
PROGRAMMAZIONE LOGICA IN DATALOG:
UN LUNGO PERCORSO DALLA TEORIA ALLA PRATICA

LOGIC PROGRAMMING IN DATALOG:
A LONG TOUR FROM THEORY TO PRACTICE

Sergio Greco, Luigi Palopoli, Nicola Leone, Pasquale Rullo, Domenico Saccà

Il Milione: A Journey in the Computational Logic in Italy

43



SOMMARIO/ABSTRACT

In questo articolo si descrivono le linee di ricerca svilup-
pate a Cosenza nell’ambito della programmazione logica
in un arco temporale di oltre 20 anni e che hanno portato
a recenti interessanti e promettenti sviluppi industriali.
Tali linee di ricerca sono cambiate nel tempo ma hanno
mantenuto l’interesse iniziale per accoppiare la pro-
grammazione logica con le tecnologie della basi di dati,
interesse che si continuamente rinnovato per affrontare
nuove sfide nell’uso della teoria per risolvere problemi
pratici.

In this paper, we describe the research lines in logic pro-
gramming, carried out in Cosenza over a period of more
than 20 years, which have recently produced promising in-
dustrial exploitation follow-ups. The research lines have
changed over the time but they have kept the initial inter-
est on combining logic programming with databases tech-
niques, that has been continuously renewed to cope with
new challenges, in our attempt to use theory to solve prac-
tical problems.

Keywords: Logic programming, DATALOG, bottom-up
execution, stable models, disjunctive logic programming,
answer set programming, ontology

1 Introduction

The research on logic programming in Cosenza started
in the middle eighties at CRAI, an industrial consor-
tium for information technology research and applica-
tions at Rende, Italy. With the enthusiasm of young re-
searchers, we decided to enlarge our original competencies
in database technology to exploit the great, at that time
promising potentialities of logic programming. We then
set up a research group on DATALOG (a version of logic
programming particularly suited for database applications)
and we started to study the problem of the efficient compu-

tation of answers to logic queries over relational databases.
Later on, while moving from CRAI to University of Cal-

abria, we also moved to more theoretical issues in DATA-
LOG. In particular, we worked at endowing DATALOG
with the capability of handling non monotonic reasoning
and defeasible knowledge, and we concentrated on provid-
ing a non-classical interpretation for negation and disjunc-
tion (with the two perspectives not necessarily disjoint).

When the age of maturity came, our interest for theory
was more and more urged to be combined with the neces-
sity of providing evidence of its utility by means of ”run-
ning” prototypes. So, our group promoted the construction
of the DLV system, one of the most efficient implementa-
tion of logic programming available to date, which is being
used in many applications.

Finally, getting old and desiring to leave a more tangi-
ble effect of our research to the economy of our Region,
along with other researchers from University of Calabria,
we founded a research spin-off, named Exeura, whose mis-
sion is to transform research results in the field of Knowl-
edge Management into industrial products.

In this paper we make a quick tour of our research in
DATALOG during the last 20 years, starting from the in-
fancy of our work on efficient query compilation, to the
youth of the contribution on non monotonic reasoning and
the maturity of developing the DLV system, eventually ar-
riving to the old age of exploiting results within an indus-
trial framework. But our story does not end here: we are
positive and ready to add another chapter!

2 INFANCY: efficient compilation of DATA-
LOG

DATALOG is essentially logic programming without func-
tion symbols using tuples of a relational database as facts:
a database D is seen as a set of facts , whose predicate
symbols (extensional predicates) coincide with the rela-
tion names, and all other predicate symbols (intensional
predicates), defined by rules, correspond to views of the

Il Milione: A Journey in the Computational Logic in Italy

44



database.
We have investigated the efficient computation of an-

swers to logic queries over relational databases since the
the middle of eighties of the past century when we were all
working for CRAI. The research has concentrated firstly on
the definition of algorithms for the efficient computation of
the semantics of programs and answers. The problem can
be stated as follows: given a query Q = 〈q(X),P〉 and
a database D, seen as a set of facts, compute the atoms
matching q(X) which are logic consequence of P ∪ D.
Two main approaches have been proposed in the litera-
ture, known as top-down computation (used by Prolog-
like system) and bottom-up computation (used by deduc-
tive database and answer-set systems).

