deal with objects denoting hypersets. All set uni-
fication algorithms cited in the previous section, however,
consider well-founded sets only.

An hyperset unification algorithm is shown in [1]. The
key idea underlying this algorithm is that of enlarging the
domain of discourse from terms (i.e., finite trees) over the
signatureΣ to directed labeled graphsover Σ, possibly
with cycles. This data structure, when involving the inter-
preted function symbol{· | ·} used as the set constructor,
can be regarded as a convenient way to denote hypersets.
For instance, a solution to the equationX = {X} is a
cyclic graph which can be interpreted as an hyperset con-
taining itself as its only element. In addition, a notion of
bisimulationwhich applies to this kind of graphs is defined
and the interpretation domain is taken as the set of directed
labeled graphs overΣ modulo the equivalence relation in-
duced by bisimulation.

The algorithm in [1] can be seen as an adaptation of
the set unification algorithm of [9]. Many of the changes
required to move from set to hyperset unification are the
same needed when moving from standard unification to
unification over (uninterpreted)rational trees, for which
a number of efficient algorithms have been proposed in the
literature (e.g., [21]). In particular the hyperset unification
algorithm in [1] works on Herbrand systems of equations,
avoiding full variable substitution and adding simple non-
membership constraints to avoid the possibly endless re-
peated insertions of the same elements into hypersets.

4 Set Constraints

The algorithms cited above focus only onequalitybetween
set terms. Besides equality, however, other basic set opera-
tions, such as membership, inclusion, union, etc., are usu-
ally required for dealing with sets in a more general way.

A number of proposals have been put forward in the last
fifteen years in which general set-based formulae are con-
sidered and procedures to check their consistency are de-
veloped. Most of these proposals have emerged in the con-
text of Constraint (Logic) Programming (see, e.g., [15]).

Il Milione: A Journey in the Computational Logic in Italy

22

In this context, set-theoretical operations are conveniently
dealt with as(set) constraints, that is arbitrary conjunc-
tions of positive and negative atomic predicates built us-
ing a fixed finite set of predicate symbols denoting set-
theoretical operations, whose variables can range over the
domain of sets. Systems of (set) constraints are solved as a
whole by suitable(set) constraint solvers, which are able to
reduce the given constraints either tofalse or to a simpli-
fied form from which it is easier to obtain a solution (i.e.,
a substitution for the variables in the given constraints that
make them satisfiable in the selected interpretation). For
example,

X ∈ S ∧ T = S ∪R ∧X 6∈ T

is a set constraint, whereR, S, andT are set variables, that
the set constraint solver can reduce tofalse.

Set based formalisms allow a natural formulation of a
number of problems, in quite different areas: combina-
torial search problems, warehouse location problems, di-
agnostic related problems (e.g., VLSI circuit verification),
program analysis, network design problems (e.g., weight
setting). Dealing with such formulations as constraints al-
low, on the one hand, to solve these problems even if not
all sets are (fully) known a priori, and, on the other hand, to
compute solutions efficiently, provided constraint reason-
ing enables the solver to prune the search space.

As an example, the following is a very compact formu-
lation as a set constraint of the well-known map coloring
problem for a map of three regions,R1, R2, R3 (where
R1 bordersR2 andR2 bordersR3), using two colors,c1
andc2:
{R1, R2, R3} = {c1, c2} ∧M = {{R1, R2}, {R2, R3}}

∧ {c1} 6∈M ∧ {c2} 6∈M.

A complete set constraint solver, i.e., one which is al-
ways able to decide if a given constraint is satisfiable
or not is presented in [10]. The constraint language is
based on constructed sets using the list-like representa-
tion and it provides the usual set-theoretic operations as
primitive constraints. Sets are allowed to be nested and
to contain unknown elements (i.e., uninstantiated logical
variables). The constraint solver rewrites any given con-
straintC into an equi-satisfiable disjunction of constraints
in solved form—proved to be correct and terminating. In
particular the solver uses the set unification algorithm de-
veloped in [9] to deal with (set) equalities. A constraint
in solved form is guaranteed to be satisfiable in the corre-
sponding structure. Therefore the ability to obtain a solved
form guarantees that the original constraint is satisfiable.

This constraint structure has been exploited to obtain a
specific instance of the general Constraint Logic Program-
ming scheme, called CLP(SET) [10]. A Java implementa-
tion of (most of) CLP(SET) facilities for set management
has been recently developed and made available as part of a
Java library, called JSetL [22], intended to support declar-
ative programming in an object-oriented language.

