
Modello e Verifica di Processi di Business e Coreografie in ALP
Modeling and Verification of Business Processes and

Choreographies in ALP
Federico Chesani Paola Mello Marco Montali Paolo Torroni

Il Milione: A Journey in the Computational Logic in Italy

50



SOMMARIO/ABSTRACT

Questo articolo introduce brevemente le nostre recenti at-
tività di ricerca in relazione all’uso della programmazione
logica per la specifica e verifica delle interazioni in vari
contesti. L’articolo evidenzia alcuni risultati riportati in
vari ambiti: sistemi multi-agente, servizi web e argomen-
tazione, con particolare enfasi sugli aspetti collegati ai
processi di business e alle coreografie di servizi Web.

In this article we overview our recent research activity con-
cerning the use of logic programming for interaction spec-
ification and verification in several domains. We outline
relevant results in the areas of multi-agent systems, argu-
mentation and web services, and we devote a special em-
phasis to issues related to business processes and Web ser-
vice choreographies.

Keywords: Logic programming, hypothetical reasoning,
interaction, modelling, verification, multi-agent systems,
protocols, business processes, web services, choreogra-
phies, semantic web, argumentation.

1 Background

Over two decades ago, a significant part of the Italian
and European CS research community and IT industry ex-
pressed great interest in the new Logic Programming (LP)
paradigm. Such an interest was sensibly encouraged by
the pioneering work of Giorgio Levi, Franco Turini, Ugo
Montanari, Alberto Martelli, and others. The Artificial In-
telligence group of DEIS, School of Engineering, Univer-
sity of Bologna, was born at the time of the LP wave of the
Eighties. Our group was attracted by the unique features
of LP, including its ability to marry formal and practical
aspects, and to enable the correspondence of a declarative
language with an underlying execution model.

The main research directions of our group back then
were centered around distribution, modularity, parallelism,

and language extensions such as Constraint and Abduc-
tive Logic Programming. In order to enable program-
ming in the large in the LP paradigm, two approaches have
been studied for structuring logic programs: an algebraic
method based on meta-operators, and another approach
based on language extensions. The first model brought
to the definition of an extended LP language called Struc-
turedProlog [16], while the second approach was based
on the introduction of negation in LP, to support non-
monotonic reasoning.

StructuredProlog allows to to integrate blocks, mod-
ules, hypothetical reasoning, logical theory and object tax-
onomies. It has been implemented as an extension of the
Warren Abstract Machine, via software emulation and then
in hardware, and optimized using partial evaluation tech-
niques. Past research also focussed on parallel logic lan-
guages with AND parallelism and no variable sharing on
a MIMD architecture. Inter-process communication and
synchronization was possible via multi-headed clauses and
a shared blackboard, and an optimized unification mecha-
nism specifically tailored to serve the purpose. Finally, the
LP paradigm has been integrated with the OO paradigm,
to define the Distributed Logic Objects language (DLO).
In DLO, methods are expressed via multi-headed clauses,
in a purely declarative style, while specific constructs are
defined to express interaction among objects and inheri-
tance.

2 The SOCS Project

Since 2001, the group has devoted most of its resources
to the study of computational logic-based multi-agent sys-
tems [19], specifically agent interaction: the aim was to de-
velop an LP-based language and an operational model for
the specification and verification of agent interaction pro-
tocols. Such work has been carried out in the context of
the EU-funded SOCS project 1 . The SOCS society model

1Project IST-2001-32530, 5FP. SOCS stands for “Societies Of Com-
puteeS: a computational logic model for the description, analysis and ver-

Il Milione: A Journey in the Computational Logic in Italy

51



[21, 3], developed by a joint effort between the University
of Bologna and the University of Ferrara, gives concrete
guidelines for the formal specification of the interaction
among agents that form a society, and for the definition of
a computational logic-based architecture for agent inter-
action. In the proposed architecture, the society defines
the allowed interaction protocols, which in turn are de-
fined by means of Social Integrity Constraints (ICs). The
society knowledge is defined as an abductive logic pro-
gram [9]: ICs are used in order to express constraints on
the communication patterns, while expected communica-
tive acts (“expectations”) are expressed as abducible pred-
icates. Both the specification language and the underlying
proof-procedure are called SCIFF.