The advantages of top-down systems is that only rules
and atoms relevant to the query goal are considered, but
there are several problems as termination and duplicated
computation. On the other side, the bottom-up strategy
always terminates, but it computes atoms which are not
relevant for the query goal (i.e. first computes all atoms
which are logic consequence of P ∪ D and, afterwards,
selects the atoms matching the goal q(X)). Concerning the
definition of optimization techniques avoiding duplicated
computation, the most important contributions were top-
down methods with memoing strategy and the semi-naive
(bottom-up) algorithm.

Moreover, several optimization techniques combining
top-down and bottom-up strategies were proposed as well.
These techniques try to compute only atoms which may be
“relevant” for the query goal in a bottom-up strategy. The
key idea of all these techniques consists in the rewriting
of deductive rules with respect to the query goal so that
answering the query without actually computing irrelevant
facts. General rewriting techniques (e.g. magic-set and
supplementary magic set) can be applied to all queries, but
their efficiency is limited. On the other side, there are spe-
cialized techniques which are very efficient, but they can
be applied to limited classes of queries.

We investigated a particular interesting class of queries,
known as chain queries, i.e., queries where bindings are
propagated from arguments in the head to arguments in the
tail of the rules, in a chain-like fashion. For these queries,
which are rather frequent in practice (e.g., graph applica-
tions), insisting on general optimization methods (e.g., the
magic-set method) does not allow to take advantage of the
chain structure, thus resulting in rather inefficient query
executions. Specialized methods for subclasses of chain
queries have been proposed in the literature, but, unfortu-
nately, these methods do not fully exploit bindings.

We proposed a counting method that is particularly spe-
cialized for bound chain queries; however this method,
although proposed in the context of general queries
[Saccà(13,17,20), Greco(8)], preserves the original sim-
plicity and efficiency only for a subset of chain queries
whose recursive rules are linear. We later proposed a new
method exploiting the relationship between chain queries,

context-free languages and pushdown automata, which
permits to rewrite queries into a format that is more suit-
able for the bottom-up evaluation [Greco(18, 43)]. The
so-called pushdown method translates a chain query into a
factorized left-linear program implementing the pushdown
automaton recognizing the language associated with the
query. A nice property of this method is that it reduces
to the counting method in all cases where the latter method
behaves efficiently and introduces a unified framework for
the treatment of special cases, such as the factorization
of right-, left-, mixed-linear programs, as well as the lin-
earization of non-linear programs.

These techniques defined for standard DATALOG
queries can be also applied, or easily extended, to dis-
junctive logic queries (queries whose associated program
is a disjunctive DATALOG program) [Greco(36, 87, 110),
Leone(144)].

We also elaborated optimization techniques for queries
with aggregates (expressing, for instance, optimization
problems) [Greco(15,38,45,60,75)]. These techniques
rewrite queries so that the simple modification of the semi-
naive algorithm emulates classical optimization strategies
such as greedy and dynamic programming.

Further on, we investigated optimizations techniques
for queries with complex terms such as sets and, in par-
ticular, we analyzed the computation of optimal sets of
matchers and unifiers for atoms with “bounded” set terms
[Greco(21,24)].

3 YOUTH: non monotonic reasoning in
DATALOG

The realization of common-sense reasoning systems has
been, since the beginning, one of the natural application
realm of logic programming. However, common-sense
reasoning requires non-monotonicity, that is, the capability
for the reasoning system to cancel or retract previously at-
tained conclusions, in the light of new evidence the system
becomes aware of (that is, generally, the knowledge must
be defeasible). Unfortunately, plain DATALOG is indeed
monotonic and, therefore, unapt to the purpose. There-
fore, mechanisms had to be devised in order to endow
DATALOG-based languages with the capability of repre-
senting and managing non-monotonicity.

Loosely speaking, in order to endow DATALOG with
the capability of handling defeasible knowledge, one might
resort to non standard semantics for the language as a
whole or concentrate on providing a non-classical interpre-
tation for negation or disjunction (with the two perspec-
tives not necessarily disjoint). In the logic programming
community the second line of research received a much
larger deal of attention than the first one, and we followed
this lines in the research developed when all of us moved
from CRAI to University of Calabria.