The study of set constraints is strongly related to work in

the so-calledComputable Set Theoryarea (C.S.T.), a fruit-
ful research stream born in the 1970’s at the New York
University thanks to the initial ideas and subsequent stim-
ulus of J. T. Schwartz (see [7] for a general survey). Work
in C.S.T. has identified increasingly larger classes of com-
putable formulae of suitable sub-theories of the general
Zermelo-Fraenkel set-theory for which satisfiability is de-
cidable. Further extensions of these classes are still under
investigation at present. Recent related work is described
in [19]. However, efforts in this area are mainly concerned
with decidability results, rather than computing solutions
like it is usually required in constraint programming.

Other classes of aggregates (akin to sets) have also been
considered in the literature. In particular, various frame-
works have introduced the use ofmultisetswhere repeated
elements are allowed to appear in the collection. An anal-
ysis of the problems concerned with the introduction of
multisets—as well as sets and lists—is reported in [11, 12].

5 Efficient Set Constraint Solving

The proposals for (general) set constraints cited above do
not take into account efficiency adequately to allow them to
be effectively applied in many concrete applications. For
example the CLP(SET) solvers often use a generate & test
approach, that non-deterministically assigns values to vari-
ables as soon as those values are available. For instance,
given the constraintX ∈ {1, 2, 3, 4, 5} ∧ X 6= 10, the
CLP(SET) solver enumerates all possible values ofX be-
fore asserting that the constraint holds.

A number of proposals have been developed in the last
fifteen years that consider more restricted forms of set con-
straints but equipped with constraint solving techniques
that allow them to be processed in a quite more effective
way. Works along these lines include [5, 14, 17].

In these proposals constraint variables have afinite do-
main attached to them. In the case of set constraints, the
domain is a collection of sets, usually specified as aset
interval [l, u], where l and u are known sets (typically,
of integers). [l, u] represents a lattice of sets induced by
the subset partial ordering relation⊆ having l and u as
the greatest lower bound and the least upper bound, re-
spectively. The constraint solver exploits the information
that the domain of variables provides to efficiently com-
pute simplified forms of the original constraint or to detect
failures. In its simplest form, the solver uses a local prop-
agation algorithm that attempts to enforce consistency on
the values in the variable domains by removing values that
cannot form part of a solution to the system of constraints.
For example, given the set constraint

S ∈ {1}..{1, 2, 3, 4} ∧X ⊆ S ∧ Y ⊆ S
∧#X = 2 ∧ Z = Y \X

whereS, X, Y , andZ are set variables and#X denotes
the cardinality of the setX, the constraint solver in [5]
is able to infer that the constraint is satisfiable provided
#Z ≤ 2 holds.

Il Milione: A Journey in the Computational Logic in Italy

23

Most of these consistency algorithms are incomplete, so
they have to be combined with a backtracking search pro-
cedure to produce a complete constraint solver. For exam-
ple, in the example above, such a procedure allows to enu-
merate all possible solutions forZ: Z = {1}, Z = {1, 2},
Z = {1, 3}, Z = {1, 4}.

While these constraint languages turn out to allow more
efficient handling of set constraints with respect to the pro-
posals cited in the previous section (e.g., CLP(SET)), the
latter allows more general form of sets to be dealt with: ele-
ments can be of any type, possibly other sets, and possibly
unknown (e.g.,{X, {a, 1}}). For example the set-based
formulation of the map coloring problem shown above can
be written—and solved—using CLP(SET) but not using
the constraint language in [14] and [5].

A current line of research (see [2]) is trying to combine
the general set representation and management of propos-
als like CLP(SET), with the efficient constraint solving
of “Finite Domain” solvers, in order to have the expres-
sive power of the former while retaining the execution ef-
ficiency of the latter.

REFERENCES

[1] D. Aliffi, A. Dovier, and G. Rossi. From Set to Hy-
perset Unification.J. of Functional and Logic Pro-
gramming, 1999(10):1–48, 1999.

[2] A. Dal Pal̀u, A. Dovier, E. Pontelli, and G. Rossi.
Integrating Finite Domain Constraints and CLP with
Sets. In D. Miller, ed.,Proc. of 5th ACM-SIGPLAN
Int’l Conf. on Principles and Practice of Declarative
Programming, 219–229, ACM Press, 2003.

[3] P. Arenas-Śanchez and A. Dovier. A Minimality
Study for Set Unification.J. of Functional and Logic
Programming, 1997(7):1–49, 1997.