Expectations, whose intuition recalls the usual deontic
operators of permission, obligation, and prohibition [8],
are used to provide a semantics to both agent communi-
cation languages and to interaction protocols [6]. The re-
sulting model is based on a declarative (logic) represen-
tation, therefore easy to understand.Moreover, its opera-
tional model can be exploited to achieve an implementa-
tion of societies of computees based on their formal speci-
fications [2]. Thanks to the link between formal specifica-
tion and implementation, the model provides also a good
ground for the automatic verification and formal proof of
properties [10].

The society model and the SCIFF operational model
were satisfactorily tested on a number of applications.
These include resource exchange [11], e-commerce pro-
tocols [7], and combinatorial auctions [1]. A repository
of protocols specified using SCIFF is publicly available
through the project’s home page [22].

The SOCS-SI tool [4]) supports SCIFF models and have
been used for extensive experimentation. It takes as input
the declarative formalisation, and it allows the automated
verification of the social aspects of a SOCS application.
SOCS-SI is general in its scope, and has been interfaced
to other implemented agent platforms, such as JADE, and
to other non-agent related communication platforms, like
e.g. TuCSoN. SOCS-SI uses the SCIFF proof procedure,
that has been implemented using SICStus Prolog, and in
particular its CHR library. The interested reader can learn
more about SCIFF in [5], and in the tutorial paper [17].
SOCS-SI and SCIFF are publicly available on the web 2 .

3 Current Research Directions

Most of our current research has originated from the out-
comes of SOCS. Starting form the many analogies between
the agent paradigm and the Web service model, interac-
tion protocols and choreographies has been the subject of

ification of global and open societies of heterogeneous computees.” The
project run for 42 months, from January 2001 until June 2005, and it in-
volved 6 academic institutions, including the University of Bologna and
the University of Ferrara. See [12, 23].

2http://lia.deis.unibo.it/research/socs_si and
http://lia.deis.unibo.it/research/sciff

conspicuous research carried out in the context of two re-
cent national projects lead by Alberto Martelli 3 . Part of
the research activity done within these projects has built
on SCIFF to i) produce new formalisms for the specifi-
cation and verification of interaction protocols and chore-
ographies; and to ii) develop new techniques for automatic
property verification and reasoning about Web Services.

The translation of graphical modeling languages into the
formal languages developed in these projects has been also
subject of research. Our group has studied the translation
of choreographies (represented in WS-CDL or in BPMN)
into its corresponding SCIFF specification, focussing on
verification of compliance. Several tools, based on the
SCIFF procedure, have been developed to cope with com-
plete logs and with run-time events. Further supported
types of verification regard the proof of “high level” prop-
erties, such as verifying in an e-commerce scenario, that
a buyer is guaranteed to receive the good he/she paid for,
and the seller is guaranteed to be paid.

Alongside our research on Web Services, we have ex-
tended and applied SCIFF in the context of agent-oriented
requirements engineering. This has brought to the devel-
opment of B-Tropos (B standing for Business): a unified
framework for information systems engineering, with the
aim to reconcile requirements elicitation with declarative
specification, prototyping, and analysis [15]. B-Tropos,
built on the well-known Tropos methodology [14], lets
the user to express temporal and data constraints between
tasks, hence introducing also the concepts of start and com-
pletion times, triggering events, and deadlines. The veri-
fication capabilities supported by the SCIFF proof allow
prototyping (animation) and analysis (properties and con-
formance verification) directly in B-Tropos. Early require-
ments engineers will be able to test their models directly;
engineers testing model properties will not have to resort
to ad-hoc, error-prone translations of high-level models
into other languages, thanks to the automatic translation of
B-Tropos models into SCIFF programs; finally, managers
monitoring the correct behavior of a system will exploit
the SCIFF specification to check the compliance using the
SOCS-SI runtime and off-line checking facilities [4].