Important results derived by the work developed in our
group on ordered logic programs, that are, programs con-

Il Milione: A Journey in the Computational Logic in Italy

45



sisting of a poset of modules, each of which is itself a logic
program, under the assumption that programs lying higher
in the hierarchy are semantically more trustable than lower
ones [Leone(6), Rullo(29)] and the related issue of in-
heritance [Leone(91), Rullo(18)] and, moreover, on the
circumscription-based interpretation of negation-free DAT-
ALOG [Palopoli(32)]. The semantics of (disjunctive) logic
programs with preferences on atoms was later investigated
in [Greco(136)].

But we also investigated the semantics of negation in
DATALOG-like languages. The simpler form of non-
classical interpreting negation in DATALOG is encoded in
the notion of stratified (aka, perfect) models due, among
others, to Przyimusinski. This semantics is defined when
in a program there is no recursion through negation, that
is, the program is stratified. In this case, one can divide the
program in an ordered list of layers, such that each pred-
icate occurring negated in the rule of any layer does not
occur in the head of rules of that and higher layers. Then,
the intended model is obtained by evaluating the program
layer-wise, beginning with the lowest one. The drawback
of stratified programs rests on their limited generality and
expressive power. A more general notion is that of locally
stratified programs, where recursion through negation is al-
lowed as long as it gets resolved at the ground level. Con-
trary to stratification, however, local stratification is in gen-
eral undecidable, even if sufficient conditions for it can be
given [Palopoli(3)].

Van Gelder and others proposed a solution to the prob-
lem of providing a clean semantics to programs with re-
cursive negation, by defining the concept of well-founded
model. Loosely speaking, a model of a DATALOG pro-
gram is well-founded is the model does not contain any
subset of unjustifiable atoms. Well-founded semantics is
in general polynomial-time computable, but its implemen-
tation is not at all trivial [Rullo(9)]. Also, the well-founded
model of a DATALOG program is unique (but may not ex-
ist).

In order to attain a significant boost in expressivity,
though, one has to consider a further, simple yet power-
ful, semantics for logic program with negation, namely,
that of stable models of Gelfond and Lifschitz. To infor-
mally illustrate, a model of a program is stable if the pro-
gram regenerates it when the knowledge encoded in the
model is assumed from granted. In general, a DATALOG
program may have none, one or multiple stable models.
Therefore, differently from the aforementioned semantics,
entailment under stable model semantics can be intuitively
defined in two forms, that are, cautious reasoning, which
tells an information to be implied by a program if it is in-
deed implied in all the stable models of the program, and
brave reasoning, which makes the information implied by
the program if implied by at least one of its stable mod-
els. These definitions endow DATALOG programs with
a much larger expressiveness (allowing to capture classes
like coNP) than that of well-founded models but, at the

same time, renders the entailment and related problem in-
tractable [Saccá(49)], thereof including that of computing
one single stable model of a DATALOG program. Fortu-
nately, there are indeed cases when the stable model se-
mantics can be computed efficiently [Palopoli(22)].

But besides the cautious and the brave forms of reason-
ing, the possibility for a program to have multiple stable
models can be interpreted in a different and rather appeal-
ing manner, that is, that each stable model of the pro-
gram non-deterministically encode one possible status of
the world. This view of stable model semantics prompted
through years some of us to study the formal properties and
the potential application of exploiting non-determinism as
encoded in DATALOG programs under the stable model
semantics, which resulted in several interesting research
papers [Greco(28,29), Greco(44), Saccá(43,48)].

A second depart from more standard forms of semantics
is determined by allowing more than two truth values for
literals. To illustrate, in two-valued semantics, each literal
of a program must be either declared true or false. There
are cases and applications, though, where it appears sen-
sible to introduce a third truth value, say ”unknown”, into
play, to be assigned to a literal if neither itself nor its nega-
tion is entailed by a set of rules. All that is conducive to the
notion of partial model, which is precisely one that tells
some atoms true, some atoms false and some undefined
in the status of the world it encodes for. Also in this new
setting it is worth analyzing the formal properties of the re-
sulting formalisms [Saccá(58)]. Moreover, in this setting,
stable models semantics also allows to express search and
optimization problems [Saccá(54,63,83)].