[4] N. Arni, S. Greco, and D. Saccà. Matching of
Bounded Set Terms in the Logic Language LDL++.
J. of Logic Programming, 27(1):73–87, 1996.

[5] F. Azevedo. Cardinal: A Finite Sets Constraint
Solver.Constraints, 12(37):93–129, 2007.

[6] W. Büttner. Unification in the Data Structure Sets.
In J. K. Siekmann, ed.,Proc. of the 8th Int’l Conf.
on Automated Deduction, v. 230, 470–488, Springer-
Verlag, 1986.

[7] D. Cantone, E. G. Omodeo, and A. Policriti.Set
Theory for Computing. From Decision Procedures to
Declarative Programming with Sets. Monographs in
Computer Science, Springer-Verlag, 2001.

[8] E. Dantsin and A. Voronkov. A Nondeterminis-
tic Polynomial-Time Unification Algorithm for Bags,
Sets, and Trees. In W. Thomas, ed.,FoSSaCS’99,
LNCS1578, 180–196, Springer-Verlag, 1999.

[9] A. Dovier, E. G. Omodeo, E. Pontelli, and G. Rossi.
{log}: A Language for Programming in Logic with
Finite Sets. J. of Logic Programming, 28(1):1–44,
1996.

[10] A. Dovier, C. Piazza, E. Pontelli, and G. Rossi. Sets
and Constraint Logic Programming.ACM TOPLAS,
22(5):861–931, 2000.

[11] A. Dovier, C. Piazza, and G. Rossi. A uniform ap-
proach to constraint-solving for lists, multisets, com-
pact lists, and sets.ACM Transactions on Computa-
tional Logic, 9(3), 2008.

[12] A. Dovier, A. Policriti, and G. Rossi. A uniform ax-
iomatic view of lists, multisets, and sets, and the rel-
evant unification algorithms.Fundamenta Informati-
cae, 36(2/3):201–234, 1998.

[13] A. Dovier, E. Pontelli, and G. Rossi. Set unification.
Theory and Practice of Logic Programming, 6:645–
701, 2006.

[14] C. Gervet. Interval Propagation to Reason about Sets:
Definition and Implementation of a Practical Lan-
guage.Constraints, 1(3):191–244, 1997.

[15] C. Gervet. Constraints over Structured Domains. In
F.Rossi, P. van Beek, and T. Walsh, ed’s,Handbook
of Constraint Programming. Elsevier, 2006.

[16] S. Greco. Optimal Unification of Bound Simple Set
Terms. InProc. of Conf. on Information and Knowl-
edge Management, 326–336, ACM Press, 1996.

[17] P. Hawkins, V. Lagoon, and P. J. Stuckey. Solving Set
Constraint Satisfaction Problems using ROBDDs.J.
of AI Research, 24: 109–156, 2005.

[18] D. Kapur and P. Narendran. Complexity of Unifica-
tion Problems with Associative-Commutative Opera-
tors. J. of Automated Reasoning, 9:261–288, 1992.

[19] V. Kuncak. Polynomial Constraints for Sets with Car-
dinality Bounds.FoSSaCS’99, LNCS4423, Springer-
Verlag, 2007.

[20] A. Martelli and U. Montanari. An Efficient Unifica-
tion Algorithm. ACM TOPLAS, 4:258–282, 1982.

[21] A. Martelli and G. Rossi. Efficient Unification with
Infinite Terms in Logic Programming. InProc. of
FGCS’84: Int’l Conf. on Fifth Generation Computer
Systems, 1984.

[22] G. Rossi, E. Panegai, and E. Poleo. JSetL: A Java
Library for Supporting Declarative Programming in
Java. Software-Practice & Experience, 37:115–149,
2007.

[23] F. Stolzenburg. An Algorithm for General Set Unifi-
cation and Its Complexity.J. of Automated Reason-
ing, 22(1):45–63, 1999.

Il Milione: A Journey in the Computational Logic in Italy

24

6 Contacts

Gianfranco Rossi
Dipartimento di Matematica
Universit̀a di Parma
Viale G. P. Usberti 53/A
43100 Parma (Italy)
Phone: +39 (0521) 90.6909
E-mail: gianfranco.rossi@unipr.it

7 Biography

Gianfranco Rossi received a degree in Computer Science from the University of Pisa in 1979. Since November 2001 he
is a Full Professor of Computer Science at the University of Parma. His research activity has been mainly devoted to
Programming Languages, with special attention to Logic Programming languages. Since December 2006 he is President
of the Association of Logic Programming (GULP).

Il Milione: A Journey in the Computational Logic in Italy

25