Another current research direction which builds on
SCIFF concerns argumentation in the Semantic Web [24].
Our work resulted in the development of an operational ar-
gumentation framework, called ArgSCIFF, to support dia-
logic argument exchange between Semantic Web Services.
In ArgSCIFF, an intelligent agent can interact with a Web
Service and reason from the interaction result. The reason-
ing semantics is an argumentation semantics that views the
interaction as a dialogue. The dialogue lets two parties ex-
change arguments and attack, challenge, and justify them

3In 2004-2005, our group has been involved as a partner in the Na-
tional MIUR (ex 40%) project on ”Development and verification of logic-
based multi-agent systems,” and in 2006-2007 on the National PRIN (ex
40%) project on “Specification and verification of agent interaction pro-
tocols.” For more information, see the project Web site [20]. A report on
the most recent project is due to appear on this magazine [13].

Il Milione: A Journey in the Computational Logic in Italy

52



on the basis of their knowledge. This format has the po-
tential to overcome a well-known barrier to human users
adoption of IT solutions because it permits interaction that
includes justified answers that can be reasoned about and
rebutted.

4 CLIMB

Actually, a great deal of our resources are devoted to the
development of LP-based techniques for modeling and
verifying business processes and choreographies. The
reference framework for this work is called CLIMB 4 .
As specification language, CLIMB adopts an extension
of DecSerFlow/Condec, a family of graphical languages
for the declarative specification of service/business flows
[26]. Graphical models are then automatically mapped
onto SCIFF, integrating the best of the two approaches:

• CLIMB models are declarative and open. They do
not specify one particular flow of execution, but rather
focus on the set of constraints that must be satisfied by
interacting entities. Constraints specify either what is
mandatory or forbidden during execution.

• Different verification tasks can be applied on CLIMB
models by exploiting the proof-theoretic operational
counterpart of SCIFF as well as different logic pro-
gramming techniques.

In particular, CLIMB exploits SCIFF for carrying out both
run-time and a-priori verification tasks.

At run-time, SCIFF can be used as an alerting infras-
tructure capable to perform compliance checking, i.e., ver-
ifying whether a concrete process execution (or service
interaction) complies with the prescribed model (and de-
tecting violations as soon as possible). Such a verifica-
tion can be seamlessly applied a-posteriori as well, check-
ing already completed execution traces. In this respect,
CLIMB rules are used as an intuitive classification crite-
rion which split analyzed traces into a compliant and non
compliant sub-sets; a plug-in which exploits such a reason-
ing technique has been implemented and integrated inside
the ProM[25] process mining framework.

At static time, the “generative” variant of the SCIFF
proof procedure can be exploited to check the consistency
of developed models, by detecting the presence of conflicts
(which undermine the possibility of executing the model)
and by discovering if they contain dead activities (i.e., ac-
tivities that can be never executed). Such verifications con-
stitute the basis also for determining if different CLIMB
models can be composed without introducing conflicts.
This is particularly important in a service-oriented setting,
where a choreography can be intended as a contract aiming

4CLIMB stands for “Computational Logic for the verIfication and
Modeling of Business processes and choreographies.” For more informa-
tion and up-to-date resources the interested reader can refer to the CLIMB
Web site [18].

to make different partners correctly collaborate, and then a
set of compatible concrete services implementation must
be found to concretely implement the system.

It is worth noting that DecSerFlow/Condec models have
an alternative underlying semantics in terms of Linear
Temporal Logic formulas, which enable the possibility to
apply model checking techniques in order to verify the de-
signed models. In this respect, a research activity focused
on more foundational aspects is being carried out, to com-
pare expressivity, complexity and reasoning capabilities of
the two frameworks.