To suitably deal with negation is not enough for some
application though. Theoretically speaking, this happens
when one deals with problems which are complete for
the second level of the polynomial hierarchy. From the
more practical viewpoint, this more simply happens when
the application context naturally calls for the exploitation
of disjunctive statements, that are, statements which de-
clare the (possibly conditional) truth of at least one of a
group of atoms. The resulting language, usually referred
to as Disjunctive DATALOG allows disjunct to occur in
rule heads and (possibly) negation in rules bodies. Several
of the issues discussed above for (disjuntion-free) DAT-
ALOG carry over to Disjunctive DATALOG, and the de-
velopment of the associated research lines has witnessed a
relevant contribution of our group. To illustrate, the papers
[Rullo(22), Greco(98)] include fundamental results about
the semantics, complexity and expressive power of Dis-
junctive DATALOG programs, [Palopoli(27,50)] discuss
tractability issues about Disjunctive DATALOG, while
[Leone(103,113)] tackles with the issue of selecting some
of the models of a Disjunctive program as the preferred
ones and, finally, [Rullo(33)] deals with the enhancement
of the expressive and representational capabilities of Dis-
junctive DATALOG using constraints.

Il Milione: A Journey in the Computational Logic in Italy

46



4 MATURITY: the DLV system

DLV [Leone(139)] is an advanced system for Knowledge
Representation and Reasoning which is based on Disjunc-
tive DATALOG under the stable model semantics (also
called Answer Set Programming). Roughly, a Disjunc-
tive DATALOG program is a set of disjunctive rules, i.e.,
clauses of the form

a1v · · · van:- b1, · · · , bk, not bk+1, · · · , not bm

where atoms a1, . . . , an, b1, . . . , bm may contain variables.
The intuitive reading of such a rule is “If all b1, . . . , bk are
true and none of bk+1, . . . , bm is true, then at least one
atom in a1, . . . , an must be true.” Disjunctive DATALOG
has a very high expressive power – it allows to express all
problems in the complexity class ΣP

2 (i.e., NPNP ). Thus,
under usual complexity conjuctures, Disjunctive DATA-
LOG is strictly more expressive than both SAT and CSP,
the power of which is “limited” to NP, and it can naturally
represent a large class of relevant problems ranging from
artificial intelligence to advanced database applications.
DLV is generally considered the state-of-the-art imple-

mentation of Disjunctive DATALOG. Its efficiency has
been confirmed by the results of First Answer Set Pro-
gramming System Competition (http://asparagus.
cs.uni-potsdam.de/contest/), where DLV won
the “disjunctive” category. Moreover, DLV turned out to
be very efficient also on (non-disjunctive) DATALOG pro-
grams, as it finished first also in the general category MGS
(Modeling, Grounding, Solving – also called royal compe-
tition, open to all ASP systems).

The implementation of the DLV system is based on very
solid theoretical foundations, and exploits major results
that have been achieved by the Deductive Databases group
of University of Calabria in the last 20 years. The sys-
tem has been recently engineered for industrial exploita-
tion, and is successfully employed in many challenging
real-world applications, for instance in the area of Knowl-
edge Management [Leone(141)], and advanced Informa-
tion Integration [Leone(127,144)] (see next section).

Among the many features of the system, it is worth re-
marking the following:
Advanced knowledge modeling capabilities. DLV pro-
vides support for declarative problem solving in several
respects:

• High expressiveness in a formally precise sense (ΣP
2 ),

so any such problem can be uniformly solved by a
fixed program over varying input.

• Rich language for knowledge modeling, extending
Disjunctive DATALOG with weak constraints (for
preferences handling) [Leone(68)], powerful aggre-
gate functions [Leone(132,110,124,148)], and other
useful KR constructs.

• Full declarativeness: ordering of rules and subgoal is
immaterial, the computation is sound and complete,
and its termination is always guaranteed.

• Declarative problem solving following a
“Guess&Check” paradigm [Leone(139)] where
a solution to a problem is guessed by one part of a
program and then verified through another part of the
program.

• A number of front-ends for dealing with specific
AI applications [Leone(57,109,105,125)], informa-
tion extraction [Leone(141)], Ontology Representa-
tion and Reasoning [Leone(146,130)].

Solid Implementation. Much effort has been spent on
sophisticated algorithms and techniques for improving the
performance, including

• Database optimization techniques: indexing,
join ordering methods [Leone(85)], Magic Sets
[Leone(144,124)].

• Artificial intelligence computation techniques:
heuristics [Leone(87,149,133)], backjumping
techniques [Leone(138,119)], pruning operators
[Leone(137)].

DLV is able to solve complex problems and efficiently deal
also with large input data [Leone(147)].
Database Interfaces. The DLV system provides a general
ODBC interface to relational database management sys-
tems [Leone(120)].

For up-to-date information on the system and a full man-
ual we refer to http://www.dlvsystem.com, where
also download binaries of the current release and various
examples are available.

5 OLD AGE: industrial applications of DLV

We are finally at the end of the story. In 2002, along with
other researchers from University of Calabria, we founded
a research spin-off, named Exeura. Since the beginning,
the mission of Exeura was to transform into commercial
products research results in the field of Knowledge Man-
agement (KM). Topics of interest include: (1) Knowledge
Representation and Reasoning (e.g., ontologies, automatic
reasoning, etc.); (2) Data, Text, and Process Mining (e.g.,
data discovery in databases, document classification, web
mining, workflow mining, etc.); (3) Information Extraction
and Wrapping; (4) Heterogeneous Information Sources In-
tegration.
Thanks to a vast scientific and technological know how
in KM and, in general, in advanced Information Systems,
Exeura has implemented a number of industrial prototypes,
currently under productization. Some of those exploit the
DLV reasoning capabilities, notably, OntoDLV, Olex and
Hylex.

Il Milione: A Journey in the Computational Logic in Italy

47



OntoDLV is a system for ontology specification and rea-
soning [Leone(146)]. Ontologies are abstract models of
complex domains that have been recognized to be a funda-
mental tool for conceptualizing business enterprise infor-
mation. The World Wide Web Consortium (W3C) has al-
ready provided recommendations and standards related to
ontologies, like RDF(S) and OWL. In particular, OWL has
been conceived for the Semantic Web, with the goal to en-
rich Web pages with machine-understandable descriptions
of the presented contents. OWL is based on expressive
Description Logics (DL); distinguishing features of its se-
mantics w.r.t. Logic Programming languages are the adop-
tion of the Open World Assumption (OWA) and the non-
uniqueness of names (different names can denote the same
individual). However, while the semantic assumptions of
OWL make sense for the Web, they are unsuited for en-
terprise ontologies. Since an enterprise ontology describes
the knowledge of specific aspects of the closed world of
the enterprise, it turns out that the Closed World Assump-
tion (CWA) is more appropriate than the OWA (appropri-
ate for the Web, which is an open domain). Moreover, the
presence of naming conventions, often adopted in enter-
prises, can guarantee name uniqueness, making also the
Unique Name Assumption (UNA) plausible. Importantly,
enterprise ontologies often are the evolution of relational
databases, where both CWA and UNA are mandatory.
OntoDLV supports a powerful ontology representation lan-
guage, called OntoDLP, extending (disjunctive) Answer
Set Programming (ASP) with all the main ontology fea-
tures including classes, inheritance, relations and axioms.
OntoDLP is strongly typed, and includes also complex
type constructors, like lists and sets. The semantic pecu-
liarities of ASP, like the Closed World Assumption (CWA)
and the Unique Name Assumption (UNA), allow to over-
come both the above mentioned limits of OWL, thus mak-
ing OntoDLV suitable for enterprise ontology specifica-
tion. It is worth noticing that OntoDLV supports a pow-
erful interoperability mechanism with OWL, allowing the
user to retrieve information from OWL ontologies, and
build rule-based reasoning on top of OWL ontologies. The
system is already used in a number of real-world applica-
tions including agent-based systems, information extrac-
tion, and text classification.
Olex is a rule-based text classification system [Rullo(43)].
It supports a hypothesis language of the form

c← T1 ∈ d∨· · ·∨Tn ∈ d∧¬(Tn+1 ∈ d∨· · ·∨Tn+m ∈ d)

where each Ti is a conjunction of terms (n-grams). The
meaning of a classifier as above is ”classify document d
under category c if any of T1, · · · , Tn occurs in d and none
of Tn+1, · · · , Tn+m occurs in d”. The execution of a clas-
sifier relies on the DLV system.
One important feature of the Olex system is the integration
of the manual approach with the automatic rule induction.
Thanks to the interpretability of the produced classifiers,
the domain expert can participate in the refinement of a