Acknowledgements

Much of the work presented here has been done in tight
cooperation with the AI group of the University of Fer-
rara. This paper is complementary to [12], where they fo-
cus on the learning and property verification issues in rela-
tion with the work carried out within and following SOCS.

REFERENCES

[1] M. Alberti, F. Chesani, M. Gavanelli, A. Guerri,
E. Lamma, P. Mello, and P. Torroni. Expressing in-
teraction in combinatorial auction through social in-
tegrity constraints. Intelligenza Artificiale, II(1):22–
29, 2005.

[2] M. Alberti, F. Chesani, M. Gavanelli, E. Lamma,
P. Mello, and P. Torroni. A logic based approach
to interaction design in open multi-agent systems.
In Proc. 13th IEEE international Workshops on En-
abling Technologies: Infrastructures for Collabora-
tive Enterprises (WET-ICE 2004), pages 387–392.
IEEE Press, 2004.

[3] M. Alberti, F. Chesani, M. Gavanelli, E. Lamma,
P. Mello, and P. Torroni. The SOCS computa-
tional logic approach for the specification and verifi-
cation of agent societies. In Global Computing, vol-
ume 3267 of LNAI, pages 324–339. Springer-Verlag,
2005.

[4] M. Alberti, F. Chesani, M. Gavanelli, E. Lamma,
P. Mello, and P. Torroni. Compliance verification of
agent interaction: a logic-based tool. Applied Artifi-
cial Intelligence, 20(2-4):133–157, Feb.-Apr. 2006.

[5] M. Alberti, F. Chesani, M. Gavanelli, E. Lamma,
P. Mello, and P. Torroni. Verifiable agent interaction
in abductive logic programming: the SCIFF frame-
work. ACM Transactions on Computational Logic,
9(4), 2008.

[6] M. Alberti, A. Ciampolini, M. Gavanelli, E. Lamma,
P. Mello, and P. Torroni. A social ACL semantics
by deontic constraints. In Multi-Agent Systems and

Il Milione: A Journey in the Computational Logic in Italy

53



Applications III, volume 2691 of LNAI, pages 204–
213. Springer-Verlag, 2003.

[7] M. Alberti, D. Daolio, P. Torroni, M. Gavanelli,
E. Lamma, and P. Mello. Specification and verifi-
cation of agent interaction protocols in a logic-based
system. In Proceedings of the 19th Annual ACM Sym-
posium on Applied Computing (SAC 2004), pages
72–78. ACM Press, 2004.

[8] M. Alberti, M. Gavanelli, E. Lamma, P. Mello,
G. Sartor, and P. Torroni. Mapping deontic opera-
tors to abductive expectations. Computational and
Mathematical Organization Theory, 12(2-3):205–
225, Oct. 2006.

[9] M. Alberti, M. Gavanelli, E. Lamma, P. Mello, and
P. Torroni. An Abductive Interpretation for Open So-
cieties. In Advances in Artificial Intelligence, vol-
ume 2829 of LNAI, pages 287–299. Springer-Verlag,
2003.

[10] M. Alberti, M. Gavanelli, E. Lamma, P. Mello, and
P. Torroni. Specification and verification of agent in-
teractions using social integrity constraints. ENTCS,
85(2), 2003.

[11] M. Alberti, M. Gavanelli, E. Lamma, P. Mello, and
P. Torroni. Modeling interactions using Social In-
tegrity Constraints: A resource sharing case study. In
Declarative Agent Languages and Technologies, vol-
ume 2990 of LNAI, pages 243–262. Springer-Verlag,
May 2004.

[12] M. Alberti, M. Gavanelli, E. Lamma, F. Riguzzi,
and S. Storari. Inducing specification of interacting
systems and proving their properties: An approach
grounded on computational logic. Intelligenza Artifi-
ciale, In this issue.

[13] M. Baldoni et al. Modeling, verifying and reasoning
about web services. Intelligenza Artificiale, In press.

[14] P. Bresciani, P. Giorgini, F. Giunchiglia, J. Mylopou-
los, and A. Perini. Tropos: An agent-oriented soft-
ware development methodology. Autonomous Agents
and Multi-Agent Systems, 8:203–236, 2004.

[15] V. Bryl, P. Mello, M. Montali, P. Torroni, and N. Zan-
none. B-tropos: Agent-oriented requirements en-
gineering meets computational logic for declarative
business process modeling and verification. In Com-
putational Logic in Multi-Agent Systems VIII, LNAI.
Springer-Verlag, 2008.

[16] M. Bugliesi, E. Lamma, and P. Mello. Modularity in
logic programming. Journal of Logic Programming,
19/20:43–502, May/Jun 1994. Special Issue on “10
years of Logic Programming.”.

[17] F. Chesani, M. Gavanelli, M. Alberti, E. Lamma,
P. Mello, and P. Torroni. Specification and verifi-
cation of agent interaction using abductive reasoning
(tutorial paper). In Computational Logic in Multi-
Agent Systems VI, volume 3900 of LNAI, pages 243–
264. Springer-Verlag, 2006.

[18] CLIMB: Computational logic for the verification
and modeling of business processes and choreogra-
phies, 2008. http://lia.deis.unibo.it/
research/climb.

[19] M. Fisher, R. H. Bordini, B. Hirsch, and P. Torroni.
Computational logics and agents: a road map of cur-
rent technologies and future trends. Computational
Intelligence, 23(1):61–91, 2007.

[20] MASSiVE: sviluppo e verifica di sistemi multi-
agente basati sulla logica. http://www.di.
unito.it/massive.

[21] P. Mello, P. Torroni, M. Gavanelli, M. Alberti,
A. Ciampolini, M. Milano, A. Roli, E. Lamma,
F. Riguzzi, and N. Maudet. A logic-based approach
to model interaction amongst computees. Technical
report, SOCS Consortium, 2003. Deliverable D5.
SOCS project web site [22].

[22] Societies Of ComputeeS (SOCS): a computational
logic model for the description, analysis and verifi-
cation of global and open societies of heterogeneous
computees. IST-2001-32530, 2002-2005. http://
lia.deis.unibo.it/research/socs.

[23] F. Toni. Multi-agent systems in computational logic:
Challenges and outcomes of the SOCS project. In
Computational Logic in Multi-Agent Systems VI, vol-
ume 3900 of LNAI, pages 420–426. Springer-Verlag,
2006.

[24] P. Torroni, M. Gavanelli, and F. Chesani. Argumen-
tation in the semantic web. IEEE Intelligent Systems,
22(6):66–74, Nov/Dec 2007.

[25] W. van der Aalst, B. van Dongen, C. Günther,
R. Mans, A. A. de Medeiros, A. Rozinat, V. Rubin,
M. Song, H. Verbeek, and A. Weijters. ProM 4.0:
Comprehensive Support for Real Process Analysis.
In J. Kleijn and A. Yakovlev, editors, Application and
Theory of Petri Nets and Other Models of Concur-
rency (ICATPN 2007), volume 4546 of LNCS, pages
484–494. Springer-Verlag, 2007.

[26] W. M. P. van der Aalst and M. Pesic. Decserflow:
Towards a truly declarative service flow language.
In M. Bravetti, M. Núñez, and G. Zavattaro, edi-
tors, Web Services and Formal Methods, Third In-
ternational Workshop, WS-FM 2006 Vienna, Austria,
September 8-9, 2006, Proceedings, volume 4184 of
LNCS, pages 1–23. Springer, 2006.

Il Milione: A Journey in the Computational Logic in Italy

54