classifier, by manually specifying a set of rules to be used
in conjunction with those automatically learned. This co-
operation, in fact, may be very effective, since both ap-
proaches have some limits, that can be overcome if used in
synergy. To this end, the expressive power of the DLV lan-
guage turns out of great advantage, as it allows the (man-
ual) specification of complex classification rules (not re-
stricted to the hypothesis language), e.g., rules with ag-
gregate functions (such as count, sum, etc.) that are very
useful in text categorization.
Olex has been applied to a number of real world applica-
tions in various industries including: health-care, tourism,
and insurance.
HiLeX supports a semantic-aware approach to information
extraction from unstructured data (i.e., documents in sev-
eral formats, e.g., html, txt, doc, pdf, etc), that is currently
used in many applications of Text Analytics. The semantic
approach of HiLeX basically relies on [Sacc(115)]:

• the ontology representation formalism OntoDLP used
for describing the knowledge domain;

• a logic-based pattern matching language relying on a
two-dimensional document representation; in fact, a
document is viewed as a Cartesian plane composed
by a set of nested rectangular regions called portions.
The DLV system is used as the pattern recognition
engine.

REFERENCES

[1] Greco: Papers in the DBLP entry of Sergio Greco: 8,
15, 18, 21, 24, 28, 29, 36, 38, 43, 44, 45, 60, 75, 87,
98, 110, 136.

[2] Leone: Papers in the DBLP entry of Nicola Leone:
6, 57, 68, 85, 87, 91, 103, 105, 109, 110, 113, 119,
120, 124, 125, 127, 130, 132, 133, 137, 138, 139,
141, 144, 146, 147, 148, 149.

[3] Palopoli: Papers in the DBLP entry of Luigi Palopoli:
3, 22, 27, 32, 50.

[4] Rullo: Papers in the DBLP entry of Pasquale Rullo:
9, 18, 22, 29, 33, 43.

[5] Sacca: Papers in the DBLP entry of Domenico Saccà:
13, 17, 20, 43, 48, 49, 58, 115.

NOTE: for the sake of space, citations are given referring
to the DBLP bibliography (http://www.informatik.uni-
trier.de/∼ley/db/index.html), using the format [author(n)]
to mean the reference n of the DBLP bibliography list of
author.

Il Milione: A Journey in the Computational Logic in Italy

48



6 Contacts

Sergio Greco, Luigi Palopoli, Domenico Saccà
DEIS Department, University of Calabria
Via P. Bucci 41/C, 87036 Rende (CS), Italy
Exeura s.r.l., Rende - Italy
{greco,palopoli,sacca}@deis.unical.it

Nicola Leone, Pasquale Rullo
Department of Mathematics, University of Calabria
Via P. Bucci 30/B, 87036 Rende (CS), Italy
Exeura s.r.l., Rende - Italy
{leone,rullo}@mat.unical.it

7 Biography

• Sergio Greco is full professor of Computer Engineering at the DEIS (Electronics, Computer and Systems Sciences)
Department of the University of Calabria. His present research interests are: logic programming for knowledge
representation and reasoning, imprecise answering systems, data mining, XML.

• Nicola Leone is full professor of Computer Science at the Department of Mathematics of the University of Calabria.
His present research interests are: Knowledge Representation and Reasoning, Logic Programming and NonMono-
tonic Reasoning, Logics in Databases, Computational Complexity in Artificial Intelligence and Databases

• Luigi Palopoli is full professor of Computer Engineering at the DEIS (Electronics, Computer and Systems Sciences)
Department of the University of Calabria. His present research interests are: bioinformatics, computational game
theory, knowledge representation and data mining.

• Pasquale Rullo is full professor of Computer Science at the Department of Mathematics of the University of Calabria.
His present research interests are: Data and Text Mining, Knowledge Representation

• Domenico Saccà is full professor of Computer Engineering at the DEIS (Electronics, Computer and Systems Sci-
ences) Department of the University of Calabria. His present research interests are: scheme integration in data
warehousing, compressed representation of datacubes, workflow and process mining, logic-based query languages
for data mining and information extraction.

Il Milione: A Journey in the Computational Logic in Italy

49


